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Intersection Local Times and Tanaka Formulas
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Seattle, Washington 98195 U.S.A.

Ann. Inst. Henri Poincaré,

Vol. 29, n° 3, 1993, p. -451. Probabilités et Statistiques

ABSTRACT. - A new approach to intersection local times of Brownian
motion is given, using additive functionals of a single Markov process
and stochastic calculus. New results include the Tanaka formula for

the k-multiple points of self-intersection local time and the joint Hôlder
continuity in all variables of renormalized self-intersection local time for
k-multiple points, ~4.

Key words : Intersection local times, Tanaka formula, renormalization, Brownian motion,
diffusions, multiple points.

RÉSUMÉ. - Nous donnons une nouvelle approche à l’étude des temps
locaux d’intersection du mouvement brownien. Elle se sert de la théorie
des fonctionnelles additives d’un seul processus de Markov et du calcul

stochastique. Parmi les résultats nouveaux figurent la formule de Tanaka
des temps locaux d’intersection pour les points de multiplicité k et la

continuité dans toutes les variables du temps local d’intersection renorma-
lisé pour les points de multiplicité k, k >_ 4.
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1. INTRODUCTION

It has been known for quite some time that 3-dimensional Brownian
motion has double points and that 2-dimensional Brownian motion has
k-multiple points for every positive integer k. It has been known for not
quite as long a time that one can construct a local time for these multiple
points, that is, a functional that increases only at the times when Brownian
motion has a multiple point and that measures in some sense how many
of these times there are. These intersection local times (ILTs) have been
constructed by means of Fourier analysis, by means of stochastic calculus,
and by the study of additive functionals of several Markov processes.
Through the work of Dynkin, LeGall, Rosen, Yor, and others, a great
deal is now known about ILTs; see [Dy], [L], [R2], [RY], and the references
therein.
One of the main purposes of this paper is to introduce a new method

of approaching the study of ILTs, via a combination of the theory of
additive functionals for a single Markov process and stochastic calculus.
This new method allows us to obtain, if not easily, at least systematically,
many of the known results about ILTs. We concentrate on Brownian
motion in this paper, but the method should also work for other nice
diffusions and, to some extent, stable processes.

In addition to discussing our method, we obtain some new results as
well. For example, we obtain Tanaka formulas for self-intersections of 2-
dimensional Brownian motion of order k for any k (Sections 7, 8). These
are similar to some formulas of [RI]. (While we were writing up this
paper, we learned of the preprint of Shieh [Sh] who had also obtained the
same Tanaka formulas as ours for any k by using white noise analysis.)
Using these Tanaka formulas we prove that one can renormalize ILT

for k-multiple points in terms of lower order ILTs in such a way that the
renormalized ILT is jointly Hôlder continuous in every variable almost
surely. This had been previously known only when k = 2, 3. For other k
various sorts of renormalizations were known, but the almost sure joint
continuity of any of these renormalizations had been an open problem.
We also can obtain both weak and strong invariance principles that are

uniform over all levels x for the convergence of ILTs of lattice valued

random walks satisfying suitable moment conditions; these can be found
in [BKl] and [BK2].
The basic idea is simple. Let us first consider the intersection of two

independent Brownian motions Xt, Yt. Fix u and define the (random)
measure
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Note p is supported on the path of X~. Elementary estimates show that
a.s. the measure p is sufficiently regular so that there is an additive

functional of Brownian motion associated to it. That additive functional

(for Yt) is ILT for intersections of Xt and Yt. Slightly more complicated
measures give rise to ILTs for 3 or more Brownian motions. To get self-
ILT for a single Brownian motion, we partition [0, u] by points
so, si, ..., Sm we look at the intersections of Xt, with Xr,
0 _ r  si, we sum over i, and we then prove we get convergence as we let
the partition become finer.

In Section 2, we construct ILTs for the intersection of 2 independent
Brownian motions, while in Section 3 we do the same for the intersection
of k independent Brownian motions. In Section 4 we obtain the Tanaka
formula for these ILTs. Section 5 has some estimates on certain potentials,
and Section 6 contains some preliminaries on the Hôlder continuity of
processes. Section 7 has the construction of ILTs for double points of a

single Brownian motion and also the derivation of the Tanaka formula;
Section 8 considers multiple points of a single Brownian motion. Finally,
the proof of the a.s. joint continuity of renormalized ILTs is in Section 9.
The letter c, with or without subscripts, will denote constants whose

exact value is unimportant and may change from line to line. The open
ball of radius s about the point y is denoted B (y, s).

2. INTERSECTIONS OF 2 BROWNIAN MOTIONS

Let Xt, Yt be two independent Brownian motions in d = 2 or 3. If

d = 3, let g (x, y) denote the Green function of Brownian motion. If d = 2,
let gR (x, y) denote the Green function of Brownian motion killed on

exiting the ball B (0, R).
Let

For each jce IRd and u __ 1, define the random measure x, u by

LEMMA 2 1 . - For each E E (0, 1 ], for almost all ro there exists KE (ro)
such that

for all y E 

Vol. 29, n° 3-1993.
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Proof. - Since we may assume s  1 /2. Let R~2+2~~ 1
and let

If d= 2, v log and so ifwEB(O, R),

A similar calculation for d= 3 gives Ew Ar  es2.
Since A~ is an additive functional, the above implies

By [DM], p. 193, EO exp (03BBATR)~2 if 03BB~1/8 sup Using Cheby-
W

shev, we get

Now B(0, 3R) can be covered by N=cs-d balls of radius 2 s, say

Bi, ..., BN, so that every ball B ( y, s), 2 R), is contained in one
of the B;’s. Writing

(2. 3) yields
P ° (~,x, u (B (y, s)) >_ ci s2 - E for some y E B (0, 2 R); DR)

By a straightforward Borel-Cantelli argument with s = 2 - i, :’=0, 1,
2,...,

P ° (for some y E B (o, 2 R), 2 1))/(2 ‘)2 ! E > c, 1,o . ; 

Hence, then for some KER (o),

for all y e B (0, 2 R), !=0, 1, 2,... If SE(O, 1 ], then sE(2-(i+l), 2 ‘ ‘] for
some i. So, provided 03C9 E DR,

for all y E B (0, 2 R), all SE (0, 1 ] . If 03C9 E DR, (B ( y, s)) = 0 if y ~ B (0, 2 R).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Finally, each 03C9~DR for some R sufficiently large (except for a null set).
This observation with (2. 4) yields (2. 2). D

Define

and B)/ is Lipschitz with Lipschitz constant 1}.
Define the metric dL on the space of finite measures by

LEMMA 2.2.

Proof. - (a) is obvious. For (b), notice

since D

Lemma 2 .1 implies that for M not in the exceptional set, (z) is
continuous and bounded (see [BKl], Section 2). Let oc2 (x, . , u) be the
continuous additive functional of Yt associated that is, the

continuous additive functional such that EZ a2 (x, TR (Y), u) = (z) for
all z and R; the existence of a2 (x,., u) follows from [BG]. In stochastic
calculus terms, a2 (x,., u) is the decreasing part of the supermartingale
gR ix, u (Yt n TR (Y)~ .
We will show that a2 is jointly Hôlder continuous in each variable.

Before doing so, we need the following extension of some results of [BKl].
If ~ is a collection of positive measures, the dL metric entropy (Õ) is
defined to be

log (inf ~ n : there exist n dL-balls of radius ~ that cover 

PROPOSITION 2. 3. - Suppose c, y > 0 and ~l is a collection of positive
measures satisfying (i ) s)) _ c (sd - 2 +’’ A 1 ) for all s E (o, (0), 

and (ii) (&#x26;) - c log (1/~). Let Lt be the continuous additive func-
tional associated to Then Li is jointly Hôlder continuous in ~, and t, a.s.

Remark. - See [BKl], Section 2 for the construction of Lt .

Proof. - We will suppose d = 3, the d = 2 case being similar. That each
Lt is nondecreasing and continuous follows from its construction. So we
only need the Hôlder continuity. Let g be the Green function. By [BKl],
Proposition 2. 7, g p is Hôlder continuous. Hence,

Vol. 29, n° 3-1993.
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for some a>0, using the Burkholder-Davis-Gundy inequalities ([ReY],
p. 151 ). Since is a mean 0 martingale, Ex ch°‘~2,
independent of x. By the argument of the first part of Lemma 2.1, .

Using the Markov property,

If we define a metric dp on ae x [0, 1] by

and define the dp metric entropy ~P (Õ) analogously to the definition of
~L(S), it is easy to see that log ( 1 /~). With this, (2. 5), and
Propositions 2.1 and 2 . 8 of [BKl], our result now follows by standard
metric entropy (i. e., chaining) (cf [Du]). D

THEOREM 2.4. - There is a version of Cl2 (x, r, u) that is jointly Hôlder
continuous in x, r, u.

Proof. - It is enough to let R ~ 1 be arbitrary and to show Hôlder
continuity for x ~  R. In view of Lemma 2. 2, the dL-metric entropy
~(8) R), Me(0, 1 ] } satisfies 1#f~ (~) -- c log ( 1 /~). By
applying Proposition 2 . 3, there exists a version of a2 (x, r, u) that is jointly
Hôlder continuous in x, u, and r. D
The question that remains is whether a2 (x, r, u) is actually what one

means by ILT.

THEOREM 2. 5. - There exists a null set N such that N, then

for all bounded measurable f.

Proof - Suppose d = 2 and supposer h are continuous with compact
support. Let

By a change of variables

or

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We next use monotone convergence to see that (2.7) is valid for

nonnegative h.

Now the right-hand side of (2 . 6) equals ( f (dy) ds. So
its potential in B (0, R), considered as a continuous additive functional of
Y, is

By (2. 7), this equals

which is the potential of the left-hand side of (2.6). If two additive
functionals of Brownian motion have the same potential, they are equal
[BG]. Since R is arbitrary, this proves (2 . 6) when d = 2 for this particular f.
The case d= 3 is similar but easier. Let N f be the null set.

be a countable dense subset of the bounded continuous
functions on Rd and let N = U N fi. then by taking limits, (2 . 6)

t

holds for bounded continuous f. It then holds for all bounded measurable f
by a monotone class argument. D .

3. INTERSECTION OF k BROWNIAN MOTIONS

In this section, we require d = 2. We construct ILTs for k Brownian
motions by induction. Denote the measures x,u of Section 2 by 2x, u.
Suppose A: ~3. Let ..., XÎ -1 be k -1 independent Brownian motions
and let Yt be an additional independent Brownian motion. Suppose we
have a collection of measures ~x 1 T 1.. , xk - 2 ~ r 1 ~ ... ,rk _ 2 (denoted when
no confusion results) and associated continuous additive functionals

(x 1, ... , ~-2. r 1, ... , ~-2. satisfying

(3 .1 ) for each E there exists (depending on ~i,...,~-2?
ri, ..., rx-2) such that

for all y e 1R2, oo), and

(3. 2) ..., x~2. ~i.. - ’. rk _ 1)
is jointly Hôlder continuous in all variables.

Vol. 29, n° 3-1993.
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Define the random measure k = kx1,...,xk-1, ri,..., rx -1 by

We need the analog of Lemma 2. 1 .

LEMMA 3 1 . - Suppose (3 . 1) and (3. 2) hold. If E > 0, there exists KI (ID)
such that 

-

for all s E (o, 

Proof. - Define the additive functional At of by

Since the potential of Clk-l on B (0, R) (considered as an additive functional
of Xt -1 ) is gR ~,k -1, then the potential of At (conditional on the processes
X1, ..., Xk - 1) is

By Hölder’s inequality with p -1 + q -1=1, this is less than or equal to
.... _ .. _ .

The second term in the product is bounded by (K~(0153)(~’~Al))~~
using (3 .1 ). For the first term in the product, we write

using (3 .1 ) . Taking q sufficiently close to 1, we get that the potential of A,
conditional on the processes Xl, ..., is bounded by c (o) (S2 - E/2 Al).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Using this estimate, we now proceed in a fashion very similar to

Lemma 2 .1. D

THEOREM 3 . 2. --- For each k, a version of exists that is jointly H61der
continuous in each variable.

Proof - The proof is by induction. Suppose (3 .1 ) and (3 . 2) hold.
Write x for (xi, ..., ~-2), ~ for ..., rk ~. ~), and define x’ and r’

analogously. Condition on X1, ..., Let Ilk be defined by (3.3) and
let

If o is in the class ~f (defined in Section 2),

The first term on the right hand side of (3.6) is bounded by
1 (x, r, 1 ). By the définition of 2, the second term on the
right hand side of (3 . 6) is bounded by (x, r, 1 ). If h (t)
is differentiable in t with both bounded by 1; then by
the joint Hôlder continuity of and intégration by parts,

for some a. Now 03C8 is Lipschitz and is a Brownian motion, hence
Hôlder continuous in t of order 1/4. Using a minor modification of
Lemma 4. 3 of [BK1], the third term on the right hand side of (3 . 6) is
bounded by c ~ (x, r) - (x’, r’) ~"~’~’. Summing the three estimates, we conclude

29, n° 3-1993.
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that for each co, Ilk is Hôlder continuous as a function of all variables
with respect to the metric dL.

Let ~, ..., rk) be the continuous additive functional
of Yt corresponding to the measure Ilk. The metric entropy of the set

{ xi, ..., E B (0, R), rl, ..., E [0, 1]} still is bounded by c
log (1/8). So as in the proof of Theorem 2 . 4, there is a version of cxk that
is jointly Hôlder continuous in each variable. This establishes (3.2) with
k -1 replaced by k. Lemma 3.1 establishes (3 .1 ) with k-l replaced by
k. So by induction, (3 .1 ) and (3 . 2) hold for all k. D

THEOREM 3. 3. - Except for a null set independent of f,

for f bounded and measurable on ((~2)k-1, a,s.
The proof of Theorem 3. 3 is very similar to that of Theorem 2. 5 and

is left to the reader.

4. TANAKA FORMULAS

The Tanaka formulas for ILTs of independent Brownian motions are
actually quite simple. We do the case d = 2. Let us suppose k = 2 first.
Define

Note G(-x)=G(x).
By a formula of Brosamler [Br]

Since G(--~)-~R(’,~) is harmonic in B(0,R) for each y, so is

G ( . ) - gR ( . ), and we also have by [Br]

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Here

Adding (4. 2) and (4. 3) and letting R - 00,

Finally, recalling the definition ~, this and (4. 4) yield

The argument for ILTs of k Brownian motions is the same, and we get

THEOREM 4. 1

Remark. - Recall that the way Brosamler’s formulas are proved is by
using Ito’s formula and taking limits (see also [Bl]). Therefore, provided
Jl is a sufficiently nice measure, we have

whenever that is, if Yo is independent 
We will apply this fact in Sections 7 and 8 with Jl taken to be Jlk.

5. SOME ESTIMATES

Before proceeding to the construction of ILT of double and multiple
points of a single Brownian motion, we need some preliminary estimates.

Vol. 29, n° 3-1993.
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PROPOSITION 5 . 1. - Suppose a ~ 0. is a nondecreasing
continuous process with 03B2 (0) == Q. Suppose for each p >_ 1 there exists
K ( p) >_ 1 such that

Let Yr be 2-dimensional Brownian motion. Then there exists b2 > b~ > 0 [not
depending on p or K and constants c (p) such that if p >__ 1, x E 1~2, and
ce  1, then

Proof - Let us assume ~>27, for otherwise the result is trivial. Fix x
and define Let 8=1/16. Let 

and
Let So D~ is greated

than or equal to the number of upcrossings of [a, Rt up to time u.
Since log Rt is a martingale, by the upcrossing inequality (see, e. g.,

[Ch], p.332)

By Chebyshev,

So by the strong Markov property applied at inf { t : 

which leads to

By the strong Markov property applied at S~ and standard estimates
on Brownian motion,

and so 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Note and Rt does not return to the interval [0, a] until time
So ifY,EB(x, then Ti] for some i. Hence

Let n = ~~l,d/6d~, M = nd, h = M cr2 - sE, L = "’-/2 n, where d will be chosen
in a moment. If the sum on the right-hand side of (5 . 6) is bigger than À,
then either or for some or (c)

and max So

If we substitute for n, M, h, and L, recall that 03BB > 203C3 and 03C3  1, and
take d sufficiently small, we obtain our result for The result (with
the same bi and b2) for po) follows if abl  ~,b2, while it is trivial if

%1,b2. 0

Define, for ç E (0, 1 ),

A consequence of Proposition 5 . 1 is

PROPOSITION 5. 2. - Suppose a > 0 and 03B2 satisfies the hypotheses of
Propostion 5 1. There exists d> 0 and n > 0 (depending on a) and Ço  1
such that q >_ 1 and K’ (p) = sup K (r), then

if u ~ [0, 1], and 03B6 ~ 03B60.

is again 2-dimensional Brownian motion. Let b 1 and b2 be the constants
in the conclusion of Proposition 5.1 and let n = [4/b2] + 4.
Note

Vol. 29, n° 3-1993.
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Note also that if C, is sufficiently small, and 2 - j ~ ç, then

(20 2blj/2. So, using Proposition 5 . l,

if ç is sufficiently small.
Multiplying and integrating over Â to 00 gives

V ~ ~ 1 ~4] ~ c ~~ q) K’ (p) 
Since E [VP; V ~ ç 1/4] ~ ~p~4, adding gives our result. D

6. STOCHASTIC CALCULUS

When we get to double points and multiple points of a single Brownian
motion, the joint Hôlder continuity will take some work. In preparation
for this, we derive some stochastic calculus results.

Suppose Ut = Mt - Bt, where Mt is mean zero martingale, Bt is a continu-
ous non-decreasing process, Bo - 0, U and M have right continuous paths
with left limits and U, M, and B are adapted to a filtration satisfying the
usual conditions.

PROPOSITION 6. 1. - Let a > 0. Suppose for each p >-_ 1 there exists

K (p) >_ 1 such that

and

Then there exists b > 0 and nl (independent of p) and constants c (p) such
that if p >__ 1 and K’ (p) = sup K (r), then

and
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Remark. - Applying (6 . 4) with p> l/b implies that there is a dense
subset of [0, 1] on which Bt is Hôlder continuous, a.s. Since Bt is continu-
ous, this implies Bt is Hôlder continuous on [0, 1 ], a. s.

Proof. - It suffices to prove the result for since we can

get the result for p by using Jensen’s inequality.
By a standard chaining argument as in the proof of Kolmogorov’s

theorem (see the remark following the proof of Theorem 9 . 3), (6 .1 ) and
(6.2) imply that we can find a version of Ut such that

Multiplying by and

integrating from 0 to oo, we get Since Ut and

- Bt differ by a martingale, for all t _ 1

By a standard inequality (see for example, [B2], Lemma 2. 3),

This and (6 .1 ) proves (6 . 3).
Similarly, the same chaining argument shows that for some d,

To get (6 . 4), apply the above argument to 
r ~ t - s. a

Now suppose U~=M~-B~ i=l, 2, with B~=0, B~ nondecreasing and
continuous, and M~ a martingale. Let and similarly for Mt,
Ut. Suppose that ~ t is the filtration generated by a finite number of
Brownian motions.

PROPOSITION 6 . 2. - Let a, b, Õ E (0, 1). Suppose for each p there exists
K (p) such that

and

Then there exists d>O and nl such that sup K (r), then

Proof. - As in the proof of Proposition 6 . 1, for some ni, a’ > 0

Vol. 29, n° 3-1993.
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Hence

We may as before suppose without loss of generality (changing n1 if
necessary) that p > 2/a’ + 2. Since a’ p > 2, take ~=[8’~]+ 1 to get

Let Z= sup 1 Ut 1 and W = 1 + B ( + B f . By Proposition 6.1, W e LP for
t

all p. Observe that if t  1,

So as in the proof of [B 2, Lemma 2. 3],

Next, let ~ t), and ~ t), so that Vt = Nt - Bt
(take the right continuous version of V and N). Since for all p,
the same is true of N and V. Since !Ft is a Brownian filtration, Nt is
continuous. By Jensen’s inequality,

Aiso, by Ito’s lemma,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques


