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ABsTRACT. — In [3] we proved a strong law of large numbers for the
rescaled asymmetric nearest neighbor simple exclusion process. The
method is based on the properties of the limiting first order nonlinear
partial differential equation.

In this article we show that the same method applies to the asymmetric
zero-range process, the limiting equation being of the same type. An
improvement of [3] enables us to remove the nearest neighbor assumption.

We obtain the local equilibrium as an easy consequence.

Key words : Zero-range process, hydrodynamical limit, first order quasilinear P.D.E.,
entropy condition.

REsuME. — Dans [3] nous avons démontré une loi des grands nombres
pour le processus d’exclusion simple asymétrique, dans le cas ou les
particules ne sautent qu’aux sites voisins. La méthode est basée sur les
propriétés de I’équation aux dérivées partielles limite qui est non linéaire
du premier ordre.

Dans cet article nous montrons que la méme méthode s’applique au
processus de zéro-range asymétrique, ’équation limite étant du méme type.
Une amélioration de [3] nous permet de traiter le cas de transitions
quelconques.

Nous en déduisons facilement ’équilibre local.
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190 A. BENASSI AND J.-P. FOUQUE

INTRODUCTION

In [3] we proved a strong law of large numbers and we deduced the
local equilibrium for the one-dimensional asymmetric simple exclusion
process by using the monotonicity and the existence of a family of equili-
brium measures for this process.

In this article we show that the same method applies to a larger class
of processes having the same properties.

In particular we are interested in the asymmetric one-dimensional zero-
range process which preserves the stochastic order (monotonicity) and has
a family {v*} of equilibrium measures indexed by a continuous parameter
ranging from 0 to + co. We will suppose that the transition probabilities
are translation invariant and have a first moment different from zero.

We consider this process starting from a product measure v*® corre-
sponding to two half-spaces in equilibrium at different levels a and b, and
we study its asymptotic behavior.

After a suitable space and time rescaling, the distribution of particles at
time t defines a random measure on the real line, each particle contributing
an equal mass. We show that this measure converges weakly almost surely
to a deterministic measure which has a density called the density profile
(section II).

In section III we show that this density is a weak solution of a nonlinear
hyperbolic P.D.E.; without the nearest neighbor assumption, as in [3], we
cannot longer apply the interface argument but a coupling procedure and
the particular initial distribution enable us to obtain the result. The
identification of the density profile as the unique weak solution satisfying
the entropy condition is again a consequence of the monotonicity of the
process.

In section IV we deduce from the preceding result the local equilibrium
at each point of continuity of the density profile.

This problem is solved by E. Andjel and C. Kipnis in [2] when the
particles move in only one direction to the nearest neighbor, the exponen-
tial time between two jumps at a given site not depending on the number
of particles at that site.

The symmetric case is treated in [S], the limiting equation being para-
bolic, the method is completely different.’
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THE ASYMMETRIC ZERO-RANGE PROCESS 191

I. THE ZERO-RANGE PROCESS

I.1. Generator, invariant measures and initial distribution

Consider on the space E=NZ with elements (also called configurations)
n={n(k), keZ} the markovian evolution which can be described intui-
tively in the following way: at each site k of Z we have a number of
particles X (k) and after an exponential time with parameter depending
on X (k), one of the particles (if any) will jump to the site / with probability
pk, D.

We will suppose the transition probabilities translation invariant and
set: p(k, D=p(0, I—k)=p(—k) with p(0)=0. We also suppose that
Y. |k|p (k) is finite and that Y, kp(k), denoted by B, is not zero.

keZ keZ
Let the jump rates be described by a non decreasing function {g (n), ne N}
such that g(0)=0, g(1) > 0 and sup (g (n+ 1) —g (n)) is finite.

The existence and uniqueness of a Markov process corresponding to
this description is given in [1]. If g(n) is not bounded, in order to avoid
infinitely many particles jumping to a given site, it is necessary to restrict
the set of allowed configurations to a subset E, of E (cf. [1]).

In any case the generator L of this Markov process is defined on
cylindrical functions on E by:

Lfm= Y pOgm@E)f (" **)—fm)] M

k,leZ
where

n(m) if m#k and m#k+1ornk)=0
nk*+tm)= nm)—1 if m=k and n(k)=1
n(m)+1 if m=k+! and n(k)=1.

Denote by (T)), » o the semigroup generated by L and by % the set of
real functions on E [E, if g(n) is not bounded] on which this semigroup
operates.

Let {X,={X,(k), k € Z}, t = 0} be the right continuous version with left
limits of the Markov process with semigroup (T,) [X,(k)eN for every t = 0
andk € Z].
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192 A. BENASSI AND J.-P. FOUQUE

The extremal invariant and translation invariant measures (see [1]) are
the product measures v(y) given by:

v neEm(©0)=nj=z-1 -1 (2a)
g (n)!

Z= v 2b

R @0

where g(n)!l=g(1)...g(n), g(0)!=1 and y€(0, sup g(n)). If g(n) is not
bounded we have v(y)(Ey)=1 (cf. [1)).

We have yzjg (m0))dv (y) and if p=j11 (0) dv (y), it is not difficult to

+ o n
see that p=Z2"1 ) n(y)‘ is a strictly increasing C®-function of y such
n=1 &N)
that p(0)=0and lim p(y)=+ 0.
Y = supg(n)

The well-defined inverse function y=G(p), continuous and strictly
increasing from 0 to sup g (n), will be important in the sequel: if y=G(p)

we also write v(y)=V*.

Our initial distribution will be a product measure on E such that its
restriction to Z, ={k > 0} is v’ and its restriction to Z_={k <0} is v*
for given a and b such that 0 £ b < a; we will denote this initial distribution
by v*2.

We may see v** as the juxtaposition of two half-spaces in equilibrium
and then observe its evolution according to the zero-range process.

Note that p(1)=1 or p(—1)=1 (i. e. particles move in only one direction
to the nearest neighbor), g(n)=1 for every n = 1 is the case studied in [2]

where G(p)=L.
1+

Note also that in the case g (n)=n for every n, particles move indepen-
dently and G (p) =p.

I.2. Rescaling and heuristic
For every € > 0, x in R and ¢t = 0 we define:
X: (x)= Z Xie (k) Lk, ety (). (3)
keZ
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THE ASYMMETRIC ZERO-RANGE PROCESS 193

We want to prove the almost sure weak convergence of the random
measure Xj(x)dx, as € goes to 0, to a deterministic measure u (x, t) dx.

Observe that for t=0, the strong law of large numbers holds: X§ (x) dx
converges weakly almost surely to the deterministic measure:
uo(x)dx=(al_, oy+blio, +)(X)dx; uq is the initial density profile.

In order to guess the limit for ¢t > 0, we need an equation for E(X?)
also denoted by uf (x).

For keZ we compute dE{X,(k)} using the formula:

dE{f (X)}=E{Lf(X)}dt with f (n)=n (k).

dE{X, ()} =— Y p(OI[E{g(X, ()} —E{g(X, (k—D)}]dt. (4)

leZz*

On the set of functions u: R — R we define the following functionals:
D_,,u(x)=()~" [u(x)—u(x—D].
With this notation and (3), (4) becomes:

dit=—Y Ip()D_,, E{g(X2)}d. 5)

lez*

Intuitively, when the process evolves under the invariant measure
v=v(y), we have ui=E,{X:}=p and E,{g(X)}=y=G(p)=G ().
From this observation, which will be the basic idea in section III, we must
have: if X7 (x)dx converges, as & goes to 0, weakly almost surely to the
deterministic measure u (x, t)dx, then u¢ converges to u(x, t), D_,, conver-

ges to :;Z and E (g (X})) converges to G (u(x, t)).
x

Therefore u should be a solution to the following first order P.D.E.:

_6_11+B6G(u) —0
ot O0x
(6)
u(., 0)=u,

where B= ) Ip(l) # 0.

leZz*
In general we do not have unicity of the weak solution for this type of
equation.
In the appendix of [3] we summarized its properties, recalled the notion
of entropy condition and the result of existence and uniqueness of the
weak solution satisfying the entropy condition.

Vol. 24, n° 2-1988.



194 A. BENASSI AND J.-P. FOUQUE

In this paper we will make the following hypothesis:
(H) G 1S CONCAVE.

Then from the appendix of [3] we know that the entropy condition is
equivalent to:

u (x, )=limu(y, ) Zu* (x, )=limu(y,t) if B<O
yix yix

and

w(x, )<ut(x, 1) if B>0.

II. CONVERGENCE

In [1] it is proved that the zero-range evolution preserves the stochastic
order (monotonicity). One also can find in [1] the generator of the coupled
process which allows us to construct simultaneously on the same space
versions of the zero-range process starting from an arbitrary configuration
at an arbitrary time; these properties are a consequence of the hypothesis
sup (g(n+1)—g(n)) <+ oo and enable us to apply the method described

n

in [3], chapter 11, based on a subadditive ergodic theorem due to Liggett
([5], Chapt. I, Thm. 2.6).

The proof of the follwoing convergence result can be found in [3],
Chapt. II.

PropoSITION 1. — There exists a function u(x, t), decreasing and right
continuous in the x-variable such that: b < u(x, t) < a and X, (x)dx conver-
ges weakly almost surely to u(x, t)dx.

In order to identify wu it will be enough to study
u; (x)=E {X (x)} =E {X,, ([x/e])} as & goes to 0, since by dominated conver-
gence

lim jy E{X:(z)}dz= JY u(z, t)dz

e~ 0 Jx x

and therefore u(z, t)= lim E{X:(z)} for almost every z in R.

e~ 0
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THE ASYMMETRIC ZERO-RANGE PROCESS 195

III. IDENTIFICATION OF THE DENSITY PROFILE

One can rewrite the equation (5) satisfied by uf in the weak form: for
every smooth function ¢: Rx R, — R, with compact support, we have:

ﬂ [ ]+Zlp(l)lE(g(X*»De,(m)dxdt
R+ xR

—f up () @ (x, 0)dx (7)

where ug=al_, ,+bl, i)

The main difficulty to take a limit in (7) is to prove that E(g(X¢(x)))
converges to G (u(x, t)), where G is the function defined in section I and
u (x, t) the density profile obtained in section II.

In order to do that we will compare our process (X,) with the same
zero-range process (Bf) starting from the invariant measure v¢ defined
in (2).

Initially we impose X, (k) = B§ (k) for k <0 and X, (k) < B (k) for
k > 0; the initial distribution allows us to do that and we let the processes
evolve according to the coupling procedure.

Under the nearest neighbor assumption the interface argument given in
[3] would have given the result directly; without this assumption the proof
is more complicated.

We denote by v» P the initial coupled distribution previously described
and by t the shift on Z; (T,) being the semigroup of the coupled process
associated with the generator I, we have the following result:

LeEMMA 1. — For every (x, t) such that u(x, t) is continuous in the x-
variable, every cluster point of the precompact set {t*1T, v*¥< &\ 0} is
a measure on E x E supported by {n 2 &} U {n < E}.

Proof. — Observe that the compactness is given by the monotonicity.
Let v be a weak limit along the sequence (g,). The second marginal of v
is obviously v¢ and its first marginal has a one point correlation equated
to u(x, t). By shifting the initial distribution it is not difficult to see that
v is stochastically larger than v and has the same one point correlation;
it follows that v is translation invariant.

The next step is to show that Vv is invariant by (T,). The method is very
similar to what we did in [3], Chapt. II, to prove the nonrandomness of I.
Let the system evolve up to time ¢, and couple it with the same one where
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196 A. BENASSI AND J.-P. FOUQUE

particles have been added in such a way that restricted to Z_ we have
our initial distribution v* %<,

After t, let the system evolve along the sequence (g,). The particles
added at time t, will not change the law of large numbers and then the
one point correlation. This fact and the stochastic domination give again
T, V=Y.

Vv being translation invariant and invariant by the semigroup (T, the
conclusion is given by [1], §4.

The next result shows that there is a limiting interface between particles

of the X-system alone and particles of the B-system alone, in terms of
densities.

LeEMMA 2. — For every real numbers x and y such that x <y, either
Jj=lx/el j=+o

e ) {Bu()—Xy (M VOore Y {X,()—B,.()} VO goes to zero in
j=-w J=lyle]
probability as € goes to zero.

Proof. — 1f it is not the case we can find a sequence (g,), 8, >0, §, >0
and o > 0 such that:
Jj=[x/e,)
lim P{ T (B ()~Xy, VO 2 3y/e,,
n j=—o
j=+omo
S (X, 0By () VOZBfe 2
i=lylen]
Intuitively from time O to time t/e, we must have a number of jumps of
particles of one type over particles of different type at least of order
8, 8,/e? since at time 0 particles of different types are well ordered. This
will not be possible since by Lemma 1, locally, particles alone are of the
same type.
The particular shape of the initial distribution of the X-particles alone
and B-particles alone shows that the number of jumps of size greater than
N from time O to time t/e, involving X-particles alone over B-particles

alone (or vice versa) is at most of order ( Y. p())(¢/e,)*. This enables
>N

us to suppose that p (I)=0 for every [ such that |l | > N.

Let W(t, N) be the number of pairs (B,(k), X,(})) with |j—k|<N.
Lemma 1 shows that W(t/e,, N) converges to 0 in probability. Then the
number of jumps of size less than N from time 0 to time t/g, involving X-
particles alone over B-particles alone (or vice versa) is of order less than
(t/e,)* which is not compatible with the order 3, 5,/¢2.

Annales de UlInstitut Henri Poincaré - Probabilités et Statistiques



THE ASYMMETRIC ZERO-RANGE PROCESS 197

CoroLLARY 1. — For almost every x in R,

lim sup | E {g (X} (x))} — G (4 (x)) |=0. @®

e—0

Proof. — Let C be the set of nonnegative real numbers which are the
values taken at most one time by u(x, t) as a function of x, ¢ being fixed;
u is decreasing in the x-variable then C is dense in R,. For ¢ in C we
define a(c, t) as the only real number, — o0 and + oo included, such that
u(x, t) > c for every x <af(c, t) and u(x, t) <c for every x > a(c, t).
Lemma 2 tells us that the density of B-particles alone on the left of a(c, t)
is zero and that the density of X-particles alone on the right of a(c, t) is
zero. Therefore

lim E {[B:(x)—X:(x)] VO} =0

e~ 0

and
lim inf E {g(X: ()} > E {2 (B ()} =G (c)

e 0
for almost every x < a(c, t). Similarly

lim E {[X: (x) — B¢ (x)] VO} =0

e—~>0

and
lim sup E {g (X; (1)} < E {2 (B; (x))} =G (c)

e—0

for almost every x > a.(c, t).
For 8 > 0 such that ¢+ is also in C we deduce that for almost every
x such that a(c+39, t) < x < a(c, t) we have:

¢ < lim E{X¢!(x)}=u(x, t) S c+38

e—>0

G (0)=E{g(B}*(x))} < liminf(sup) E {g(X} (x))}
]
< E{g(B** (1)} =G (c +9).

(8) is obtained by taking a limit as 8 goes to zero and using the density
of Cin R,.

THEOREM 1. — u is a weak solution to (6).

Vol. 24, n° 2-1988.



198 ' A. BENASSI AND J.-P. FOUQUE
Proof. — We define A (g, ¢) for € > 0 and ¢ as in (7) by:
0 0
NG <p)=” {uf—(p +BG(u§)—(P}dxdt+J 15 (%) @ (x, 0)dx
R4 xR 0x R

ot
where =Y Ip(l).

leZ
In order to prove that

JJ {ua—(p +|3G(u)i(g}dxdt=j ug (x) ¢ (x, 0)dx,
R+ xR at 5x R

by the continuity of G and the convergence of uf to u,, it is enough to
prove that A (g, @) goes to zero as € goes to zero.
From (7) we deduce:

Afs, (P)=” {BG(uf)Z—(z—[E(g(Xﬁ)) > lp(l)Del((p)}dth

lez

- j j P2 (G ) —E (g (X)) dvc
R+ xR X
+H E@Q(X)) T lp(l){g—“’ Da,(q»}dxdt

lez X‘-
3 IRLE
R4+ xR

ﬁ” m@mmn(zuww
R+ xR

leZ

%

x| G (u8) —E (g (X5)) | dx dt
Ox

‘,3.(2
0x

-D,,(¢) D dx dt.

The first integral going to zero by the Corollary 2 and the second
integral going to zero since

5 :
[E@X))|<G@<+c0 and ¥ Illp(l)la—i—Du(w)l
lez
converges to zero; lim A (g, @) =0.

e—=>0

THEOREM 2. — u is the weak solution to (6) satisfying the entropy
condition.

Proof. — We first look at the case g(n)=An for every neN with A a
strictly positive constant; in that case G is linear, G(p)=»Ap, (6) is linear
and u is its unique solution in the following sense: u(x, t) is almost
everywhere equal to u given by:

u(x, t)=a if x <Prt and bif x> B\t
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THE ASYMMETRIC ZERO-RANGE PROCESS 199

This a.e. equality, the monotonicity (in x) of u(x, t) and the fact that
u(x, ty=u(x/t, 1) imply that the equality holds for all (x, t) such that
x # PAt.

In the case B < 0, as recalled in section I, the entropy condition reduces
to u™ < u~ which is clearly satisfied since u is decreasing in x. The previous
argument shows that:

o i x<pOO0O,
u(x, t)= —a
b it pO0C0,
—a

In the case B > 0, g not linear, G’ is (continuous) strictly decreasing and
we have: BG' (@) =BG (u) < BG’ (b).
As in [3] the method of characteristics gives:
x>BG D)t = ulx, )=u,(x—BG (w)t)=>b
x<BG @t = u(x,t)=u,(x—BG’ (W)t)=a.
By comparison with u*¢ and u®® obtained as a profile for the process
starting from v*© and v**® and monotonicity we get that u(., t) is continu-

ous and therefore satisfies the entropy condition. Moreover this method
gives u explicitly:

‘ a if x<PG(a)t
u(x, t)= «n*(%) if BG'(a)t<x<PG (bt

b if x=BG (bt

IV. LOCAL EQUILIBRIUM

We deduce from Theorem 2 the limiting behavior of the particle process
seen by a travelling observer (i.e. the weak limit of the distribution of
{X,([xt]+k), keZ} as t goes to + oo for fixed x in R).

THEOREM 3. — For all points of continuity of u(x, 1), for all values of
B # 0) we have:

w. lim Law{X,(Ixt] +k), ke Z}=v*® ",

t— +w
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200 A. BENASSI AND J.-P. FOUQUE

Gb)—-G(a)
b—a
ing distribution is a product measure invariant under the action of the

semigroup (T,). We say that propagation of chaos holds and that the system
is in local equilibrium.

Remark. — Except for one case (ﬁ <0, x=8 t), the limit-

Proof. — As in [3], it is easy from the proof of Theorem 1 to get that
for any finite set {f}, .. ., f,} of increasing functions from N to R,:

im_ €4 ] Ak, e+ =TT [ in e
t—> +o i=1 i=1
where the k;’s are all distinct.
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