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ABSTRACT. - We consider, as in I, a random walk Xt E E Z+
and a dynamical random field ~ (x), x E Z" in mutual interaction with
each other. The model is a perturbation of un unperturbed model in which
walk and field evolve independentently. Here we consider the environment
process in a frame of reference that moves with the walk, i.e., the "field
from the point of view of the particle" ~t (.) == çt (Xt +.). We prove that its
distribution tends, as t -~ oo, to a limiting distribution tc, which is absolutely
continuous with respect to the unperturbed equilibrium distribution. We
also prove that, for v &#x3E; 3, the time correlations of the field decay as
e-cxt

const 
20142014. 

.
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560 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

On considere un chemin aleatoire Xt E E Z+ et
un milieu aleatoire dynamique çt (x), x E Z" en interaction mutuelle.
Le modele est une perturbation d’un modele imperturbe, dans lequel
le chemin aleatoire et le milieu evoluent d’une façon independante. On
etudie ici le proces du milieu dans un repere qui se deplace avec le
chemin aleatoire, c’ est-a-dire le « milieu du point de vue de la particule »
r~t ( . ) (Xt +.). On montre que la distribution de T/t tend, pour t -~ o0
a une distribution limite qui est absolument continue par rapport a
la distribution d’ équilibre du milieu imperturbe. On montre aussi que le
premier terme du developpement asymptotique des correlations temporelles

e-at
du champ ~t est donne par const t2 " 

.

1. INTRODUCTION

The present paper is second in a series of two papers. As in the preceding
paper [1] (hereafter referred to as Part I), we study the time evolution of a
random walk Xt on the v-dimensional lattice Z" and a field (environment)
çt (x) : x E subject to a mutual interaction of local character.
Time is discrete, t E Z+, and the field E Z" takes values in
a finite set S.

We briefly recall the main features of the model, and refer the reader to
Part I for more details. The assumptions of the present paper which differ
from those of Part I are listed in Section 2.

As a starting point we consider an "unperturbed" model, in which the
random walk and the environment evolve independently. The random walk
is homogeneous with transition probabilities ~ Po (y) : y E 7~v ~, and the
evolution of the environment at each site is an ergodic Markov chain, with a
finite space state S, and stochastic operator Qo = ~ qo (s, s’) : s, s’ E S ~,
the same for all sites. 7ro will denote the unique stationary measure of the
chain. The evolution at different sites is independent.

For the interacting model the random walk transition probabilities are
written as
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561RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

and the transition probabilities for the environment at the site x E Z" are

c ( . , . ) and q ( . , . ) satisfy some compatibility conditions, and e is a small
parameter.
Under some general assumptions we deduced in the paper [2] the local

central limit theorem for the displacements of the particle. In Part I

we studied the asymptotic (in time) decay of the correlations of the

environment in a fixed frame of reference. The present paper is devoted to
the investigation of the environment process in a frame of reference which
moves with the particle, i.e., of the process {~t : t E Z+} defined as
qt (x) _ ~t (Xt + x) (sometimes called "field from the point of view of the
particle"). ~t evolves as an infinite-dimensional Markov chain.
We prove for any dimension v that, as t ~ oo, the distribution of ~t

tends to a limiting invariant distribution p, which is absolutely continuous
with respect to the invariant distribution IIo = of the environment in

the unperturbed case (e = 0). We also study the time asymptotics of the
(time) correlations of the field for v &#x3E; 3. We prove that the leading
term is of the type const e-at t- 2 . The constant factor depends on the
initial conditions, whereas a E (0, oo ) depends only on the parameters of
the model. This result should be compared with the long time tail of the
correlations of the field in a fixed frame of reference, which was studied in
Part I. The different behavior is explained by the fact that in a fixed frame
of reference the environment process 03BEt by itself is not Markov.
The methods used in the proofs are, as in the previous papers [1] ] and

[2], based on the spectral analysis of the stochastic operator (or transfer
matrix) T of the Markov chain {~t : t E Z+}, acting on the space
= L2 (H, IIo). Here H = is the state space of the field. The method

of the proof is based, as in Part I, on the analysis of the leading spectral
subspaces.
The paper is organized as follows. Section 2 is devoted to the definition

of the model and to the statement of the results. In Section 3 we prove the
main technical theorem (Theorem 3.1), which gives the decomposition of J-l
in invariant (with respect to T) subspaces. Section 4 contain the proofs of
the theorems, which rely on the results of Section 3, and Section 5 is
devoted to some concluding remarks. In the Appendix we prove a technical
lemma which is needed in the proof of Theorem 3.1.

Vol. 30, n° 4-1994.



562 C. BOLDRIGHIM, R. A. MINLOS AND A. PELLEGRINOTTI

2. DEFINITIONS AND FORMULATION OF THE RESULTS

The model is described in detail in Section 2 of Part I, to which we
refer. We state here only the assumption which differ from the ones of
Part I. Throughout the paper we will write (I n.m) to denote formula (n.m)
of Part I.

The which plays an important role in what
follows, is defined by (I 3.1 a).

Throughout the paper we assume conditions I, II and III of Part I on

the random walk transition probabilities, and conditions IV and V on the
transition probabilities of the random field. Condition VI on the spectrum
of Qo is replaced by the following one.

VI*. If I S ] &#x3E; 2 the spectrum of Qo is such that

Condition VI* is the old condition VI plus the assumption that the

eigenvalue is nondegenerate (hence real, since complex eigenvalues
occur only in conjugate pairs).

Further, we assume Condition VII of Part I for the function c, but replace
Condition VIII by the following (stronger) condition.

VIII*. The Fourier coefficients

of the inverse of the function po (~) [eq. (I 2.3 d)] satisfy the inequality

Inequality (2.1 b) implies the existence of a spectral gap

We now define the random field which will be studied in this paper, the

"environment from the point of view of the particle". This is the random
field qt E E Z+ given by the relation

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



563RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

For any bounded functional F on S2 we have for the conditional average
[with respect to the distribution (I 2.1)]

where Py (. ~ is a product measure

qI ( s, s’ ) , s, s’ E S being the matrix elements of the matrix Qi defined
in eq. (I 2.5b). The conditional average (2.2b) does not depend on Xt-i,
and we can consider it as an average over the Markov field { 1]t (y) }, with
transition probabilities

The stochastic operator or transfer matrix T of this field is defined, as
usual, by its action on the bounded functionals F on H :

We denote the average of a random variable f with respect to any
measure v by ( f )", and the correlations by ( f, g ~" _ ( f g ~" - ( f )" ~ 9 ) ~.
We fix an initial distribution II of the field ~, induced by some initial

distribution II of the field ç for a fixed initial position xo = Xo of the
random walk. II is simply the shift of fI by xo. Pn denotes the distribution
on the space of trajectories of the Markov field { r~t : t E 7L+ } generated by
the initial distribution II. From the definition (2.3) we find, for F as before

We shall also consider condition IX of Part I (symmetry of the random
walk). For the field 17 it implies the following statement, which may be
considered as a new condition.

Vol. 30, n° 4-1994.



564 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

IX*.

Here, as in Part I, V is the space reflection: (V ~7) (x) _ ~ (-:c).
We need the following further assumption on the correlations of the

initial measure II.

X*. The spatial correlations with respect to the distribution II of the
vectors {03A80393: r E of the basis in H [see (I 3.1a)] satisfy the
following cluster inequality

Here denotes the multi-index with supp r = ~ x ~ ~y (x) = j, and
M, q are two constants such that M &#x3E; 1, and q E (0, 1).
As in Part I, by dA, A c we denote the minimal length of the

connected graphs which join all points of the set A.
We now formulate the main results of our paper. We understand

throughout that condition I-IX are the ones of Part I. Conditions introduced
in the present paper are denoted by a star.

THEOREM 2.1. - Let t E l~+ denote the family o,f’measures generated
by the Markov process r~t with = II, and assume conditions I-V, VI*,
VII and VIII*. Then, as t ~ ~, the measures tend weakly to an
invariant measure p, which is absolutely continuous with respect to the
independent measure no.
Moreover there are positive constants cl and q E (0, 1) such that

Remark 2.1. - Inequality (2.4) implies that Condition X* above holds
for the invariant measure J1 as well.

In Theorem 2.1 Condition VI* could be replaced by the weaker
Condition VI, at the cost of a longer proof. We shall indicate below how
it can be done.

The other result concerns the behavior of the time correlations of the field,

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



565RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

for which we write down the precise asymptotics. Consider the correlation

where x1, x2 are two fixed points.

THEOREM 2.2. - Let v &#x3E; 3, and add conditions IX* and X * to the

hypotheses of Theorem 2.1. Then, as t --~ oo,

where a &#x3E; 0 is a constant depending only on the parameters of the model
and the constant C depends in addition on f 1, f 2 , x 1, x2, and II.

By Remark 2.1 the invariant measure ~c satisfies the conditions of

Theorem 2.2, so that the equilibrium time correlations for the measure p
are also of the type (2.6).

3. EXISTENCE AND PROPERTIES

OF THE INVARIANT SUBSPACES

3.1. More notation and preliminary results

In what follows we denote by const any absolute constant, independent
of c.

The action of T on the basis functions {03A80393 : 0393 ~ 203C0} is given by

Here Aj (x) r is the multi-index obtained by replacing the value, (x) of r
at x with j, leaving all the other values, (~), ~ 7~ ~ unchanged. T° is the
unperturbed operator

Vol. 30, nO 4-1994.



566 C. BOLDRIGHINI, R. A. MINLOS AND A. PELLEGRINOTTI

and the coefficients L ( ... ) are given by

Here we have used the equality Aj ( - y ) F + y = Aj (0) (F + y ) , and the
coefficients cj (y), qj’j , and bjm, m’ are the coefficients of the expansions in
the basis ( of the functions c (u, s), 03A3 q (s, s’) ej (s’) and ek (s) em (s) ,
respectively [see (I 2.6f)]. Note that co (u) = 0 and q0k = 0, which implies
L(0, j; u) = Cj {u) .
We shall write T = T° is translation invariant whereas T is not.

LEMMA 3.1. - T and 0 are bounded linear operators on ?-~.

Proof. - By eqs. (3.1a, b, c) we have

where we use the notation

Recalling the expression (I 3.1b) of the scalar product in H, we have

Setting, for fixed y, F* = T" + y, = f r~ _y, we have

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



567RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

where the operator is defined by the position

The proof that T (y) is a bounded operator is done exactly as in Lemma A.I
of [2], and since II by translation invariance of the norm, and
the sum is over the finite set I y ]  D, it follows that T is a bounded

operator in H. The proof that A is bounded is an easy consequence.
Lemma 3.1 is proved..
As in Part I we consider, for M &#x3E; M* - max {max|ej (s)|, 2 }, the

s

dense subspace HM C ~-l, with norm ] ] ~~M defined by (I 3.5a).
By the definition (I 3.1a) of the basis { ~r } it is easy to see that the

following inequalities between norms hold

where II m sup ~/ (~) ~ ] denotes the supremum norm of f.

For the space HM we state the analogue of Lemma 3.1.

LEMMA 3.2. - (i) The operators T and 0394 are bounded on HM . (ii) HM
is invariant under T.

Proof. - It is the same as the proof of the analogous Lemma 3.4 in
[2] ..
We denote by the set of the equivalence classes of multi-indices

which differ only by a shift. Let ( E and F E (be a representative
of the class (. Since T° is translation invariant, the subspace consisting
of the vectors

is invariant under It is easy to see that

Hence the spectrum of the operator x ~ coincides with the range of
the function Note that does not depend on the choice of
the representative r E (. We denote by x° the space ~C~ when ( is the
class of equivalence of the multi-indices F which contains (defined in

Vol. 30, n° 4-1994.
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Condition X* of § 2). Condition VIII* implies that the spectrum of T° in
the space ~C° is separated from the spectrum of 2~° in ~-C B ?-~o .

3.2. Construction of the invariant subspaces

The main result of this section is the following theorem.

THEOREM 3.1. - Under the assumptions I-V, VI*, VII, and VIII*, and
for ~ small enough the following assertions hold.

(i) One can find two subspaces of ~-C, ~1 and ~nC2, invariant with respect
to the operator T, such that

being the space of the constants.

(ii) In the space one can find a basis ~ hz , z E on which the

operator T1 ~ T acts according to the formula

Moreover p (y) is real and given by the relation

and, for some q E (0, 1), the following inequalities hold

(iii) The norms of the restrictions of T to the subspaces and 

(endowed with the norm ~ ~ . ~ satisfy respectively the estimates

iv) Under the additional condition IX* p (y) is an even function of
y E ~".

Remark 3.1. - The decomposition (I 3.2) of the space ~ in a direct
integral of the eigenspaces of the group of translations {Uv : v
does not reduce the operator T, since for c &#x3E; 0 T does not commute with

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



569RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

the space shifts. This is why an additional sum appears in (3.4a), and we
had to assume inequality (2.1c) in Condition VIII*.

Remark 3.2. - If we have condition VI, instead of VI*, i.e., the

eigenvalue ~ 1 has a multiplicity s &#x3E; 1, Theorem 3.1 holds with some

obvious changes. Namely the basis in the space will be labeled by
two E ll v , i = 1, ... , s ~ . Moreover the operator
T |H(1)M ~ T1 in this basis will act as follows

M

where

and the matrix elements {03B4ij (u)}, and {Sij (z, y)} satisfy estimates
analogous to (3.4c).

Proof of Theorem 3.1. - The proof makes use of the same ideas as the
analogous proof in section 3 of [2]. It is based on several lemmas, which
are stated and proved in the rest of the present section.

We shall first find the invariant subspace and then obtain Hi as
the closure of in H.

For c = 0 we have clearly
~C = ~-lo ~-- ~C° + ~‘~C2 ,

~i, M + ~2 ~ M, ~° l,,l = ?-~C° n ~-~CM 2 = 1, 2.
Here Ho is the space of the constants, ?-~° was defined above and Hg is
the (closed) subspace spanned by the functions {03A80393: 1 r E g2}, g2 being
the set of the multi-indices r with either supp h ~ ] &#x3E; 1 or supp r ~ [ = 1
but 03B3 (x) ~ 1 for x E supp r.

It is convenient for the moment to set

so that HM = H01, M + M, and T (as an operator on is written
as an operator matrix 

’

Vol. 30, nO 4-1994.
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where the operators Ti~ act as follows: Tll : ~ -~ ~, 

, ~21 : ~ -~ ~ l°~M, T22 : The

space is spanned by the : x E and 03A80.
, . 

i

We first study the inverse of the operator T~l in the space l,,l. 

is defined in Condition X* of Section 2.) We introduce for brevity the
notation ~pz = ~ riz ~ , and we will allow z to take the value 0 : cpo = Wj.
For the indices of the matrix elements of operators on ~l° we shall also
write z instead of 

LEMMA 3.3. - The operator T11 = T ~~a is invertible in and
1, M ,

its inverse is given by 
,

where the operator D has the following properties:

for some 0 E (0, 1).

Proof. - The operator 7n can be written as

and, as it follows from formulas (3.1 a, b, c) 7n can be written as a matrix
(corresponding to the decomposition = Ho + ~C°, ~ )

where

Its inverse is represented by the matrix

with

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



571RANDOM WALK IN A DYNAMICAL RANDOM ENVIRONMENT. II

and R is given by a series

where in the running term of the sum the product R is repeated k
times. From eq. (3.8d) we get const Bf x-~ ~ I for some
0 E (0, 1). Inserting the expression for 7Z given by (3.8b) one easily
finds the estimate

One finds also that

This proves Lemma 3.3..

We look for an invariant subspace of the form

where S : --~ ?nC°, ~ is an unknown operator. The invariance
condition for leads to the following equation for S [which is analogous
to eq. (I 3.6c)] :

JC is considered as acting on the space A (?-L°, ~ , ?nC°, ~ ) of the maps from
to ?nC°, ~, endowed with the operator norm. Equation (3.9b) has a

unique solution, as stated by the following lemma.

LEMMA 3.4. - If ~ is small enough one can find a number K0 &#x3E; 0 such
that the map lC is a contraction in the sphere of radius ~o centered at the
origin of the space A (~C° M, ~C° ~ ) .
Proof - We denote with Sz, r the matrix elements of the operator S.
By equations b, c) we see that (~21 )o, r = 0, and for z E 7~v

For (T12 ) r, z we have, if supp r = ~ ~c ~,

Vol. 30, n° 4-1994.
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and if supp r = ~ u ~ U { v }, and z E Z"

= 0 in all other cases.

For the norms of the operators appearing in equation (3.9b) we have

where the constants Ci, j, i, j = 1, 2 depend on the parameters of the model
and on M. (3.12a) comes from Lemma 3.3, by observing that

Inequalities (3.12b, c) are easily derived, using the explicit expressions
(3.10), (3.1 la, b) and (3.12d) follows by observing that for ~ = 0, ?22 
with ( T° ~ ~ _ ~c*, and that ~-1 (~22 - is a bounded operator
(Lemma 3.2).

By inequalities (3.12a, b, c, d) and Condition VIII* [inequality (2.1b)],
we see that the second term on the right-hand side of eq. (3.9b) is bounded,
for small c, by ~3 ( ( S ( ~, where /3 E (0, 1). Since the other two terms are
of order c and ~ ~S~ 112 respectively, K is a contraction in any sufficiently
small sphere of Lemma 3.4 is proved..
Hence there is a unique S, solution of eq. (3.9b) and the space 

defined by eq. (3.9a) is invariant with respect to T. Since M &#x3E; 1, it is
not difficult to see that
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The Banach space of the elements of A (~‘~C°, ~, ~C2, ~) with the norm
( M is denoted by AM. The solution S of equation (3.9b) is actually

in AM, as it follows from the following lemma.

LEMMA 3.5. - The right-hand side of equation (3.9b) defines a map
AM ~ AM, and for ~ small enough one can find a positive number R

so small that J’CM is a contraction in the sphere of radius ~ centered at the
origin of AM.

Proof. - We have, by inequalities (3.12a, b, c, d)

For the second term, which is the leading one, we have

where /3 E (0, 1 ) . The conclusion follows as for the preceding lemma..
Hence there is a unique solution of eq. (3.9b), which coincides

with the previous one. ,
We introduce a basis in by setting

The action of T on the new basis is given by the following formulas

Vol. 30, nO 4-1994.
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We need to prove a property of fast decay as z, z’ -~ o0 of the matrix
elements Az, z~ . To this aim, we use the fact that, as it was proved in [3],
S can be written as a series

where the summation goes over all sequences of pairs ai = (si, qj),
Si, qi E Z+,

and x~l, ", , ar are real numbers (see [3]). We first prove the convergence
of the series.

LEMMA 3.6. - For ~ small enough the series (3.16a) converges in the
norm of AM.

Proof. - By reasoning exactly as in the deduction of inequality (3.13a)
we find

and, in analogy with the deduction of inequality (3.13b), we find

where, as before, by [ [ . [ we denote the operator norm of 722 : 
~(o~ 

’

2, M.
Now, by Lemma 3.3, expanding the power (Tl 1 ) -S = ( (~° ) - ~ -f- ~ D) s,

we find

where


