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ABSTRACT. - Let X (t) be a diffusion on a smooth bounded domain
D c Rd and let Xh (t) be a corresponding h-process where h is positive
and L-harmonic. Also, let iD denote the first exit time from D. DeBlassie

proved that for all such h, ~ lim - log (tD > t ) = - lead eigenvalue
t - 00 t

of L with the Dirichlet boundary condition on aD. In this paper, we give
a simpler proof of a stronger result. We prove that

where the constants c 1 (L, D, x) and are independent of h.
From the proof, one can readily see that the upper and lower bounds are
essentially consequences of the Hopf maximum principle and Harnack’s
inequality respectively. We also present a conditional gauge theorem.

RÉSUMÉ. - Soit X (t) une diffusion sur un domaine borne et régulier
D c Rd et soit Xh (t) un des correspondant h-processus où h est positive
et L-harmonique. Soit iD le temps de sortie de D. DeBlassie a prouvé que
pour une telle h, lim log Px (iD > t) = - ~,D, la premiere valeur propre de

L avec la condition de frontière de Dirichlet sur aD. Dans cet article,
nous donnons une plus simple preuve d’un résultat plus fort. Nous mon-
trons que

où les constantes et sont indépendantes de h. La
preuve montre que les bornes supérieure et inferieure sont essentiellement
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88 R. G. PINSKY

des consequences respectivement du principe de maximum de Hopf et de
l’inégalité de Harnack.

1. INTRODUCTION

Let X (t) denote the diffusion process on the bounded region D c Rd
which is generated by

and which is killed upon reaching aD. We will assume that aij, bi (Rd)
and that the boundary, aD, is Denote the (substochastic) transition
density by and the corresponding semigroup by Tt. It is well
known that given any strictly positive function h on D satisfying Lh = 0
in D (henceforth L-harmonic), one may construct a new diffusion Xh (t)
on D whose transition probability density is given by

The generator of the new process is

L - 1L h
In fact, following Doob, such a process, called an h-process, may be

considered as a conditioned diffusion process. We elaborate on this a bit.
As the boundary is assumed smooth, it follows that the Martin boundary
coincides with the Euclidean boundary. (Indeed, a Lipschitz boundary is
enough to guarantee this [12].) Fix xo E D. Let K (x, y) for x ~ D and y ~ ~D
be the minimal harmonic function with reference point xo corresponding
to the boundary point y, that is, K (x, y) is L-harmonic in D, 
and lim for Then may be thought of as

the original diffusion, X (t), conditioned to exit D at y [8]. By the Martin
representation [15], any positive harmonic function h (x) may be repre-
sented as

h (x) = K (dy), for some measure ~, on aD satisfying

Denote by Px the probability measure on path space induced by the
diffusion X (t) starting from xe D and denote by P~ the corresponding
probability for Xh (t) starting from x E D. It follows from Doob [8], p. 440,
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89LIFETIMES OF CONDITIONED DIFFUSION PROCESSES

that

where (dy) and  is as in (1.1).
h (x)

Thus, an h-process corresponds to a measure on path space which is a

weighted average (with respect to point of exit) of the original process
conditioned on its exit point. Of course, the original process X (t) may
also be thought of as an h-process; it is the h-process corresponding to
h--_ 1.

Let It follows from the Donsker-Varadhan

theory of large deviations that the original process X (t) satisfies

where (spec ( - L)) [7]. DeBlassie studied the corresponding
asymptotics for h-processes and proved that

for every strictly positive harmonic h [5]. In light of Doob’s representation
in (1.2), this result asserts that the asymptotic rate of decay of the

probability of not exiting from D for a long time does not depend on
‘ where the process finally exists. Indeed, if one considers Falkner’s condi-
tional gauge theorem [9], the intuition behind the above fact becomes

quite transparent. See the last paragraph of the introduction in [5] for an
explanation. In the special case of Brownian motion, DeBlassie was able
to do better than ( 1. 3); he obtained the following eigenfunction expansion.

where the convergence is absolute and uniform for t >_ T > 0 [6]. (Also, see
[1] and [13] which trent more general reversible diffusions.) Here

a complete set of orthonormal eigenvalue-eigenfunction

pairs for -A on D with the Dirichlet boundary condition on aD.
DeBlassie’s proof of ( 1. 3) is a nice application of I-function calculating;

he evaluated the Donsker-Varadhan I-function for the h-process in a

sufficiently explicit manner. In the present paper, we shall improve upon
DeBlassie’s result using an entirely different approach which appears to
us to be somewhat simpler. Our method also has an intuitive appeal; it
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will be clear from the proof that our upper and lower bounds are essentially
consequences of the Hopf maximum principle and Harnack’s inequality
respectively. We prove
THEOREM 1. - Let PX be the measure corresponding to the h-process

Xh (t) obtained from the process X (t) whose corresponding measure is Px
and which is generated by L as given above. Assume that the domain D
possesses a CZ° "-boundary. Then there exist positive constants cl (L, D, x)
and c2 (L, D, x) which are independent of h such that

Remark. - The constants cl and c2 must necessarily depend on x. To
see this, consider the case of Brownian motion. Now solves

and vanishes at aD. Recall that P~r~~) is given by 1. 4 . By

the Hopf maximum principle for parabolic and elliptic operators respec- _

tively [17], it follows that and cpo (x) have first order zeroes at
aD. If we take h (x) = k (x, y) for then lim h (x) = oo and

lim h (x)=0. Thus 
t) is neither bounded x from above nor

} Px (2D > t)
bounded away from zero on D.
From Theorem 1, we can obtain a conditional gauge theorem. Let

where q is a Borel measurable function. If /!= 1, u~‘ is called the gauge of
D; for general h it is called the conditional gauge. A number of authors
have considered the finiteness or infiniteness of the gauge and of the
conditional gauge with various conditions on q, D and L (See [3], [4], [9],
[10], [16] and [19]). From Theorem 1, we can obtain the following condi-
tional gauge theorem.

THEOREM 2. - Let and assume that Land D are as in

Theorem 1. Let ~,q = Sup Re (Spec (L + q)).
(i) If Àq  0, then for each x e D, sup uh (q, D; x)  oo .

h

(ii) If Àq > 0, then uh (q, D; x) = oo for all h.
(iii) If Àq = 0, and q >_ o, then u~‘ (q, D; x) = oo for all h.
Proof. - In [16] we used the fact that lim to prove

i - m

a version of the above theorem for the unconditional gauge, that is, the
case h -_-1. Virtually the same proof works here if one uses the above
asymptotic result in conjunction with (1 . 5). The proof is a quite straight-
forward application of the Donsker and Varadhan large deviations estima-
tes.
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L4J treats reversioie cnnusions wnme me omci papers cited

above treat Brownian motion. These papers allow for either unbounded

q, nonsmooth region D or both of these possibilities. The statement of
the theorem in these papers is that if Uh (q, D; x) is finite for some hand
some x, then it is bounded for all hand x. Our result, though restricted
to bounded q and smooth D, is new in that it treats the general diffusion
and that it gives an explicit spectral condition under which uh (q, D; x) will
be finite. Note though that Theorem 2 only gives sup uh (q, D; x)  oo for

h

each x and not sup sup u" (q, D; x)  oo .

x h

In the following section, we will present the proof of Theorem 1, relying
on Theorems 3 and 4 appearing below, the proofs of which will be

postponed till section three.
In order to state Theorem 3, we must recall the following fact. By the

Krein-Rutman theory of positive operators [14], it follows that the infimum
of the real part of the spectrum of - L and of its adjoint - L with the
Dirichlet boundary condition coincide at a real simple eigenvalue ~,D > 0
and that the corresponding eigenfunctions cpo and (po are strictly positive
in D. From here on, we assume that cpo and cpo are normalized so that

Note that, of course, and

T* cpo = cpo, where T*, the adjoint of Tt, satisfies

T’*.f (x) = P (t, y, x)f(y) dy.

We also note here for later use that as a consequence of the regularity
assumptions, it follows that p (t, x, y) is a classical solution of pt = Lx p for
each y E D and of pt = Ly p for each x E D. Furthermore, p (t, x, y) is continu-
ous on (O,oo)xDxD and p(t,x,y)=O for 
and 

We now state

THEOREM 3. - lim sup PD (t, x, y) - cpo (x) cpo (y) I = o.
f -~ oo x, y e D

COROLLARY. - The conditional density

Vol. 26, n° 1-1990.
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satisfies

Proof of Corollary. - From the theorem, we have

pD (t, x, y) = ~po (x) tpo (y) + o (t), uniformly for x, y E D.
Remark. - Actually, the proof of Theorem 1, especially the lower

bound, does not at all require the full strength of this result.

THEOREM 4. - Let zo E aD. }~n= 1 be a sequence o,f’smooth nonnega-
tive nonidentically zero functions defined on aD and define n E P (aD) by

= A Afnd03C3 ~Dfnd03C3, dcr for A c aD. Assume that n (aD - G) = 0 for each rela-

tively open zo E G c aD and all sufficiently large n (depending on G). Let
un denote the solution to the Dirichlet problem Lun = 0 in D and un = fn on

aD. Define v (x) = 
un (x) for x E D where x ~ D is the reference point of
un (~0~

section one. Then

where k (x, zo) is the minimal harmonic function with reference point xa
corresponding to the boundary point zo. Furthermore

lim Pin (iD > t) = Px (., z0)x (iD > t), for all x ~ D and t > 0. ( 1. 9)
n - o0

2. PROOF OF THEOREM 1

We first note that, by Doob’s representation ( 1. 2), we need only con-
sider the case h (x) = k (x, zo) for Fix x ~ D and let fn, un and vn be
as in Theorem 4. We have

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Now by Theorem 4, the left hand side of (2.1) converges to
zo) (03C4D > t) 

as n ~ ~. Thus, to complete the proof of Theorem l, it
Px (iD > t)

suffices to show that the right hand side of (2 .1 ) is bounded and bounded
away from zero independent of n, large t, z0 ~ ~D and the particular

(It suffices to consider large t since, as t ,~ 0, the left
hand side of (2 .1 ) converges to one.)

Lower bound. - From the corollary to Theorem 3, it follows that for
E>O

for all sufficiently large ~ and all Let U be open and satisfy
x e U c: U c= D. Then by strict positivity of (po in U, it follows from (2.2)
that for some 8>0,

pD(t, x, y) DpD(t, x, z)dz
~03B4, for y e U and t sufficiently large. (2.3)

By Harnack’s inequality, un (x) ~un (y) for all y e U, where c is indepen-
dent {y~}~! and ZoC3D. Thus

for c = c . Using (2 . 3) and (2 . 4) in the right hand side of (2 .1 ), weIUI ]
conclude that for all t sufficiently large,

Upper bound. - Note that un is excessive for Tt :

Vol. 26, n° 1-1990.
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Thus, we have the following upper bound on the righthand side of (2 .1 ):

It then follows that to obtain the upper bound, it suffices to show that
for each xED, there exists a c (x) such that

for all y E D and all large t.

Now, as functions of y,

and pD (1, x, y) are all strictly positive in D and all have first order zeroes
on aD. Furthermore, by the corollary to Theorem 3, 

converges to 0(y) D0(z)dz as , uniformly for x, yeD. From these

facts, it is easy to deduce that, in order to show (2. 6), it suffices to show

that the unit inward normal derivative of 

bounded from above as t ~ oo . For x E D and we write
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Thus, letting ny denote the inward unit normal to aD at y E aD, we have

The right hand side of (2. 7) is bounded as t - oo since by Theorem 3,

is bounded as This completes the proof of

Theorem 1.

3. PROOFS OF THEOREMS 3 AND 4

We need the following lemma to prove Theorem 3.

LEMMA. - T * is a compact operator on C (D) for each t > 0.

Proof. - We must show that 1 } is bounded and equiconti-
nuous. The boundedness follows from the fact that p (t, x, y) is bounded
for each t > 0. For 1, we have

p

By the joint continuity of p (t, x, y) it follows that the righthand side may
be made arbitrarily small by picking b sufficiently small. This gives equi-
continuity.

Proof of Theorem 3. - By the lemma, T* is a compact operator on
C (D). Thus, by the Riesz-Schauder theory of compact operators on
Banach spaces, it follows that C (D) = N (8) R where N = ~ c c E R} and
T* leaves N and R invariant ([2], Chapter 6, section 6). Since
e -’~Dt = sup Re (spec (T*)), and since the nonzero spectrum of a compact
operator is isolated, it follows that for large t and some
v>O. Let fEC(D). By the above direct sum decomposition of C (D), it
follows where Thus for large t,

Vol. 26, n° 1-1990.
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We now identify c f. Recalling that D03C60 cpo dx = l, we haveD

Thus f03C60 dx and |~~ I f I I J n cpo dx. Furthermore then

~/ L

Thus it follows from (3 .1 ) that for all large t,

We now write

where

We calculate

Let M = sup p ( 1, x, z). From (3 . 2), (3. 3) and (3 . 4), we have for large t
x, z ~ D

sup ( t, x, y) - (x) (y) I
x,yeD

This proves the theorem.

Proof of Theorem 4. - Let G c G c D be an open set. We claim that
~ vn ~~° 1 is bounded and equicontinuous on G. The boundedness follows
from Harnack’s inequality. From the Schauder interior estimates (see
[ 11 ], Theorem 6. 2), it follows that for open sets G and G 1 satisfying
G ~ G ~ G1 ~ G1 c D, there exists a c independent of n si ch that
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Thus, from Harnack’s inequality again, for x, y E G,

where C1 is independent of n. This gives equicontinuity. Now let Gm be
an increasing sequence of open sets whose union is D. Then we can find
a subsequence {vnk}~k = 1 of {vn} which converges on D to a continuous
function which we denote by g. From the representation
vn (x) = Ex vn (X (iA)) for any open A satisfying x e A c A c D, it follows
that for such A. Thus g is L-harmonic in D. Further-
more g (xo) =1. If we can show that lim g (x) = 0 for all then

x - z

it will follow that g (x) is in fact k (x, zo), the minimal harmonic function
with reference point xo corresponding to the boundary point zo. From
this it then follows that in fact the original sequence {vn}~n=1 converges
to k(.,zo).
By construction, for each vn (z) = 0 for n sufficiently large.

Thus, to show that lim g (x) = 0 for it suffices to show that
x - z

the inward unit normal derivative of v at z0~x~~D is bounded( ) n 0~

independent of n. Fix such an x. From the Martin representation, we have

for some finite measure n on aD. The inward unit normal derivative to
vn at x is

Now 2014(~,z) is bounded for z bounded away from x. Since the measure
~JC

~ is supported on the support which, by construction, is bounded

away from x for sufficiently large n, it follows that is bounded
~

This completes the proof of (1.8).
We now consider (1.9). Let G~ be an increasing sequence of open sets

whose union is D. Let denote the measure corresponding to the

Vol. 26, n° 1-1990.
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process restricted to the interval 0  t __ ~GGm. The corresponding
transition probability, pn, m (t, x, y) - (x) pD (t, x, (y), satisfies

lim sup sup for all b > 0 since the same is true of
t - 0 t n 

It then follows 1 is tight [19], and since
lim pn~ m (t, x, y) = k (x, zo) -1 pD (t, x, y) k (y, zo), we conclude that in fact

as n -~ oo, where Px ~-~ m is the measure corresponding
to the process Xk ~~° Z~ restricted to the interval 0  t _ Invoking Lemma
11 . 1 . 1 in [18], it follows that Phn => PX ~-° Z~~ as n  oo . ( 1. 9) now follows.
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