Marc Yor

On an identity in law obtained by A. Földes and P. Révész

<http://www.numdam.org/item?id=AIHPB_1993__29_2_321_0>
On an identity in law obtained by A. Földes and P. Révész

by

Marc YOR

Université Pierre-et-Marie-Curie,
Laboratoire de Probabilités,
4, place Jussieu, 75252 Paris Cedex 05, France

ABSTRACT. — Using jointly Ray-Knight theorem on Brownian local times, time reversal, and the Ciesielski-Taylor identity in law, another identity in law by A. Földes and P. Révész is recovered, and generalized.

Key words: Brownian local times, time reversal.

1. THE FÖLDES-RÉVÉSZ IDENTITY

In their paper [2], A. Földes and P. Révész prove that, for $r > q$:

\[\int_{0}^{\infty} dy \ 1_{0 < L(y, T_{r}) < q}^{\text{law}} = T_{\sqrt{q}}(R_{2}) \]

Classification A.M.S.: Primary: 60 J 65, 60 J 55. Secondary: 60 H 55, 60 G 44.
where, on the left-hand side, \(L(y, T_r) \) denotes the local time at level \(y \), up to time \(T_r \equiv \inf \{ t : L(0, t) > r \} \), of Brownian motion starting at 0, and, on the right-hand side, \(T_q(R_2) \) denotes the first hitting time of \(\sqrt{q} \) by \(R_2 \), a two-dimensional Bessel process starting from 0.

In fact, in [2], it is shown that the Laplace transform, in \(\lambda \), of the left-hand side of (1) is:

\[
\frac{1}{I_0(\sqrt{2\lambda q})},
\]

where \(I_0 \) is the modified Bessel function, with index 0, but it is well-known that this is the Laplace transform of \(T_q(R_2) \) (see Kent [3], for example).

In the sequel, we shall write \(T_q(R_\delta) \) for the first hitting time of \(a \) by a Bessel process of dimension \(\delta \) starting from 0, and \(\text{BESQ}_\delta \) shall denote the square, starting at \(r \), of a Bessel process with dimension \(\delta \).

Here is a quick proof of (1).

\(a) \) From Ray-Knight's theorem on Brownian local times, we know that:

\[
\int_0^\infty dy \mathbb{1}_{(0 < L(y, T_r) < q)}^{(\text{law})} = \int_0^{T_0} dy \mathbb{1}_{(Y_y < q)},
\]

where \((Y_y; y \geq 0) \) denotes a \(\text{BESQ}_0 \), and \(T_0 = \inf \{ y : Y_y = 0 \} \). By the strong Markov property, we may as well assume that \(Y_0 = q \), hence the explanation of the fact that the right-hand side of (1) does not depend on \(r \), for \(r \geq q \).

\(b) \) Using time-reversal for Bessel processes (Getoor-Sharpe [7]; see also e.g. Revuz-Yor [8], Chapt. XI, Exercise (1.23), or Yor [9], formula (4.c), for another application), we now obtain:

\[
\int_0^{T_0} dy \mathbb{1}_{(Y_y < q)}^{(\text{law})} = \int_0^{\hat{T}_q} dy \mathbb{1}_{(\hat{Y}_y < q)} = \int_0^{\infty} dy \mathbb{1}_{(\hat{Y}_y < q)},
\]

where \((\hat{Y}_y; y \geq 0) \) is a \(\text{BESQ}_0 \) and \(\hat{T}_q = \sup \{ y : \hat{Y}_y = q \} \).

\(c) \) The Ciesielski-Taylor identity in law (see [1], [6] for example) tells us that:

\[
\int_0^{\infty} dy \mathbb{1}_{(\hat{Y}_y < q)}^{(\text{law})} = T_\sqrt{q}(R_2),
\]

which ends the proof of (1).

2. A GENERALISATION

Let \((B_t, t \geq 0) \) denote Brownian motion starting from 0, and for convenience, we denote now by \((l_t, t \geq 0) \) its local time at 0, instead of
(L(0, t), \ t \geq 0). The process \((X_t := |B_t| - \mu l_t, \ t \geq 0)\) is, in the case \(\mu = 1\), a Brownian motion (as seen from Tanaka’s formula, for instance), and in any case, it is a process which possesses a number of very interesting properties. We state two of those.

Theorem 1 ([4]; see also Chapter 8 of [5]). We have

\[
\int_0^1 ds 1_{(X_s \leq 0)} \overset{(\text{law})}{=} Z_{(1/2), (1/2 \mu)},
\]

where \(Z_{a, b}\) denotes a beta variable with parameters \(a\) and \(b\), i.e.

\[
P(Z_{a, b} \in dt) = \frac{t^{a-1} (1-t)^{b-1} dt}{B(a, b)} \quad (0 < t < 1).
\]

Theorem 2 (see Chapter 9 of [5]). Let \((l^p_t, \ t \geq 0)\) be the local time at 0 of the process \((X_t, \ t \geq 0)\), and \(\tau^p_r := \inf \{ t : l^p_t > r \}\). Then, for fixed \(r > 0\), the processes \((l^{	ext{B}}_p(X), \ x \geq 0)\) and \((l^{	ext{B}}_r(X), \ x \geq 0)\) are independent, and their respective distributions are \(Q_0^r\), and \(Q_r^{-2/(2 \mu)}\), where \(Q_0^r\) denotes the law of the square of a \(\delta\)-dimensional Bessel process, starting from \(r\) and absorbed at 0.

We now prove the following

Theorem 3. Let \(r > q\). Then, we have

\[
\int_{-\infty}^0 dy 1_{(0 < \tilde{v}_q^r(X) < q)} \overset{(\text{law})}{=} T_q^{\sqrt{\mu}}(R_{2/\mu}). \quad (2)
\]

Proof. Following the same sequence of arguments as in the first paragraph, we find with the help of Theorem 2, that the left-hand side of (2) is equal in law, to:

\[
\int_0^\infty dy 1_{(\hat{y}, y \geq 0)} \text{ where } (\hat{y}, y \geq 0) \text{ is a BESQ}_{0}^{2+(2/\mu)}.
\]

Then, the Ciesielski-Taylor identity in law tells us that:

\[
\int_0^\infty dy 1_{(\hat{y}, y \geq 0)} \overset{(\text{law})}{=} T_q^{\sqrt{\mu}}(R_{2/\mu}). \quad \square
\]

References

(Manuscript received March 2, 1992.)