Cristina Gzyl
Henryk Gzyl

Occupation time sets of supports of continuous additive functionals

<http://www.numdam.org/item?id=AIHPB_1979__15_1_41_0>
Occupation time sets of supports of continuous additive functionals

by

Cristina GZYL and Henryk GZYL

Escuela de Fisica y Matematicas, Facultad de Ciencias,
Universidad Central de Venezuela

ABSTRACT. — It Φ is the support of a continuous additive functional (A_t) of a Markov process (X_t), we use results on the structure of the processes (τ_i) and (X_{τ_i}, τ_i) (where τ_i is the right continuous inverse of A_t) to describe the set $\mathcal{H} = \{ t : X_t \in \Phi \}$.

1. INTRODUCTION

Let $X = (\Omega, \mathcal{F}, \mathcal{F}_t, X_t, \theta_t, P^x)$ be a standard process with state space (E, \mathcal{E}), $(A_t)_{t \geq 0}$ a continuous additive functional of X and Φ its fine support (see [1] for definitions and notation).

Define $(\tau_i)_{i \geq 0}$ to be the right continuous inverse of (A_t), that is,

$$\tau_i = \inf \{ s : A_s > t \},$$

and consider the random sets

$$I = \{ t : A_{t+\varepsilon} - A_t > 0 \text{ for all } \varepsilon > 0 \},$$

$$J = \{ t : A_{t+\varepsilon} - A_{t-\varepsilon} > 0 \text{ for all } \varepsilon > 0 \},$$

$$\mathcal{H} = \{ t : X_t \in \Phi \},$$

$$Q = \{ t < \infty : \tau_u = t \text{ for some } u \}.$$
It is well known (see [1], Ch. V) that a.s. \(Q = ICXCJ \). Moreover,
\[J - I = \{ \tau_i : \tau_i > 0 \} \]
and hence
\[H = \{ \tau_i ; t \geq 0 \} \cup \{ \tau_i : \tau_i \neq \tau_i ; X_{\tau_i} \in \Phi \} \]

These remarks show that \(H \) is essentially the range of \(\tau \) and so it
is quite natural to try to describe the set \(H \) in terms of the process \(\tau \).

In the case \(\Phi = \{ x_0 \} \), with \(x_0 \) regular for itself, the sections of \(H \) can
be described as follows (see [7], [8] and [9]).

i) a.s. \(P^{x_0} H \) is bounded or unbounded. We will say that \(H \), or \(x_0 \), is
a.s. \(P^{x_0} \) transient or recurrent ;

ii) a.s. \(P^{x_0} H \) has Lebesgue measure zero or a.s. \(P^{x_0} H \) has positive
Lebesgue measure. In the first case one calls \(H \) light and in the second
case \(H \) is called heavy ;

iii) We will call \(H \) stable if its complement intersects every finite interval
\((0, T)\) in a finite union of intervals, and unstable otherwise. Observe that
\(H \) is stable if there are finitely many excursions from \(\{ x_0 \} \) in every finite
interval. One has that a.s. \(P^{x_0} H \) is stable or a.s. \(P^{x_0} H \) is unstable.

The process \((\tau_i)_{t \geq 0} \) is, in the present case, essentially a subordinator
with respect to the law \(P^{x_0} \), and, using the structure of \(\tau \) one can give
criteria for when is \(H \) going to be transient, recurrent, stable, etc. In fact,
in [7] and [8] it is proved that if one considers the exponent
\[S(\theta) = \varepsilon \theta + \int_{(0, \infty)} (1 - e^{-\theta x}) \mu(dx) \]
in the Lévy representation of the distribution of \(\tau_i \) (i.e. \(e^{-rS(\theta)} = E^{x_0}[e^{-\theta \tau_i}] \))
then

i) \(H \) is recurrent \(\Leftrightarrow \mu \{ \infty \} = 0 \),

ii) \(H \) is heavy \(\Leftrightarrow \varepsilon > 0 \),

iii) \(H \) is stable \(\Leftrightarrow \mu \) is a finite measure.

In the next sections, we intend to use some of the results proved by
Cinlar in [2], [3] and [4], and Rolin in [10], about the structure of the processes \(\tau_i \) and \((X_{\tau_i}, \tau_i) \) in the case \(\Phi \) is a more general set (\(\Phi \) the support
of \((A_i) \)) to study the set \(H \). Our results will extend those in [7] and [8]
for the case \(\Phi = \{ x_0 \} \). To be more specific: in section 3 we study the set \(H \)
with respect to the measures \(P^x \), \(x \in \Phi \), by using the results of Cinlar on
Lévy systems for \((X_{\tau_i}, \tau_i) \), and, in section 4, we describe \(H \) conditional on
the paths of the time changed process \(X_{\tau_i} \). We begin by stating some preli-
minary results that will be needed in these sections.
2. PRELIMINARIES

Consider, as in the introduction, a standard process X, a continuous additive functional (A_t) of X, with fine support Φ, and let (τ_t) be the right continuous inverse of (A_t). Let $\Phi_\Delta = \Phi \cup \{ \Delta \}$.

Denote by Φ the Borel subsets of Φ, $b\Phi$ the bounded Borel measurable functions on Φ, R_+ the Borel subsets of R_+, and bR_+ the bounded Borel functions on R_+. Φ_Δ, etc. have similar meanings.

The joint process (X_t, τ_t) is a Markov additive process (see [2]). We assume Φ to be projective, in which case X_t will be a Hunt process (see [1], Ch. V) and so it follows from the results in [3] (*) that there is a Lévy system (H, L) for (X_t, τ_t) with H a continuous additive functional of (X_t), L a kernel from $\Phi_\Delta \times R_+$ into Φ such that

\[
E^x \sum_{s \leq t} f(X_{t-s}, X_t, \tau_s - \tau_s^-).1_{\{X_{t-s} \neq X_{t-s}^-\}} = E^x \int_0^t dH_s \int_{\Phi_\Delta \times R_+} L(X_t, dy, du)f(X_t, y, u)
\]

for each f in $b\Phi \times \Phi_\Delta \times R_+$.

The process (τ_t) can be decomposed as $\tau_t = \tau_t^c + \tau_t^d$ where τ_t^c (the continuous part of τ_t) is a continuous additive functional of (X_t) and τ_t^d is a pure jump increasing additive process (see [2] or [4]).

Let us put $C_t = H_t + \tau_t^c + t$; (C_t) is a strictly increasing continuous additive functional of (X_t).

It is proved in [4] that if we let $\sigma_t = \inf \{ s : C_s > t \}$, then the process $(\hat{X}_t, \hat{\tau}_t) = (X_{t_{\sigma_t}}, \tau_{\sigma_t})$ is again a Markov additive process and its Lévy system is such that the corresponding additive functional \hat{H}_t is equal to $t \wedge \zeta$.

Now, we observe that if one defines $B_t = C_{A_t}$ then we obtain.

\[
(2.2) \text{ LEMMA.} - i) (B_t) \text{ is a continuous additive functional of } X.
\]

ii) The right continuous inverse of B_t coincides with τ_{σ_t}.

iii) (A_t) and (B_t) have the same support Φ.

(*) See note at the end of the paper.

Proof. — i) To prove that \((B_t)\) is adapted see [6] section 2, Lemma 14. The additivity of \((B_t)\) follows from the fact that \((C_t)\) is a continuous additive functional of \((X_{t+})\) and \(A_t\) is a stopping time relative to \((\mathcal{F}_{t+})\).

ii) \(\inf \{ u : C_{A_u} > s \} = \inf \{ u : A_u > \sigma_s \} = \tau_{\sigma_s}\).

iii) This last assertion follows from the fact that \(\sigma_0 \equiv 0\), and so \(\Phi = \{ x : \mathbb{P}^x(\tau_0 = 0) = 1 \} = \{ x : \mathbb{P}^x(\tau_{\sigma_0} = 0) = 1 \} = \text{support } (B_t)\).

In view of Lemma (2.2) we will assume that the Lévy system for \((X_{t+}, \tau_i)\) is such that \(H_t = t \wedge \zeta\), so that (2.1) can be rewritten as follows:

\[
E^x \sum_{s \leq t} f(X_{t+s-}, X_{t+s}, \tau_s - \tau_{s-}) 1_{\{X_{t+s-} \neq X_{t+s}\} \cup \{\tau_s \neq \tau_{s-}\}} = E^x \int_0^\infty d(s \wedge \zeta) \int_{\Phi_\Delta \times \mathbb{R}_+} L(X_{t+s}, dy, du) f(X_{t+s}, y, u).
\]

By means of an approximation argument one can get a more general relation than (2.3), namely, one can show that if \(Z_s\) is adapted to \((\mathcal{F}_{t+})\) positive and left continuous, then one has for \(f \in b \mathbb{X} \times \mathbb{R}_+\)

\[
E^x \sum_{0 \leq s \leq t} Z_s f(X_{t+s-}, X_{t+s}, \tau_s - \tau_{s-}) 1_{\{X_{t+s-} \neq X_{t+s}\} \cup \{\tau_s \neq \tau_{s-}\}} = E^x \int_0^t Z_s ds \wedge \zeta \int_{\Phi_\Delta \times \mathbb{R}_+} L(X_{t+s}, dy, du) f(X_{t+s}, y, u)
\]

Finally, observe that since \(t = C_{\sigma_1} = H_{\sigma_1} + \tau_{\sigma_1}^c + \sigma_{\tau_1}^c\), \(\tau_{\sigma_1}^c\) is absolutely continuous with respect to \(t\), so we may also assume that

\[
\tau_{\sigma_1}^c = \int_0^t d(X_{t+s}) ds \text{ where } a \text{ is positive and } \Phi \text{ measurable.}
\]

3. THE SET \(\mathcal{H}\)

We will now study the set \(\mathcal{H}\) with respect to the laws \(\mathbb{P}^x\) for \(x \in \Phi\). The notations and definitions will be the ones introduced in the preceding sections.

Weight

It follows from the fact that \(\{ s : X_s \in \Phi \} \) differs from \(\{ s : \Delta \tau_{A_s} = 0 \} \) by countably many points, that the « occupation time » of \(\Phi\) is related to \(\tau_i\) as follows:

\[
\tau_i = \int_0^t 1_{\Phi}(X_s) ds \text{ a. s. } \mathbb{P}^x, x \in \Phi \text{ (see [10], chap. IV).}
\]
From (3.1), one gets that \mathcal{H} is heavy a. s. $P^x \lhd \tau_\infty$ is positive a. s. P^x.
It is clear that if a. s. P^x, the process spends a positive time in a given subset of Φ, then \mathcal{H} will be heavy a. s. P^x.

By writing τ^c in terms of the time changed process X_{τ^c} as in (2.5) namely

$$\tau^c = \int_0^\tau a(X_{\tau^c})ds$$

one gets that \mathcal{H} is light a. s. $P^x \forall x \in \Phi$ if $a \equiv 0$. On the other hand, if we let $D = \{ a > 0 \}$ then it is easy to see that

$$\int_0^\infty a(X_{\tau^c})ds = \int_0^\infty 1_D(X_s)ds$$

(a is defined to be zero outside of Φ), and hence \mathcal{H} will be heavy a. s. P^x for $x \in D$ if D is finely open.

Observe that in the case $\Phi = \{ x_0 \}$ (x_0 regular), for all t, one has $X_{\tau^c} = x_0$, $\tau^c = et$, $a(X_{\tau^c}) = e$; so it is clear from (3.1) and (2.5) that a. s. $P^x \mathcal{H}$ is heavy or light, and, \mathcal{H} is heavy $\Leftrightarrow e > 0$, which coincides with the results given in [7] and [8].

If Φ is a finite set, $\Phi = \{ x_1, \ldots, x_n \}$, with all the x_i being regular, then, if we let $a(x_i) = \varepsilon_i$, we see that x_i is heavy a. s. $P^{x_i} \lhd \varepsilon_i > 0$.

Recurrence

We observe that a. s. $P^x \tau_{\varepsilon_{\infty}} = \sup \{ s \leq t : X_s \in \Phi \}$ from which it follows that the last exit from Φ coincides with $\tau_{\varepsilon_{\infty}}$, i.e. $\tau_{\varepsilon_{\infty}} = \sup \{ s \geq 0 : X_s \in \Phi \}$.

Thus, if we say that Φ is transient for x if \mathcal{H} is bounded a. s. P^x, and recurrent for x if \mathcal{H} is unbounded a. s. P^x, we get that Φ is transient for x if $\tau_{\varepsilon_{\infty}} < \infty$ a. s. P^x.

In terms of the Lévy system for (X_{τ^c}, τ_t) one has the following results.

(3.2) PROPOSITION. — For all $x \in \Phi$ the following equality holds

$$E\left[e^{-\tau_{\varepsilon_{\infty}}} \right] = E^x \int_0^\infty e^{-y} L(X_s, \Phi_{\Delta}, \{ \infty \})dA_s$$

Proof.

$$E\left[e^{-\tau_{\varepsilon_{\infty}}} \right] = E^x \sum_{s > 0} e^{-s} \int_0^\infty 1_{(\infty)}(\Delta_s)$$
by (2.4) this last term equals
\[
\mathbb{E}^x \int_0^\infty ds \int_{\Phi_\Delta \times \mathbb{R}^+} L(X_{t_s}, dy, du) e^{-rs} 1_{\{\infty\}}(u)
\]
\[
= \mathbb{E}^x \int_0^\infty L(X_{t_s}, \Phi_\Delta, \{\infty\}) e^{-rs} ds
\]
\[
= \mathbb{E}^x \int_0^\infty e^{-s} L(X_s, \Phi_\Delta, \{\infty\}) d\Lambda_s
\]

The last equality follows from a well known time change formula (see [1], Ch. V).

It follows from proposition (3.2) that \(\tau_{A^-_\infty} = \infty\) a. s. \(P^x \leftrightarrow L(X_{t_s}, \Phi_\Delta, \{\infty\})\)
is \(P^x\) indistinguishable from 0. Or, equivalently

\[
\tau_{A^-_\infty} = \infty\ \text{a. s.}\ \ P^x \leftrightarrow L(\cdot, \Phi_\Delta, \{\infty\}) = 0\ \text{a. s.}\ P^x
\]

Observe that in the case \(\Phi = \{x_0\}\) these conditions reduce to the condition for recurrence given in [7] and [8] namely that \(\mu\{\infty\} = 0\).

Let us denote by \(\overline{X}_t\), the left limit \(X_{t^-}\), then, when \(\Phi\) is transient for \(x\), one has the following expression for the joint distribution of

\[
\tau_{A^-_\infty}, \overline{X}_{\tau_{A^-_\infty}}.
\]

(3.3) Proposition. — Let \(\Phi\) be transient for \(x\), then, if \(g \in b \Phi\) and \(b > 0\), one has

(3.4)
\[
\mathbb{E}^x [g(\overline{X}_{\tau_{A^-_\infty}}), b < \tau_{A^-_\infty}] = \mathbb{E}^x \int_0^\infty g(X_s) L(X_s, \Phi_\Delta, \{\infty\}) d\Lambda_s
\]

Proof.

\[
\mathbb{E}^x [g(X_{\tau_{A^-_\infty}}), b < \tau_{A^-_\infty}] = \mathbb{E}^x \sum_{s > 0} g(\overline{X}_{t_s^-}) 1_{(b, \infty)}(\tau_s^-) 1_{\{\infty\}}(\Delta \tau_s)
\]
\[
= \mathbb{E}^x \int_0^\infty g(X_s) 1_{(b, \infty)}(\tau_s) ds \int_{\Phi_\Delta \times \mathbb{R}^+} L(X_{t_s}, dy, du) 1_{\{\infty\}}(u)
\]
\[
= \mathbb{E}^x \int_0^\infty g(X_s) 1_{(b, \infty)}(\tau_s) L(X_{t_s}, \Phi_\Delta, \{\infty\}) ds = \mathbb{E}^x \int_b^\infty g(X_s) L(X_s, \Phi_\Delta, \{\infty\}) d\Lambda_s
\]

(3.5) Remark. — One may check that proposition (3.3) also holds if \(x \in E - \Phi\).

(3.6) Remark. — By taking \(b = 0\) and \(g = 1\) in (3.4) one gets that

\[
\mathbb{P}^x(\tau_{A^-_\infty} > 0) = u_C(x)
\]
where

\[C_t = \int_0^t L(X_s, \Phi, \{ \infty \})dA_s \]

is a natural potential. Hence, if \(\tau_{\Delta} < \) a. s.,

\(\Phi \) is transient in the usual sense (see [5]).

We observe that the fact that the condition for transience is simpler in this case is due to the fact that \(\Phi \) is the support of a continuous additive functional.

Moreover, with the notation we just introduced, one can rewrite (3.4) as follows.

\[
E_x[g(X_{t\Delta}) \mid \tau_{\Delta} > b] = E_x \int_b^\infty g(X_s) L(X_s, \Phi, \{ \infty \})dA_s = E_x \int_b^\infty g(X_s)dC_s
\]

where \(\mathcal{U}_c(x) = E_x \int g(X_s)dC_s \), which provides another proof of proposition (3.3) in Getoor-Sharpe’s [5], plus an explicit representation of the additive functional \((C_t) \) in terms of probabilistic objects.

Stability

It follows from the fact that \((A_t) \) increases when \(X_t \in \Phi \) and the definition of \((\tau_t) \), that, in order to study the excursions from the set \(\Phi \) in \([0, t]\), one can examine the jumps of \(\tau_s \) up to \(\tau_t \), that is

\[
\sum_{s > 0} 1_{(0, A_s]}(s)1_{(0, \infty)}(\Delta \tau_s) = \sum_{s > 0} 1_{(0, t]}(\tau_s)1_{(0, \infty)}(\Delta \tau_s).
\]

Taking expectations in (3.7) and using (2.4) we obtain

\[
E_x \sum_{s > 0} 1_{(0, t]}(\tau_s - + \Delta \tau_s)1_{(0, \infty)}(\Delta \tau_s) = E_x \int_0^\infty ds \int_0^\infty L(X_s, \Phi, du)1_{(0, t]}(\tau_s + u)
\]

where \(\mathcal{U}(x, f, g) = E_x \int_0^\infty f(X_s)g(\tau_s)dt \).

This last calculation shows that the excursions from \(\Phi \) can also be studied in terms of the Lévy system for \((X_t, \tau_t)\). There are some obvious remarks that we can make, namely (3.7) will be finite for all \(t \) if Vol. XV, n° 1 - 1979.
L(x, (0, ∞)) is bounded for all x ∈ Φ, and infinite for t = ∞ if L(x, (0, ∞)) = oo for all x ∈ Φ. However, since (X_t, τ_t) may behave differently for different points in Φ, and L(x, (0, ∞)) varies with x ∈ Φ, we will give a definition of stability that takes into account this local behaviour.

For F, G ∈ Φ, consider

\[R_t = \sum_s 1_G(X_{\tau_s})1_F(X_{t_0})1_{(0,t]}(\tau_s)1_{(0,\infty)}(\Delta \tau_s) \]

then

\[
E^x(R_t) = E^x \int_0^\infty 1_{(0,t]}(\tau_s)1_G(X_{\tau_s})L(X_{\tau_s}, F, (0, t - \tau_s)]d\tau
\]

\[
= \int G \int_0^t U(x, dy, du)L(X_{\tau_s}, F, (0, t - u)]
\]

DEFINITION. — We will say that \(\mathcal{H} \) is stable for \((x, F, G) \) if the right hand side of (3.8) is finite. Otherwise we will say that it is unstable.

Remark. — It is clear that when \(\Phi = \{ x_0 \} \) we get the criteria in [7].

4. DESCRIPTION OF \(\mathcal{H} \) IN TERMS OF CONDITIONAL PROBABILITIES

We will now briefly discuss the weight, recurrence and stability of \(\mathcal{H} \) given the paths of the time changed process \((X_{\tau_t}) \).

It is proved in [2] and [10] that if we let \(\mathcal{X} \) denote the \(\sigma \)-algebra generated by \((X_{\tau_t})_{t \geq 0} \) completed with respect to the family of measures \(P^\mu \) (\(\mu \) a finite measure on \(\Phi \)), and \(\mathcal{L} \) the same \(\sigma \)-algebra but with respect to the process \((X_{\tau_t}, \tau_t)_{t \geq 0} \), then there is a regular version of the conditional probability \(P^\omega[\cdot | \mathcal{X}] \) on \(\mathcal{L} \), which is independent of \(x \in \Phi \). Denote this version by \(P^\omega(\cdot) \) when evaluated at \(\omega \in \Omega \), and let \(E^\omega \) denote expectation with respect to \(P^\omega \).

The process \((\tau_t) \) is a process with independent increments on \((\Omega, \mathcal{L}, P^\omega) \) and, one has the following representation

\[
E^\omega[e^{-x\tau_t}] = \exp \left[-\alpha e_t^\omega(\omega) - \int_0^\infty (1 - e^{-2u})v_t^\omega(du) \right]
\]

where

\[
v_t^\omega(A) = E^\omega \sum_{s \leq t} 1_A(\Delta \tau_s)
\]

for \(A \), a Borel set in \(\mathbb{R}^+ \) (see [9] and [2] for proof).
Just as in the case $\Phi = \{ x_0 \}$, ν_t enables us to study the recurrence and stability as follows:

Let

$$\hat{\zeta} = \inf \{ t : X_t = \Delta \},$$

then, $A_{\infty} = \hat{\zeta}$, from which it follows that

$$P^\omega(\tau_{\hat{\zeta}} \leq \infty) = P^\omega(\Delta \tau_{\hat{\zeta}} = \infty) = E^\omega[1_{\{-\infty}\}(\Delta \tau_{\hat{\zeta}})] = E^\omega \sum_{0 < s < \hat{\zeta}} 1_{(0, \infty)}(\Delta \tau_s) = \nu_{\hat{\zeta}}^\omega \{ \infty \}$$

Hence, \mathcal{H} is transient or recurrent with respect to P^ω according as to $\nu_{\hat{\zeta}}^\omega \{ \infty \}$ is zero or one.

On the other hand, it follows from (4.2) that

$$\nu_t^\omega(0, \infty) 1_{[t < \hat{\zeta}]} = E^\omega \left[\sum_{0 < s < t \leq \hat{\zeta}} 1_{(0, \infty)}(\Delta \tau_s) ; t < \hat{\zeta} \right]$$

hence, \mathcal{H} is stable or unstable for P^ω according as to $\nu_t^\omega(0, \infty)$ is finite or infinite for all t.

With regards to the weight of \mathcal{H} one has that a. s. P^ω (for each ω) \mathcal{H} is heavy or light, in fact:

$$P^\omega(\tau_{\infty}^c > 0) = E^\omega[1_{\{ \tau_{\infty}^c > 0 \}} | \mathcal{H}] = 1_{\{ \tau_{\infty}^c > 0 \}}$$

where the last equality follows from the fact that τ_{∞}^c is a continuous additive functional of (X_t).

Finally, we observe that in the case $\Phi = \{ x_0 \}$, $\nu_t = P^\omega$ for almost all $\omega \in \Omega$ (see [10]) and we obtain the criteria in [7] and [8].

Note. — We wish to thank Prof. B. Maisonneuve for the following remark: In order to apply Cinlar’s results on the existence of a Lévy system one has to prove that (τ_t) is quasileft continuous with respect to the family (\mathcal{F}_t). Let $D_t = \inf \{ s > t : X_s \in \Phi \}$ and let T_n be an increasing sequence of stopping times of (\mathcal{F}_t) with limit T.

Then, $\tau_{T_n^-}$ and τ_{T^-} are stopping times of (\mathcal{F}_{D_t}) and $\tau_{T_n^-} \uparrow \tau_{T^-}$. Note now that $\tau_t = D_{\tau_t}$ and use the quasileft continuity of the process (D_t) with respect to (\mathcal{F}_{D_t}), which is proved in B. Maisonneuve’s, Systèmes régénératifs, Astérisque, 1974, vol. 15, p. 27.

REFERENCES

(Manuscrit reçu le 21 septembre 1978).