T. K. CARNE Brownian motion and stereographic projection

Annales de l'I. H. P., section B, tome 21, nº 2 (1985), p. 187-196 http://www.numdam.org/item?id=AIHPB_1985_21_2_187_0

© Gauthier-Villars, 1985, tous droits réservés.

L'accès aux archives de la revue « Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Brownian motion and stereographic projection

by

T. K. CARNE King's College, Cambridge.

ABSTRACT. — Stereographic projection from \mathbb{R}^N to \mathbb{S}^N maps Brownian paths in \mathbb{R}^N to the paths of Brownian motion on \mathbb{S}^N conditioned to be at the centre of the projection at a negative exponential time.

Key-words: Stereographic projection; Conditioned Brownian motion; Conformal transformations.

Résumé. — La projection stéréographique de \mathbb{R}^N à \mathbb{S}^N applique les trajectoires Browniennes de \mathbb{R}^N sur les trajectoires Browniennes de \mathbb{S}^N conditionnées par le fait d'être au centre de projection à un instant de loi exponentielle.

In this brief note we shall discuss how Brownian motion in \mathbb{R}^N , for $N \ge 3$, can be interpreted as a Brownian bridge conditioned to go to the « ideal point at infinity ». This question was posed by Prof. L. Schwartz [2]. Prof. M. Yor [3] presents an alternative, more probabilistic, approach.

1. STEREOGRAPHIC PROJECTION

Consider the unit sphere S^N in \mathbb{R}^{N+1} and the hyperplane

 $\mathbf{R}^{\mathbf{N}} = \{ y = (y_1, \ldots, y_{\mathbf{N}+1}) : y_{\mathbf{N}+1} = 0 \}.$

Stereographic projection from the point $\mathbf{P} = (0, ..., 0, 1)$ of \mathbf{S}^{N} maps $y \in \mathbb{R}^{N}$

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques - Vol. 21, 0246-0203 85/02/187/10 , \$ 3,00/© Gauthier-Villars to the point $x \in S^N \setminus \{P\}$ which lies on the straight line from P through y; see the diagram. This is a diffeomorphism between $S^N \setminus \{P\}$ and \mathbb{R}^N , so we regard P as being the point of S^N which corresponds to the « ideal point at infinity of \mathbb{R}^N ».

PROPOSITION 1. — Brownian motion on \mathbb{R}^{N} is mapped by stereographic projection onto a time changed version of the Brownian motion on \mathbb{S}^{N} together with a drift towards P at speed $\frac{1}{2}(N-2) \tan \frac{1}{2}\theta$ on the sphere.

Proof. — Brownian motion on a Riemannian manifold with metric $g_{ab}dx_adx_b$ has as its infinitesimal generator one half of the Laplacian, viz.

$$\frac{1}{2}\Delta = \frac{1}{2\sqrt{g}}\sum \frac{\partial}{\partial x_a} \left(\sqrt{g} g^{ab} \frac{\partial}{\partial x_b}\right)$$

where $g = \det(g_{ab})$ and $(g^{ab}) = (g_{ab})^{-1}$. On S^N take co-ordinates (θ, z) for $x \in S^N$ where $0 \le \theta \le \pi$ is the angle shown in the diagram and $z = y/||y|| \in S^{N-1} = S^N \cap \mathbb{R}^N$.

Then

 $|| dx ||^2 = | d\theta |^2 + \sin^2 \theta . || dz ||^2$

so the Laplacian on S^N is

$$\Delta_{\mathbf{S}^{\mathbf{N}}} = \frac{1}{\sin^{\mathbf{N}-1}\theta} \frac{\partial}{\partial \theta} \left(\sin^{\mathbf{N}-1}\theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \Delta_{\mathbf{S}^{\mathbf{N}-1}}.$$

Similarly, if we take co-ordinates (r, z) for $y \in \mathbb{R}^{N}$, where r = || y ||, then

$$|| dy ||^2 = | dr |^2 + r^2 || dz ||^2$$

so the usual Laplacian on \mathbb{R}^{N} is

$$\Delta_{\mathbf{R}^{\mathbf{N}}} = \frac{1}{r^{\mathbf{N}^{-1}}} \frac{\partial}{\partial r} \left(r^{\mathbf{N}^{-1}} \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \Delta_{\mathbf{S}^{\mathbf{N}^{-1}}}.$$

The infinitesimal generator for the deterministic motion given by a drift towards P at speed $\frac{1}{2}(N-2)\tan\frac{1}{2}\theta$ is clearly

$$\frac{1}{2}$$
 (N - 2) $\tan \frac{1}{2} \theta \cdot \frac{\partial}{\partial \theta}$

Hence, to prove the proposition we need to show that, under stereo-

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

graphic projection $\frac{1}{2}\Delta_{R^N}$ corresponds to some strictly positive function times

$$\mathscr{G}_{\mathbf{P}} = \frac{1}{2}\Delta_{\mathbf{S}^{\mathbf{N}}} + \frac{1}{2}(\mathbf{N}-2)\tan\frac{1}{2}\theta \cdot \frac{\partial}{\partial\theta}.$$

Under stereographic projection we have $r = \tan \frac{1}{2}\theta$ so

$$\begin{split} \Delta_{\mathbf{S}^{\mathbf{N}}} &= \left(\frac{2r}{1+r^{2}}\right)^{1-\mathbf{N}} \left(\frac{1+r^{2}}{2}\right) \frac{\partial}{\partial r} \left[\left(\frac{2r}{1+r^{2}}\right)^{\mathbf{N}-1} \left(\frac{1+r^{2}}{2}\right) \frac{\partial}{\partial r} \right] + \left(\frac{1+r^{2}}{2r}\right)^{2} \Delta_{\mathbf{S}^{\mathbf{N}-1}} \\ &= \left(\frac{1+r^{2}}{2}\right)^{2} \left\{ \left(\frac{2}{1+r^{2}}\right)^{2-\mathbf{N}} \frac{1}{r^{\mathbf{N}-1}} \frac{\partial}{\partial r} \left[\left(\frac{2}{1+r^{2}}\right)^{\mathbf{N}-2} r^{\mathbf{N}-1} \frac{\partial}{\partial r} \right] + \frac{1}{r^{2}} \Delta_{\mathbf{S}^{\mathbf{N}-1}} \right\} \\ &= \left(\frac{1+r^{2}}{2}\right)^{2} \left\{ \frac{1}{r^{\mathbf{N}-1}} \frac{\partial}{\partial r} \left[r^{\mathbf{N}-1} \frac{\partial}{\partial r} \right] - (\mathbf{N}-2) \left(\frac{2r}{1+r^{2}}\right) \frac{\partial}{\partial r} + \frac{1}{r^{2}} \Delta_{\mathbf{S}^{\mathbf{N}-1}} \right\} \\ &= \left(\frac{1+r^{2}}{2}\right)^{2} \left\{ \Delta_{\mathbf{R}^{\mathbf{N}}} - (\mathbf{N}-2) \left(\frac{2r}{1+r^{2}}\right) \frac{\partial}{\partial r} \right\}. \end{split}$$

Equivalently,

.

$$\begin{split} \frac{1}{2}\Delta_{\mathbf{R}^{\mathbf{N}}} &= \left(\frac{2}{1+r^2}\right)^2 \left\{ \frac{1}{2}\Delta_{\mathbf{S}^{\mathbf{N}}} + \frac{1}{2}(\mathbf{N}-2)r\left(\frac{1+r^2}{2}\right)\frac{\partial}{\partial r} \right\} \\ &= (1+\cos\theta)^2 \left\{ \frac{1}{2}\Delta_{\mathbf{S}^{\mathbf{N}}} + \frac{1}{2}(\mathbf{N}-2)\tan\frac{1}{2}\theta\frac{\partial}{\partial \theta} \right\}. \end{split}$$

This completes the proof. \Box

Vol. 21, nº 2-1985.

T. K. CARNE

We now wish to obtain the random process with infinitesimal generator \mathscr{G}_P by conditioning the standard Brownian motion $BM(S^N)$ on the sphere to be at P at an appropriate time. To do this we will follow the analysis of conditioning given by J. L. Doob [1, Chapter 10]. Note that we are seeking a time-homogeneous process, so that conditioning $BM(S^N)$ to be at P at a fixed time will not do. Furthermore, we cannot simply condition $BM(S^N)$ to hit P at some time since, to do so, we would require a positive harmonic function on $S^N \setminus \{P\}$ with a singularity at P. No such function exists. However, we do obtain time homogeneous processes by conditioning $BM(S^N)$ to be at P at a random time T which is independent of $BM(S^N)$ and has a negative exponential distribution.

PROPOSITION 2. — Let T be a random time which is independent of $BM(S^N)$ and has a negative exponential distribution with parameter $\lambda = N(N - 2)/8$. Then $BM(S^N)$ conditioned to be at P at time T has infinitesimal generator

$$\mathscr{G}_{\mathbf{P}} = \frac{1}{2} \Delta_{\mathbf{S}^{\mathbf{N}}} + \frac{1}{2} (\mathbf{N} - 2) \tan \frac{1}{2} \theta \frac{\partial}{\partial \theta}$$

on $S^N \setminus \{P\}$. Hence, $BM(R^N)$ is mapped by stereographic projection to a time-changed version of $BM(S^N)$ conditioned to be at P at the time T.

Proof. — To condition BM(S^N) to be at P at time T we need to find a positive function h on S^N\{ P } with a singularity at P and

$$\left(\frac{1}{2}\Delta_{\mathbf{S}^{\mathbf{N}}} - \lambda \mathbf{I}\right)h = 0$$

Then the conditioned process will have the *h*-transform:

$$u \rightarrow h^{-1}\left(\frac{1}{2}\Delta_{\mathbf{S}^{\mathbf{N}}} - \lambda \mathbf{I}\right)(h \cdot u)$$

as its infinitesimal generator. Such a function h must be a multiple of the Green's function for $\frac{1}{2}\Delta_{S^N} - \lambda I$ with a pole at P and hence it must be a function of θ only. Thus we wish to solve

$$\frac{1}{2\sin^{N-1}\theta}\frac{\partial}{\partial\theta}\left[\sin^{N-1}\theta\frac{\partial h}{\partial\theta}\right] - \lambda h = 0.$$

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

190

When $\lambda = N(N - 2)/8$ the required function *h* is given by $h = \left(\cos\frac{1}{2}\theta\right)^{-N+2}$ Consequently, the conditioned process has infinitesimal generator

$$u \rightarrow h^{-1} \left(\frac{1}{2} \Delta_{SN} - \lambda I \right) (h \cdot u)$$

= $h^{-1} \left(\frac{1}{2} h \Delta_{SN} u + \nabla h \cdot \nabla u + \frac{1}{2} u \Delta_{SN} h - \lambda u \cdot h \right)$
= $\frac{1}{2} \Delta_{SN} u + h^{-1} \nabla h \cdot \nabla u$
= $\frac{1}{2} \Delta_{SN} u + \frac{1}{2} (N - 2) \tan \frac{1}{2} \theta \frac{\partial}{\partial \theta}$

where ∇ is the gradient for the Euclidean metric on S^N. This proves the first assertion and the second follows from Proposition 1.

(Note that the conditioning described above does correspond to the naïve idea of conditioning a process by its position at time T. For suppose that U is a subset of S^N with a smooth boundary. If (x_t) is the Brownian motion on S^N , then we may form a new process

$$x_t^* = x_t \quad \text{for} \quad t < T$$
$$= \partial \quad \text{for} \quad t \ge T$$

which jumps to a coffin state ∂ at the random time T. If we condition (x_t^*) so that $x_{T-}^* \in U$ then we obtain the transition semigroup P_t given by

$$P_t f(x) = E^x(f(x_t^*) | x_{T^-}^* \in U)$$

= $E^x(f(x_t) 1_{(t < T)} | x_T \in U)$
= $E^x(f(x_t) 1_{(t < T)} 1_U(x_T))$
= $E^x(1_U(x_T))$

Setting

$$h(x) = \mathrm{E}^{x}(\mathbf{1}_{\mathrm{U}}(x_{\mathrm{T}}))$$

we find that

$$P_t f(x) = h(x)^{-1} E^x (f(x_t) \mathbf{1}_{(t < T)} h(x_T))$$

= $h(x)^{-1} \int_t^\infty E^x (f(x_t) h(x_s)) \lambda e^{-\lambda s} ds$
= $h(x)^{-1} e^{-\lambda t} E^x (f(x_t) h(x_t))$

by using the Markov property of the Brownian motion. Thus the condi-Vol. 21, n° 2-1985. tioned process is the h-transform of the Brownian motion for h the distributional solution of

$$\left(\frac{1}{2}\Delta_{\mathbf{S}^{\mathbf{N}}}-\lambda\mathbf{I}\right)h=\mathbf{1}_{\mathbf{U}}.$$

We can now decompose this process into an average of the processes conditioned to be at a point $X \in U$ at the time T. See J. L. Doob [1] for further details.)

For each $Y \in S^N$ let h(Y, .) be the Green's function of $\frac{1}{2}\Delta_{S^N} - \frac{N(N-2)}{8}I$

with a pole at Y. Then the Brownian motion conditioned to be at Y at the negative exponential time T has infinitesimal generator

$$u \rightarrow h(\mathbf{Y}, x)^{-1} \left(\frac{1}{2} \Delta_{\mathbf{S}^{\mathbf{N}}} - \frac{\mathbf{N}(\mathbf{N} - 2)}{8} \mathbf{I} \right) (h(\mathbf{Y}, x)u(x))$$

on $S^N \setminus \{Y\}$. As in Proposition 2 we find that this is

$$u \rightarrow \frac{1}{2}\Delta_{S^N}u(x) - (N-2) ||x - Y||^{-1}\nabla ||x - Y|| \cdot \nabla u(x).$$

Call this generator $\mathscr{G}_{\mathbf{Y}}$.

COROLLARY. — Let $(x_t : 0 \le t \le S)$ be the process with generator \mathscr{G}_P which starts from Y at time t = 0 and stops at the time S when it first hits P. Then the time reversed process $(\tilde{x}_\tau : 0 \le \tau \le S)$ given by

$$\tilde{x}_{\tau} = x_{\mathbf{S}-\tau}$$

has infinitesimal generator \mathscr{G}_{Y} , starts from P at $\tau = 0$ and stops at the time S when it first hits Y.

Proof. — Since stereographic projection maps (x_t) onto Brownian motion in \mathbb{R}^N it is clear that $(x_t : t > 0)$ almost surely never hits Y. Thus the reversed process certainly starts from P at $\tau = 0$ and stops at the time S when it first hits Y. It remains to find its infinitesimal generator.

Let g(Y, .) be the Green's function for \mathscr{G}_P with pole at Y, then, for any smooth function f which is compactly supported within $S^N \setminus \{P, Y\}$, we have

$$\mathbf{E}\int_{0}^{\mathbf{S}} f(x_{t})dt = \int g(x, \mathbf{Y})f(x)d\mathbf{V}(x) = \mathbf{E}\int_{0}^{\mathbf{S}} f(\tilde{x}_{t})d\tau$$

where dV is the N-dimensional Lebesgue measure on S^N .

Consequently, if we denote by $\mathscr{G}_{\mathbf{P}}$, (\mathbf{P}_t) the generator and transition

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

semigroup for (x_t) and by $\widetilde{\mathscr{G}}_{\mathbb{P}}, (\widetilde{\mathbb{P}}_{\tau})$ the corresponding operators for (\tilde{x}_{τ}) , then we obtain

$$\int g(x, \mathbf{X}) f(x) \mathbf{P}_r k(x) d\mathbf{V}(x) = \mathbf{E} \int_0^{\mathbf{S}} f(x_t) \mathbf{P}_r k(x_t) dt$$
$$= \mathbf{E} \int_0^{\mathbf{S}} f(x_t) k(x_{t+r}) dt$$
$$= \mathbf{E} \int_0^{\mathbf{S}} f(\tilde{x}_{\tau+r}) k(\tilde{x}_{\tau}) d\tau$$
$$= \int g(x, \mathbf{Y}) k(x) \tilde{\mathbf{P}}_r f(x) d\mathbf{V}(x) \, .$$

So

$$\mathbf{P}_r k(x) = g(x, \mathbf{Y})^{-1} \mathbf{P}_r^* (g(x, \mathbf{Y}) k(x))$$

and

$$\widehat{\mathscr{G}}_{\mathbf{P}}k(x) = g(x, \mathbf{Y})^{-1}\mathscr{G}_{\mathbf{P}}^{*}(g(x, \mathbf{Y})k(x)).$$

Now recall that $\mathscr{G}_{\mathbf{P}} = h(\mathbf{P}, .)^{-1} \left(\frac{1}{2}\Delta - \lambda \mathbf{I}\right) h(\mathbf{P}, .)$ so

$$g(x, \mathbf{Y}) = \frac{h(\mathbf{Y}, x)h(\mathbf{P}, x)}{h(\mathbf{P}, \mathbf{Y})}$$

and consequently

$$\widetilde{\mathscr{G}}_{\mathbf{P}}k(x) = h(\mathbf{Y}, x)^{-1} \left(\frac{1}{2}\Delta - \lambda \mathbf{I}\right)^* (h(\mathbf{Y}, x)k(x)).$$

Since the Laplacian is self-adjoint, this gives the desired result.

2. CONFORMAL TRANSFORMATIONS

In this section we wish to set the results of §1 in a more general context.

For any $\lambda > 0$ we can condition BM(S^N) to be at P at the independent random time T which has negative exponential distribution with parameter λ . Indeed, to do so we need only find a positive function h of θ with

$$\left(\frac{1}{2}\Delta_{\mathbf{S}^{\mathbf{N}}} - \lambda \mathbf{I}\right)h = 0 \quad \text{on} \quad \mathbf{S}^{\mathbf{N}} \setminus \{\mathbf{P}\}$$

and a singularity at P. If we make the change of variables $q = \frac{1}{2}(1 - \cos \theta)$ this becomes

$$q(1-q)\frac{d^{2}h}{dq^{2}} + \frac{1}{2}N(1-2q)\frac{dh}{dq} - 2\lambda h = 0$$

Vol. 21, nº 2-1985.

for $0 \le q < 1$. This is in the standard hypergeometric form and may be solved by a power series

$$h=\sum_{n=0}^{\infty}a_nq^n.$$

This series has radius of convergence 1 and each a_n is positive, so h is certainly positive on $0 \le q < 1$. For $\lambda \ne N(N - 2)/8$ this formula does not define an elementary function. Although the conditioned process may be studied as in the previous section, it does not correspond to a simple process on \mathbb{R}^N .

The key property of stereographic projection is that it is *conformal* so it alters the metric at any point only by a scale factor. We can develop the arguments above for any such conformal transformation.

PROPOSITION 3. — Let M be an N-manifold (N \ge 3) with a Riemannian metric g_{ab} and a conformally equivalent metric

$$\tilde{g}_{ab} = \Omega^2 g_{ab}$$
 with $\Omega > 0$.

Let \mathbf{R} and $\mathbf{\tilde{R}}$ be the scalar curvature for g and $\mathbf{\tilde{g}}$ respectively. Then the Brownian motion relative to $\mathbf{\tilde{g}}$ can be obtained, up to a time change, by conditioning the Brownian motion relative to g according to its behaviour at a negative exponential time if, and only if, $\mathbf{R} - \Omega^2 \mathbf{\tilde{R}}$ is constant on M.

Proof. — In terms of the infinitesimal generators $\frac{1}{2}\Delta$ and $\frac{1}{2}\tilde{\Delta}$ for the Brownian motions, the Proposition states that there exists $\lambda > 0$ and strictly positive functions h and c on M with

$$\frac{1}{2}\tilde{\Delta}u = c^2 h^{-1} \left(\frac{1}{2}\Delta - \lambda I\right) (h \cdot u) \tag{1}$$

if, and only if, $\mathbf{R} - \Omega^2 \tilde{\mathbf{R}}$ is constant. (If we consider the second degree terms of (1) we see that the condition can only be satisfied if g and \tilde{g} are conformal. So there was no loss of generality in restricting ourselves to this case.)

The proof is simply a standard calculation of the scalar curvature for conformal metrics. We shall use the usual index notation for vectors and tensors on M. Let ∇_a , $\widetilde{\nabla}_a$ be the covariant derivatives relative to g and \tilde{g} .

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques

194

Then a straightforward but tedious calculation yields the formulae:

$$\begin{split} \widetilde{\nabla}_{a}v_{b} &= \nabla_{a}v_{b} - \Omega^{-1}(v_{a}\nabla_{b}\Omega + v_{b}\nabla_{a}\Omega - g_{ab}g^{cd}v_{c}\nabla_{d}\Omega) \\ \widetilde{\Delta}u &= \widetilde{g}^{ab}\widetilde{\nabla}_{a}\widetilde{\nabla}_{b}u = \widetilde{g}^{ab}\widetilde{\nabla}_{a}(\nabla_{b}u) \\ &= \Omega^{2}(\Delta u + (N-2)\Omega^{-1}g^{ab}\nabla_{a}\Omega\nabla_{b}u) \\ \Omega^{2}\widetilde{R} &= R - 2(N-1)\Omega^{-1}\Delta\Omega - (N-1)(N-4)\Omega^{-2}g^{ab}\nabla_{a}\Omega\nabla_{b}\Omega \,. \end{split}$$

Thus, for (1) to hold, we must have $c = \Omega$ and

$$h^{-1}\left(\frac{1}{2}\Delta - \lambda \mathbf{I}\right)(h \cdot u) = \frac{1}{2}\Delta u + \frac{1}{2}(\mathbf{N} - 2)\Omega^{-1}g^{ab}\nabla_a\Omega\nabla_b u.$$

Now

$$\Delta(h \cdot u) = g^{ab} \nabla_a \nabla_b (h \cdot u) = h \Delta u + 2g^{ab} \nabla_a h \nabla_b u + u \Delta h$$

so we obtain the two conditions:

$$h^{-1}\nabla_a h = \frac{1}{2}(N-2)\Omega^{-1}\nabla_a\Omega$$

and

$$\left(\frac{1}{2}\Delta - \lambda \mathbf{I}\right)h = 0$$

The first of these is satisfied if, and only if, $h = K \cdot \Omega^{\frac{1}{2}(N-2)}$ for some constant K. In this case, the second condition becomes

$$0 = \left(\frac{1}{2}\Delta - \lambda I\right) (\Omega^{\frac{1}{2}(N-2)})$$

= $\frac{1}{4}(N-2)\Omega^{\frac{1}{2}N-2}\Delta\Omega + \frac{1}{8}(N-2)(N-4)\Omega^{\frac{1}{2}N-3}g^{ab}\nabla_a\Omega\nabla_b\Omega - \lambda\Omega^{\frac{1}{2}N-1}.$
 $\Leftrightarrow \lambda = \frac{1}{4}(N-2)\Omega^{-2}\Delta\Omega + \frac{1}{8}(N-2)(N-4)\Omega^{-2}g^{ab}\nabla_a\Omega\nabla_b\Omega$
= $\frac{N-2}{8(N-1)}.$ (R - $\Omega^2\tilde{R}$).

If we take g to be the Euclidean metric on S^N and \tilde{g} the metric on S^N , which corresponds under stereographic projection to the Euclidean metric on \mathbb{R}^N , then

$$\Omega = \frac{1}{1 + \cos \theta}, \qquad \mathbf{R} = \mathbf{N}(\mathbf{N} - 1), \qquad \widetilde{\mathbf{R}} = 0$$

Vol. 21, nº 2-1985.

and we recover Proposition 2. The above formula may also be usefully applied to conformal mappings from S^N to itself.

PROPOSITION 4. — Let $(x_t: 0 \le t < S)$ be the process on $S^N \setminus \{P\}$ with infinitesimal generator \mathscr{G}_P and let $T: S^N \to S^N$ be a conformal automorphism of S^N . Then $(Tx_t: 0 \le t < S)$ is a time-changed version of the process on $S^N \setminus \{TP\}$ with infinitesimal generator \mathscr{G}_{TP} .

Proof. — Recall that the group of conformal automorphisms of S^N is generated by the inversions in spheres orthogonal to S^N . We could prove the result by direct calculation, as in § 1, of the effect of such an inversion. However, it is simpler to argue indirectly.

Let $U: \mathbb{R}^N \to S^N$ be stereographic projection with centre P and let $V: \mathbb{R}^N \to S^N$ be the stereographic projection with centre TP from the N-dimensional subspace of \mathbb{R}^{N+1} orthogonal to TP. Both of these maps are conformal, so the composite

$$\mathbf{Q} = \mathbf{V}^{-1}\mathbf{T}\mathbf{U}: \mathbf{R}^{\mathbf{N}} \to \mathbf{R}^{\mathbf{N}}$$

is conformal. Since $N \ge 3$, the only such conformal maps are the Euclidean similarities of \mathbb{R}^N . These similarities obviously preserve Brownian motion on \mathbb{R}^N to within alteration of the time scale by a constant factor. Now Proposition 1 shows that, to within a time change, U maps $BM(\mathbb{R}^N)$ to the process with generator \mathscr{G}_P and V maps $BM(\mathbb{R}^N)$ to the process with generator \mathscr{G}_{TP} . Therefore, $T = VQU^{-1}$ does indeed transform the process with generator \mathscr{G}_P to a time-changed version of the process with generator \mathscr{G}_{TP} .

If we combine Proposition 4 with the earlier Corollary, we see that timereversal of the process starting at Y with generator \mathscr{G}_P corresponds to the image of the process under any inversion which maps S^N onto itself and interchanges Y and P. This should be compared with the results of M. Yor [3]

REFERENCES

- J. L. DOOB, Classical Potential Theory and its Probabilistic Counterpart, 1984, Springer-Verlag, Berlin.
- [2] L. SCHWARTZ, Le mouvement Brownien sur ℝ^N, en tant que semi-martingale dans S_N. Annales de l'I. H. P. Probabilités et Statistiques, t. 21, n° 1, 1985, p. 15-25.
- [3] M. YOR, A propos de l'inverse du mouvement Brownien dans \mathbb{R}^n $(n \ge 3)$. Annales de l'I. H. P. Probabilités et Statistiques, t. **21**, n° 1, 1985, p. 27-38.

(Manuscrit reçu le 7 décembre 1984).

Annales de l'Institut Henri Poincaré - Probabilités et Statistiques