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Linear Lusin-measurable functionals
in case of a continuous cylinder measure

by

W. SMOLENSKI

Institute of Mathematics, Warsaw Technical University,
00-661 Warsaw, Poland

RESUME. — Soit u une mesure cylindrique sur un e.v.t. E. On donne
des résultats sur ’'adhérence de E’ pour la topologie de convergence en u.

SuMMARY. — Let p be a cylinder measure on a linear topological
space E. Some results concerning the closure of E’ in the topology of the
convergence in u are given.

1. INTRODUCTION

Let u be a tight probability measure on a complete locally convex
space E. A measurable linear functional is called Lusin-measurable if
for every positive ¢ there exists a convex and compact set K such that
wK) > 1 — ¢ and the functional restricted to K is continuous (Slowi-
kowski [9]). Lusin-measurable functionals form the closure of E’ in
Lo(E, ) [9]. In general not every linear measurable functional is Lusin-
measurable (Kanter [6a]), see also Urbanik [/5] and theorem 5.6 below).
Using a notion of a pre-support introduced by Slowikowski [9] we define
Lusin-measurable functionals in case when pu is a continuous cylinder
measure. We obtain results similar to the case when p is tight. We use

Annales de I'Institut Henri Poincaré-Section B-Vol. XIX, 0020-2347,1983.311.$ 5.00
© Gauthier-Villars 14



312 W. SMOLENSKI

extensively a notion of a kernel introduced by Hoffmann-Jorgensen [5]
and Borell [2].

The paper is nearly self-contained. In paragraph 2 we recall some defini-
tions and facts concerning linear topological spaces and cylinder measures.
In paragraphs 3 and 4 we prove some propositions about pre-supports
and kernels of cylinder measures. Some of them are known; for a survey
of results about kernels and pre-supports see [3] or [4]. Paragraph 5
contains main results of this paper.

2. PRELIMINARIES

By a locally convex space we will understand a linear space with a fixed
locally convex topology. So, if we say for instance that a set is compact
we mean compactness in this original fixed topology. The letter E will
be reserved to denote a locally convex space. E’ and E“ will denote its
topological and algebraical duals respectively. If Z is a subset of E then Z°
denotes the polar set of Z i. e.

Z° ={feE :VeeZ|{e fy|<1}

2.1. DerFINITION. — Let U be a linear subspace of E, and let h be a
linear functional defined on U. If h restricted to any compact and convex
subset of U is continuous then we will say that it is almost uniformly
continuous on U. A topology on E’ given by polars of compact and convex
subsets of U will be called .the topology of almost uniform convergence
on U and will be denoted by 7.

2.2. DEFINITION. — A linear subspace is called standard if it is a union
of countably many compact convex sets. It is called quasi-standard if
these sets are closed and convex only.

The following theorem is a version of Grothendieck’s Completness
Theorem (cf. [6], p. 248).

2.3. THEOREM. — Let U be a dense standard subspace of a locally
convex space E. Let U* be the space of linear functionals almost uniformly
continuous on U. Then U* is the completion of E’ in 7.

2.4. REMARK. — Since U is standard 7 coincides with the Mackey
topology t(E’, U).
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LINEAR LUSIN-MEASURABLE FUNCTIONALS 313

A subset Z of E is called a cylinder set if it is of the form Z = T~ (B),
where T is a continuous linear map from E into R” and B is a Borel subset
of R". A positive normed set function u on the algebra of cylinder sets is
a cylinder measure if for every T as above uc T~ ! is a g-additive Borel
measure on R”"

With every cylinder measure we can associate a linear map T , from E’

intoL(Q, .#, P) (so called « adjoint linear stochastic process », cf. [1]).
We say that a cylinder measure yu is continuous if T, is i. €. if, on E’, 1¢ is
stronger than the topology s, of the convergence in u. A cylinder measure u
is full if for every non-zero element f of E u(f~'({0})) < 1. If u is full

and U is a dense linear subspace of E then p is also a full cylinder measure
- on U endowed with the induced topology.

3. PRE-SUPPORTS OF A CYLINDER MEASURE

Let u be a full cylinder measure on a locally convex space E and let
the dual space E’ be endowed with the topology 7.

3.1. DerFINITION. — A linear subspace U of E is a pre-support of u if
Ve > 0 1K, = U, convex and compact such that
(x) VfeE  feK] = peeE:|{ef)I<)>1-c¢

A symmetric convex and compact set which fulfills (x) will be called a
set of (up to) e-concentration.

3.2. REMARK. — Let U be a dense subspace of E. The following condi-
tions are equivalent:
i) U is a pre-support of p;
ii) wis a continuous cylinder measure on U;
iit) U contains a standard subspace R such that on E’ the topology tx
is stronger than the topology s, of convergence in p.

3.3. ProprosITION. — The intersection of countably many pre-sup-
ports is a pre-support.

Proof. — Let K = K; n K,, where K, and K, are sets of ¢, — and ¢, —
concentration respectively. We have:

2(E’,E)

KO ={_J/KS + (1 - »KS

4e(0,1)
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It results that (e E: | (e, f>| < 1) =1 — (¢ + &)

Hence K is a set of (¢, + &,)-concentration.

Now let (U,) be a sequence of pre-supports and fix ¢ > 0.

For every n let K, be a set of g,-concentration contained in U,, where
e, =¢/2. We shall show that K=K, is a set of e-concentration. Suppose it
is not so. Then for some fe K° and for some 6 > 0 pu(ecE:|{e,f D | = 1+d)>e.

Put C, = me For each n C, is a set of &2 concentration and the

sequence (C,) decreases to K.
By a standard topological argument there exists a number n, such that

C,c{ecE: | ef)|l<1+d}

But this is contradictory to the fact that C, is a set of ¢/2-concentration.
The proof is completed.

3.4. CoroLLARY. — If u is continuous then pre-supports and o(E, E’)-
pre-supports are the same.

Proof. — Obviously a pre-support in a stronger topology is a pre-sup-
port in a weaker one. Conversely, let U be a o(E, E’)-pre-support. We may
assume that U is o(E, E')-standard. Since yp is continuous there exist a
a standard pre-support U. By Proposition 3.3 UnUisa o(E, E’)-pre-
support. But UAU is a standard subspace. Thus U is a pre-support
(in the original topology).

3.5. ProposITION. — If u is g-additive then every standard pre-sup-
port equals to the intersection of all measure one quasi-standard linear
subspaces which contain it.

Proof. — Let U be a standard pre-support spanned by a decreasing
(with the increase of epsylon) family of symmetric convex and compact
sets { K, }o<,<1, Where for each ¢ K, is a set of e-concentration. Let e, € E\U.
Take a decreasing sequence (g,) of positive numbers such that X¢, = 1.
Fix n> 1. For every positive integer k take a linear functional f;* such that
{eo, fit > = k and £ € K, 1)» Where 8(n, k)=2""¢,. Put

Wn=Q{66E21<eaﬁ:‘>|<l}'

LetW =U m W,. It is easy to see that span (W) is a measure one quasi-

m=1 n=m

standard subspace not containing e.
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LINEAR LUSIN-MEASURABLE FUNCTIONALS 315

3.6. — ProrosiTION. — If u is continuous and c-additive then every
measure one quasi-standard linear subspace is a pre-support.

Proof. — The proof can be done just like the proof of Proposition 3.3.
So we omit it.

4. THE KERNEL OF A CONTINUOUS CYLINDER MEASURE

From now on we make an assumption that y is continuous.

4.1. DEFINITION. — The intersection of all pre-supports is called the
kernel of a continuous cylinder measure u and will be denoted by J,.
Let us denote by i the probability measure on E’* (= the algebraic dual
of E’) which corresponds to u in a natural way (cf. [/]). Since p is conti-
nuous g is continuous too.

4.2. PROPOSITION. — a) J, = J5.
b) J;equals to the intersection if all quasi-standard ji-measurable linear
" subspaces of E’* of measure Jt one.

Proof. — 1f a linear subspace U of E is pre-support of yu it is also a pre-
support of ji. By the continuity of i and proposition 3.3 we get that J,=1J5,.
The second assertion follows directly from Propositions 3.5 and 3.6.

We give now two useful characterizations of the kernel J,,.

4.3. PrOPOSITION. — LetF, = { feE :pleecE:|{e,f>|<1) > 1-¢
LetB, = ){ecE:|<ef>| <1}.ThenJ, = span ({B, }o<.<1)

SeFe

4.4. ProposiTION. — J, = (E', 5.

Proof.— We will prove thatspan ({ B, } ) = (E’,s,)’ = J, < span({B,}).
Fix 0 <& < 1 and ee B,. Let (f,)e E’ converges to zero in s,. We have
Vo >0 IngVn=ny weeE:|<{e,f,)| <8 1—c¢

Thus
Vn Z ng 5_1f;,€B? .

It follows that ( (e, f, > ) tends to zero. Since ( f,) was an arbitrary sequence

converging to zero in s, this implies that e e (E’, s,)". This proves the first
inclusion.

Since y is continuous (E’, s5,)" is contained in E. Take e€ E\J,. By the
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definition of J, there exists a pre-support U such thate¢ U. For 0 < ¢ < 1
let K, be a set of e-concentration contained in U. There exists a sequence ( f,,)
of continuous linear functionals such that nf,e K}, and (e, f,> = 1. It
follows that (f,) converges to zero in s,. Hence e ¢ (E’, s,)’ and the second
inclusion is proved. Let ee E\span ({B,}). We want to show that e is
not an element of J,. By proposition 4.2 it is enough to show the existence
of a quasi-standard linear subspace E, of E'* such that i(E,) = 1 and
e¢Eq. Let B, denote the analogue of B, defined for 1. It is easy to see
that B, n E = B,. Thus eeE’“\span({B }). By the definition of {B,}
for every ¢ > 0 there exists a sequence (f,)€E’ such that (e f,> =n
and eeB*:|{e f,>]<1)=1—¢/2" Now it is enough to use an
argument from the end of the proof of Proposition 3.5.

4.5. REMARK. — It is clear that sets B, which appeared in Proposi-
tion 4.3 are closed, absolutely convex and they increase when epsylon
decreases. They are also compact because each B, is contained in every

set of e-concentration. Conversely, the intersection of all sets of e-concen-
tration is contained in B,,.

4.6. CoroLLARY. — The kernel is a standard subspace.
The kernel is defined as the intersection of all pre-supports. By Propo-
sition 3.3 an intersection of countably many pre-supports is a pre-support.

The following theorem gives a necessary and sufficient condition to ensure
that the kernel is a pre-support.

4.7. THEOREM. — Let p be a full and continuous cylinder measure on
a locally convex space E. The following conditions are equivalent:

i) the kernel J, of u is a pre-support of u;
ii) E’is locally convex in the topology s, of the convergence in p.

Proof. — 1f J, is a pre-support then 7, is stronger than s,. On the other
hand by Proposition 4.4 s, is stronger than o(E’, J,). It follows (bornology
argument) that s, is stronger than t(E’, J,). Since J, is standard this ends
the proof that (i) implies (ii).

Conversely, if (E’, s,) is locally convex then since it is metrisable and
since J, = (E’, 5,)" it follows that (E’, s,) = (E’, «(E’, J,)). By Corollary 3.4
the last equality implies that J, is a pre-support.

4.8. REMARK. — It can be shown (cf. [8]) that (E’, s,) is nuclear if and
only if u is g-additive and p(J,) = 1.
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5. LINEAR LUSIN-MEASURABLE FUNCTIONALS

Let u be a full and continuous cylinder measure on a locally convex
space E. Let D be a standard pre-support of p and let h be a linear func-
tional almost uniformly continuous on D. We will denote by X the space
of such pairs (h, D) factored by the following equivalence relation:

(hy, D) ~ (hy, Dy) if there exists (hs, D3)
such that

D, D, nD, and  hylp, = hylp, = h3.

By Proposition 3.3 X is a linear space.

5.1. DerINITION. — Elements of X will be called linear Lusin-measu-
rable functionals. They will be denoted by x or by (h, D).

5.2. THEOREM. — The above constructed space X is the complection
of E” in the topology s, of convergence in p : X = (E’, s,). More precisely:

a) for every linear Lusin-measurable functional (h, D) there exists a
Cauchy sequence in (E’, s,) converging to h almost uniformly on D;

b) every Cauchy sequence in (E’,s,) contains a subsequence which
converges almost uniformly on some pre-support D;

¢) the following conditions are equivalent:

i) (h1a Dl) ~ (hz, Dz)

it) if for i = 1,2 (f;}) is a sequence of elements of E’ converging to h;
almost uniformly on D; then (f,' — f,2) converges to zero in s,.

Proof. — a) Follows immediatly from Theorem 2.3 and from the defi-
nition of pre-support.

b) Let (f,) be a Cauchy sequence in (E’, s,). Thanks to Egoroff’s theo-

rem there exists a subsequence ( f,,) of (f,) and an increasing sequence (F,,)
of closed subsets of E’* such that for every m (f, ) converges uniformly

~ 1 . .
on F, and u(F,) > 1 — —. Evidently, F,, can be replaced by its closed
m 7.
absolutely convex hull F,,. Let U be a standard pre-support of p. U:UK

m»>
m=1

. 1 .
where K,, is a set of —-concentration and K,, = K, ;. Let us put
m

D = U span ({F} }i20).
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By Propositions 3.3 and 3.6 D is a pre-support of u. On the other hand

for every m (f,,) converges uniformly on C,,=m(K,,~Fy) and D:U C,.
This proves (b). . m=1

¢) (i) implies (ii) by the definition of pre-support. The reversed impli-
cation can be proved in the same way as (b).

5.3. REMARK. — Every linear Lusin-measurable functional is almost
uniformly continuous on J,. However, it is not true in general that every
linear functional defined and almost uniformly continuous on J, can be
extended to a Lusin-measurable one. (For instance if E=R® and u is
an infinite product of p-stable laws, 0 < p < 1, then J, = [*, but X = [?
not ['). On the other hand it can happen that J, = {0} (cf. [12]).

The following theorem is a completion of Theorem 4.7.

5.4. THEOREM. — The following condition are equivalent:

i) every linear functional almost uniformly continuous on J, has a
unique extension to a Lusin-measurable one; .

”) (X> Su) = m

iii) (X, s,) is locally convex

iv) J, is a pre-support of p.

Proof. — Obviously we only have to prove that (i) implies (ii). Let J*
denote the space of functionals almost uniformly continuous and linear
onJ,. By (i) J, is dense in E, so by Theorem 2.3 and Remark 2.4

Ui t,) = (B, «(E, )

Let I denote the map from X into J¥ that associates with every Lusin-
measurable functional its restriction to J,. By (i), Theorem 5.2.bh and
Corollary 4.6. I is a continuous linear bijection from (X, s,) onto (J¥, 1,,).
Thus, by the Open Mapping Theorem of Banach, 17! is also continuous.
This finishes the proof.

Let us call a pre-support hilbertien if it is of the form span K, where K
is a compact absolutely convex set and the Minkowski functional of K
can be induced by a scalar product. There are, of course, continuous cylinder
measures which have no hilbertien pre-support. However, every tight
probability measure on a Frechet space has « sufficiently rich » family
of hilbertien pre-supports.

5.5. THEOREM. — Let u be a tight probability measure on a Frechet
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LINEAR LUSIN-MEASURABLE FUNCTIONALS 319

space E. Then there exists a family (U,),ex of pre-supports of p with the
following properties:
i) U, is hilbertien for every 6 e X ;

ii) for every Lusin-measurable functional x there exists ¢ €  such that x
admits a representation (h, U,);

iy [ \U, = 1,.
oeX
Proof. — By a result of Kuelbs (cf. [7]) there exists a Banach space E,
continuously embeded in E such that p is a tight measure on E;. Thus
without loss of generality we can assume that E is a separable Banach space.
Let X be the set of bounded Borel functions ¢ on E, p-almost everywhere

positive and such that j || e |Fa(e)du(e) is finite. For every ceX let T, be the
E

identity operator from E’ into L,(odu). T, is compact (cf. [14], Propo-
sition 3a).

The adjoint operator T’ is given by the Bochner integral:

Ly(odu)ag =5 j gle)o(e)edu(e) e E .
E

We put U, = T)(L,(6du)). From Chebyshev Inequality and from the

compactness of T/ it follows that U, is a pre-support. Obviously U, is

hilbertien. Let x be a Lusin-measurable functional and let ( f,) be a sequence

of elements of E’ converging p-almost surely to x. Then for

ole) =min (|le||™% (1 +suplef,>H) ")
(f,) converges almost uniformly on U,. This proves (ii).

Finally let ee mUa and let (f,) e E’ converge to zero in s,. To finish

geX

the proof we have to show that (<e,f,>) converges to zero. Suppose
it is not so. Taking, if necessary, a subsequence we can assume that (f,)
converges to zero p-almost surely but (e, f, > >¢>0. This contradicts
the fact that e € U,, where ¢ is constructed as above. This finishes the proof.

At the end of this paragraph we give an example of an infinite dimensional
probability measure with interesting properties. A construction of this
example is based on the following theorem of S. Mazur:

THEOREM. — (S. Mazur) (*). Let (p,) be an increasing sequence of integers

(1) To appear.
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with po =0 such that p,,,(p) ' >1+¢ >0, g1+t ' >271
n=12 ... Let (fy), k = 1,2, ... be a sequence of functions on the inter-

0

val [0,1) of the form fi(t) = ch,,,t"". Suppose that (f;) converges in

n=0
Lebesgue measure to some function f. Then

1) for every n (¢;,) converges to c,;
o)

2) ft) = cht”";

n=0
3) (fi) converges to funiformly on every subinterval [0, r], r < L.

5.6. THEOREM. — Let E be an infinite dimensional Frechet space. Then
there exists a tight probability measure u on E with the following properties:

1) every p-measurable functional is a pu-measurable linear functional;

2) there are u-measurable linear functionals which are not Lusin-measu-
rable;

3) i) = 1.

Proof. — Assume first that E=R*. Let T be a map from the unit interval
[0, 1] into R* given by T(t) = (¢P7), where (p,) is a above.

We put 1t = Ao T~ !, where 1 is the Lebesgue measure. Since 1 is sup-
ported by a linearly independent subset { (t”");2; }o<,<; of R property 1
is clearly fulfilled. Properties 2 and 3 follow directly from Mazur’s theorem.

For general E let K be an infinite dimensional symmetric convex compact
subset of E (such K exists in every complete infinite dimensional linear
metric space by Mazur’s argument (cf. [la], p. 268)). There exists an affine
homeomorphism G from the subset [—1,1]” of R® on to a subset of K
such that G(0) = 0 (cf. [I6], p. 321). It is easy to see that y = Jic G™!
has properties 1, 2, 3.
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