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Dynamical Percolation

Olle HÄGGSTRÖM *, Yuval PERES ~ and Jeffrey E. STEIF ~
Chalmers University of Technology, University of California

at Berkeley, and Chalmers University of Technology

Ann. Inst. Henri Poincaré,

Vol. 33, n° 4, 1997, p ’-528. Probabilités et Statistiques

ABSTRACT. - We study bond percolation evolving in time in such a way
that the edges turn on and off independently according to a continuous time
stationary 2-state Markov chain. Asking whether an infinite open cluster
exists for a.e. t reduces (by Fubini’s Theorem) to ordinary bond percolation.
We ask whether "a.e. t" can be replaced by "every t" and show that for
sub- and supercritical percolation the answer is yes (for any graph), while
at criticality the answer is no for certain graphs. For instance, there exist
graphs which do not percolate at criticality for a.e. t, but do percolate for
some exceptional t. We show that for d &#x3E; 19, there is a.s. no infinite

open cluster for all t at criticality. We give a sharp criterion for a general
tree to have an infinite open cluster for some t, in terms of the effective
conductance of the tree (analogous to a criterion of R. Lyons for ordinary
percolation on trees). Finally, we compute the Hausdorff dimension of
the set of times for which an infinite open cluster exists on a spherically
symmetric tree.

RESUME. - Nous etudions un processus de percolation qui evolue dans
le temps de telle maniere que les aretes changent d’état independamment
les unes des autres selon les lois d’une chaine de Markov continue et

stationnaire a deux etats. La question de F existence t p.p. d’un amas infini
et ouvert se reduit (par le Theoreme de Fubini) au cas d’un processus de
percolation ordinaire. Nous posons la question si "t p.p." peut etre remplace
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498 O. HAGGSTROM, Y. PERES AND J. E. STEIF

par "tout t" et montrons que c’est toujours le cas pour les processus de
percolation souscritiques ou surcritiques, tandisque la response a cette

question est non pour certains graphes dans le cas critique. Ainsi il y a des
graphes qui ne percolent pas t p.p. dans le cas critique mais peuvent bien
le faire pour certaines valeurs exceptionelles de t. Nous montrons aussi

qu’il ne peut exister d’ amas infini et ouvert dans d &#x3E; 19 pour toutes

les valeurs de t et ceci dans le cas critique. Nous donnons, dans le cas
d’un arbre general, un critere tranchant de l’existence d’un amas infini et
ouvert pour quelques valeurs de t inspire par un critere de R. Lyons dans
le cas de processus ordinaires de percolation sur des arbres. Finalement,
nous determinons la dimension de Hausdorff de 1’ ensemble de moments

pour lesquels un amas infini et ouvert existe sur un arbre sphériquement
symmetrique.

1. INTRODUCTION

Consider bond percolation on an infinite connected locally ’ finite graph
G, where for some p E [0,1] each edge (bond) of G is, independently of all
others, open with probability p and closed with probability 1-p. Write PG,p
for this product measure, or simply Pp when no confusion arises. The main
questions in percolation theory (see [10]) deal with the possible existence
of infinite connected components (clusters) in the random subgraph of G
consisting of all vertices and all open edges. Write C for the event that there
exists such an infinite cluster. By Kolmogorov’s 0-1 law, the probability of
C is, for fixed G and p, either 0 or 1. Since Pp(C) is nondecreasing in p,
there exists a critical probability pc = ~0, 1] such that

At p = pc we can have either Pp (C) = 0 or Pp() = 1, depending on G.
In this paper we consider a dynamical variant of percolation. Given

p E (0,1), we want the set of open edges to evolve so that at any fixed time
t &#x3E; 0, the distribution of this set is Pp. The most natural way to accomplish
this is to let the distribution at time 0 be given by Pp, and to let each edge
change its status (open or closed) according to a continuous time, stationary
2-state Markov chain, independently of all other edges. For an edge e of
G, write = 1 if e is open at time t, and = 0 otherwise. The

entire configuration of open and closed edges at time t, denoted can

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



499DYNAMICAL PERCOLATION

then be regarded as an element of X = {0,1}~ (where E is the edge set
of G). The evolution of ~t is a Markov process, and can be viewed as the
simplest type of particle system. Each edge flips (changes its value) at rate

and the probability that two edges flip simultaneously is 0. Write W G,p
(or Wp) for the underlying probability measure of this Markov process,
and write Ct for the event that there is an infinite cluster of open edges
in Since Pp is a stationary measure for this Markov process, Fubini’s
theorem implies that

occurs for Lebesgue a.e. t) = 1 if Pp (C ) = 1
occurs for Lebesgue a.e. t) = 1 if Pp (C ) = 0

where denotes the complement of Ct. The main question studied in
this paper is

For which graphs can the quantifier "for a. e. t " in the above statements

be replaced by "for every t " ?

To our knowledge, this question has not been studied before, although
questions similar in spirit (when can "a.e." be replaced by "every"?) have
been dealt with in a wide variety of contexts, e.g. random coverings [26],
monotone couplings of percolation processes [ 1 ], and various path properties
of Brownian motion [17]. Even closer in spirit is the study of quasi-
everywhere properties of Brownian motion, i.e. properties that with

probability 1 hold at all times for the canonical "Ornstein-Uhlenbeck"
diffusion on Wiener space (see [9], [23] and the references therein).
The initial impetus for our work came from a question of Paul Malliavin

concerning a probabilistic model of lightning. We now mention several
other motivations.

1. In analogy with the work of Fukushima [9] where a capacity on Wiener
space is introduced, dynamical percolation allows to distinguish different
events of Pp-measure zero by introducing a Choquet capacity on analytic
subsets of X = {0,1}~:

Cap(A) = wp[3t E (0,1] such that qt E A] for analytic A G X .

One can then say that an event in X holds quasi-everywhere if its

complement has zero capacity.
2. On the more applied side, there are close connections between

percolation estimates on finite graphs and reliability theory (Compare

Vol. 33, n° 4-1997.



500 O. HAGGSTROM, Y. PERES AND J. E. STEIF

Chapter 2 in [10] with Chapter 7 in [3].) In [3] the failure probability of a
network where individual component failures are independent, is interpreted
as a disconnection probability of two vertices v, w in a random graph. In
a time-dependent model it is natural to assume that component lifetimes
and service times are exponentially distributed, whence the probability of
a network failing throughout a time interval I is

W p [v and w are in distinct components of ~t Vt E I] ,

for an appropriate choice of time unit and parameter p.
3. The set of vertices in a tree that connect to the root in rit for some

defines a target percolation in the terminology of [21 ], section 4.
One of our main results, Theorem 1.5, establishes Conjecture 1 of [21],
p. 124 for this class of target percolations.

4. Lyons’ precise estimates in [20] for percolation probabilities on trees,
have been applied in [24] to natural questions concerning intersections of
ranges of stochastic processes in Euclidean space; we believe that a similar

relation should exist between dynamical percolation on trees and certain
path-valued processes in space.
We start by observing that for p ~ pc. we can indeed replace "a.e. t"

by "every t".

PROPOSITION 1.1. - For any graph G we have

occurs for every t ) = 1 if p &#x3E; p~ (G) 
(1)

occurs for every t) = 1 if p  

At the critical value Pc (G) the situation is more delicate. We say that
a graph G "exhibits flickering percolation" (in short, "G is flickering")
if at p = we have = 0 but = 1. (The
latter probability is 0 or 1 for any graph.) In words, on a flickering graph
at criticality, for almost all t there is no infinite cluster, but for some

exceptional t the infinite cluster "flickers by". Call a graph G tame if there
are a.s. no such exceptional times, i.e., if ( Ut&#x3E;o Ct) = 0.
THEOREM 1.2. - There exists a flickering graph G1. There also exists

a graph G2 such that for p - Pc(G2) we have = 1, yet
= 0.

The graphs for which percolation problems have been studied most

extensively are the nearest-neighbor graphs on the cubical lattices lld, and
trees. On the critical value pc is 1/2 and 0 (see Kesten [14]);
for d &#x3E; 2 the precise value of is not known. Hara and Slade [11] ]

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



501DYNAMICAL PERCOLATION

showed that Pp~ (C) = 0 for 7 d if d &#x3E; 19, and it is certainly believed that
this holds for all d. On the regular tree T~, where each vertex has k + 1
neighbors, a well-known branching process argument shows that pc = 
and = 0.

THEOREM 1.3. - Let G be either the integer lattice 7~d with d ~ 19 or a

regular tree. Then G is tame, i.e., occurs for every t) = l.
For the homogeneous graphs considered in the theorem, it is natural to

introduce the quantity 0(p) which is the probability under Pp that a given
vertex percolates (i. e. has an open path to infinity). Clearly, &#x3E; 0 if

and only if Pp(C) = 1. The 7~d part of Theorem 1.3 is based on the result
of Hara and Slade [11] ] that in dimension d &#x3E; 19,

That this also holds for regular trees is a much easier fact. It is generally
believed that (2) holds for 7~d for all d &#x3E; 6, in which case we can replace
d &#x3E; 19 by d &#x3E; 6 in Theorem 1.3. For 2  d  5 it is believed (and for
d = 2 known [16]) that (2) fails. We do not know what to conjecture as to
whether the lattices 7~d for 2  d  5 are flickering or tame.
On the other hand, for 7~d in any dimension we can show that if

Pp~ (C) = 0, for all t the union of all infinite open clusters at

time t has zero density (see Corollary 4.2). We prove this via a simultaneous

ergodic theorem which, we believe, is. of independent interest. Let f be a
bounded measurable function defined on X = {0,1}~. The lattice 7~d acts
on configurations by translation: for v E 7~d and a configuration yy E X , let
Sv~ E X be TJ shifted by v. Let An denote the cube Zd n [-n, For

each fixed t, the usual pointwise ergodic theorem for Zd-actions yields

where ~ ~ ~ denotes cardinality, and the rightmost equality in (3) is due

to the stationarity of ri in time. The next theorem shows that when f is
continuous, the uncountable intersection of the events in (3) over all t,
also has probability 1.

THEOREM 1.4. - Let f : continuous function, where
X = equipped with the product topology. Then the event that

has 03A8p-probability l.

Vol. 33, n° 4-1997.
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Next, we consider dynamical percolation on general trees. Lyons [ 19]
characterized p~ for any tree in terms of the Hausdorff dimension of the
tree boundary. In [20] he obtained an exact criterion for Pp (C ) &#x3E; 0 in terms
of effective electrical resistance; effective resistance is easy to calculate on
trees using the parallel and series laws (see Doyle and Snell [5]). Here we
obtain such a criterion for dynamical percolation.

For an infinite tree r with a vertex p designated as the root, we write
Tn for the set of vertices at distance exactly n from p, called the nth
level of r. A tree is called spherically symmetric if all vertices on the
same level have equally many children. (In 35, definitions for trees will
be given more completely.)

THEOREM 1.5. - Let be a dynamical percolation process with
parameter 0  p  1 on an infinite tree r. Assign each edge between
levels n - 1 and n of r the resistance p-n /n. If in the resulting resistor
network the effective resistance from the root to infinity is finite, then 
a.s. there exist times t &#x3E; 0 such that r has an infinite open cluster, while
if this resistance is infinite, then a.s. there are no such times. In particular,
if r is spherically symmetric, then

Lyons [20] established a criterion for the percolation probability on a
general tree r to be positive: Suppose that 0  p  1 and assign each
edge between levels n - 1 and n resistance p-n . Then Pr,p(C) &#x3E; 0 iff
the resulting effective resistance from the root to infinity is finite. Thus a
spherically symmetric tree r with p = E (0,1 ), is flickering iff the
series in (4) converges but ¿~=1 I 

= oo.

In the course of the proof of Theorem 1.5, we obtain bounds for the
probability that there exists a time t E [0,1] for which there is an open path
in 7~ from the root to the nth level rn. For example, on the regular tree T~
with p = this probability is bounded between constant multiples of
1/ log n. (The probability under P1/k that an open path exists from p to the
nth level of T~, is bounded between constant multiples of 1 /n; this follows
from Kolmogorov’s theorem on critical branching processes, see [2].) For
a general tree these bounds, given in Theorem 5.1, can be expressed in
terms of the effective resistance from the root to rn, and the ratio of the
upper and lower bounds is an absolute constant.

For a flickering graph, the set of percolating times at criticality has zero
Lebesgue measure, so it is natural to ask for its Hausdorff dimension. For
spherically symmetric trees there is a complete answer.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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THEOREM 1.6. - Let p E (0,1) and let r be a spherically symmetric tree.
If the set of times (t E ~0, oo ) : Ct occurs) is a. s. nonempty, 
this set has Hausdorff dimension

, n-1 
.. _

(Note that this series converges for a = 0 by (4).)
Here are some interesting flickering trees:

Example 1.7. - Let r be the spherically symmetric tree where each vertex
on level n has 4 children if n = 1, 2, 4 ... is a power of 2, and 2 children
otherwise. Then it is easily seen that n2n ~F~ I  2n2n for all n &#x3E; 0.

Combining Theorem 1.6 with the result of Lyons quoted after Theorem 1.5,
we see that W1/2-a.s. the set of times for which percolation occurs on r
has Hausdorff dimension 1 but Lebesgue measure 0.

Example 1.8. - Let 0  p, ,~  1, and suppose that r is a spherically
symmetric tree with = as n - ~. Then Theorem 1.6

implies that the set of times for which percolation occurs on F
has Hausdorff dimension {3.
We remark that although we restrict attention to bond percolation, most

of our results and statements have immediate analogues for site percolation.
The rest of this paper is organized as follows. §2 contains the proofs of

Proposition 1.1 and Theorem 1.2. In §3 we establish that (2) is a sufficient
condition for a graph to be tame, and thus obtain Theorem 1.3. A key
step is Lemma 3.4, which shows that on any graph, the set of times that
a given vertex percolates in a fixed time interval is a.s. either empty or
uncountable. In §4 we prove Theorem 1.4, and apply it to control the

density of the infinite clusters on the lattice. §5 contains the proof of the
electrical resistance criterion for general trees (Theorem 1.5) in a sharper
form. The Hausdorff dimension result, Theorem 1.6, is established in §6; the
lower bound on dimension is proved via a capacity estimate, and applies
to general trees.

2. NONCRITICAL CASES, AND SOME
GRAPHS WITH ATYPICAL TIMES

Consider a dynamical percolation process on a graph G. The
definition of the process given in the introduction is equivalent to the
following:

Vol. 33, n° 4-1997.
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Choose 7/0 according to Pp. To every edge e of G assign an independent
Poisson process with rate 1. At each point t of this process replace 
by an independent choice from the distribution (1 2014p,p) on {0,1}.

Indeed suppose, for instance, that = 0. Then the number N of

points in the relevant Poisson process until the edge e opens is a geometric
random variable with parameter p, and the sum of N mean 1 exponential
variables (which are mutually independent and independent of N) has an
exponential distribution with parameter p. The case = 1 is similar,
so the equivalence asserted above follows.

Note on measurability. - The space Dx[0, ex)) of mappings from

[0,oo) 2014~ ~ which are right continuous and possess left limits, is a

complete and separable metric space when endowed with the Skorohod
metric (see [6]). The distribution of the process 1](.) is a Borel probability
measure on this space. For any vertex v and any L &#x3E; 1, the set of pairs
{(??(.), t) : v is on an open path of length L in is clearly a Borel set for
the product topology on Dx ~0, oo ) x ~0, oo ) . Intersecting these sets for
all L shows that the set {(?7(.),~) : ~ percolates in is also a Borel set.
Other events considered in this paper, such as {~(.) : 3t Ct occurs} can be
obtained from these by countable unions and projections, and hence are in
the completion of the Borel a-field with respect to any prescribed Borel
measure. (See [6], Appendix 11.)

Notation. - For 0  a  b  oo and any edge e of a graph G, we
abbreviate

and write for the event that there is an infinite cluster of edges with
ri(e) == 1.

Analogously, define ~, and let be the event that there is an

infinite cluster of edges with ~(e) = 1.

Proof of Proposition 1.1. - (i) Suppose p &#x3E; PC. Let 0  E  p - p~ and

observe that for every edge e,

Since the events {inf[o,E] = I} are mutually independent as e ranges
over the edges of G, it follows from the definition ofpc that ~P = 1

and therefore 
’

’11 p (Ct occurs for all t E [0, e]) = 1.

Repeating the argument for the intervals (k + with integer k and
using countable additivity, we obtain the supercritical part of the proposition.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(ii) A similar argument proves that for p  pc there is never an infinite

open cluster. We take E E (O,Pc - p) and find that

Therefore ~p C~o, ~ = 0, whence there is a.s. no infinite cluster for any
t E [0, E~ . Countable additivity concludes the argument. D

We now turn to the proof of Theorem 1.2. To construct G 1 and G2 we
will start with graphs with prescribed pc. and replace the edges of these
graphs by certain aggregates of new edges. For ?~ G {1,2...}, we define
an n-aggregate between two vertices x and y to consist of 2n disjoint
paths (called branches) from x to y, each branch consisting of n edges.
See Figure 1. Call an n-aggregate An open if it contains an open path from
x to y, and call it closed otherwise.

FIG. 1. - The n-aggregates A2 and A3.

LEMMA 2.1

Proof. - Each of the branches of An is open with probability pn, so

Letting n ~ 00 proves the lemma. D

Next, we consider the behavior of a single branch under the dynamics of
our continuous time Markov chain. We let Ep denote expectation under 

LEMMA 2.2. ~ Let B be a path of length n, and let s &#x3E; O. Denote by
T ( B, s ) the total amount of time in ~0, sl that B is open. Then

Vol. 33, n° 4-1997.



506 O. HAGGSTROM, Y. PERES AND J. E. STEIF

(iii) s) &#x3E; O} &#x3E; 

(iv) is closed in 7~0 and in = 1 - 2p’~ + p(p + 

Proof. - (i) This is immediate from Fubini’s theorem.
(ii) At each edge e of B, the chain switches to the distribution

(q, p) on {0, 1} at rate 1, and therefore for t &#x3E; 0,

is open at time t B is open at time 0] _ (p + (6)

Consequently, the conditional expectation Ep[r(B, s) [ B is open at time 0]
equals

(iii) By conditioning on the first time that B is open and using the strong
Markov property, we infer from (ii) that

Combining this with (i) yields

(iv) This follows from the equation is open in qo and in ==

+ which is a consequence of (6). D

The next lemma describes the behavior of large aggregates when the
status of the edges evolves according to 

LEMMA 2.3. - For any s &#x3E; 0, we have

and

Proof. - Since the 2n branches in An evolve independently,
Lemma 2.2(iii) implies that

is closed for all t E [0, s])  (l-~e’~2’"’~)~ ~ 0 as n - oo ,
which establishes (7).
To prove (8), we apply Lemma 2.2(iv) and stationarity to obtain

~i {B is closed in and in = 1 - 21-n + ,

for each branch B of An and all r, t E [0, s].
Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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This yields a bound on the covariances of the indicators It =

1 {An is closed in 
.

where the inequality ~~ 2014 ~2~  yl for x, y E (0,1) was used
in the last step.

Let Yn = J: It dt denote the total amount of time in [0, s] that An is

closed. Lemma 2.1 implies that El(Yn) - as n - oo. By Fubini’s
Theorem and (9), we have 

The right-hand side tends to zero by bounded convergence, so using
Chebyshev’s inequality (or Lemma 5.4), we deduce that &#x3E; 0] - 1

~ 

D

Proof of Theorem 1.2. - We first construct G2. Let G~ be any graph
for which

0   1 - e-1. (We may for definiteness take G~ = Z~). Let
e2, ...} be an enumeration of the edges of G~, and let {~1~2?’’’} be

a sequence of positive integers tending to oo. We construct G2 by replacing
each edge ei of G~ by an ni-aggregate. It follows from Lemma 2.1 that

Pc( G2) = 1/2, with percolation at criticality. We will show that if the

sequence ~ni~ grows rapidly enough, then there are times when

G2 fails to percolate.
Start by using (8) to pick ni large enough so that

is closed for some t E [0, !]}&#x3E;!- 3-1 .

Then pick 81 &#x3E; 0 so small that

1 stays closed for a time interval of length &#x3E; 81 in [0, I]} &#x3E; 1- 3-1.

Vol. 33, n° 4-1997.



508 O. HAGGSTROM, Y. PERES AND J. E. STEIF

We continue inductively. Once ni and 8i are chosen, use (8) to pick ni+1
so large that

then pick &#x3E; 0 so small that

1 stays closed for a time interval of length

~ 03B4i+1 in [0, 8i]} &#x3E; 1 - 3-i-1 .

This defines the graph G2. We now attempt to find a time t E [0~ 1] when
all the aggregates of G2 are closed. First look for a closed time-interval
Ji C [0, 1] of length 03B41, during which the aggregate replacing e1 stays
closed. If such an interval Ji exists, look for a closed interval J2 C Ji
of length ~2. during which the aggregate An2 replacing e2 stays closed,
and so on.

With probability greater than n:1 (1- 3-í) &#x3E; 1 /2, we obtain an infinite
nested sequence of closed intervals [0,1] D Ji D J2 D J3 D ... such that
for each j, the aggregate An, replacing ej stays closed during Jj, and the
length of Jj is 8j. On that event, at the time t E all the aggregates
Ani are closed. Hence

By Kolmogorov’s 0-1 law this probability must be 1.

We now construct Gi. We only sketch this construction, as it is similar
to the construction of G2; a completely different example of a flickering
graph is in Example 1.7.

Let G 1 be a graph for which pc(~l)~(l"6’~,l). Replace the edges
{ei} of G’1 by ni-aggregates for a rapidly increasing sequence {ni}. Using
Lemma 2.1, we find that pc(Gi) = 2 with Ppc(C) = 0 on Gi. Applying
(7) we get, as in the previous construction, that G1 is flickering if the ni
are chosen to increase sufficiently fast. D

3. A SUFFICIENT CONDITION FOR TAMENESS

In this section we prove two lemmas concerning the times at which a
single vertex percolates, and then apply them to show that regular trees
and high-dimensional lattices are tame. For a graph G and a vertex v in
G, write for Pp (v percolates). Let Nv denote the cardinality of the

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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set ~t E [0, 1] : v percolates in Recall that Ep denotes expectation
under 

LEMMA 3.1. - Let G be a graph, let v be a vertex of G and denote by
p~ the critical value for percolation on G. Suppose there exists a constant
C such that 

.

for all p &#x3E; pc. Then Epc [Nv]  00.

Proof - Let m &#x3E; 1. For every edge e of G and every i e {1,2,..., m}
we have

Therefore the probability that v percolates in (e : 3t E [ (i -

1)/rrc, with = I} is at most + Let N.",."L be

the number of i E ~1, 2, ... such that v is in an infinite cluster of

{e : 3t E [(i -l)/m,i/m] with = 1}. We have

Since Nv ~ lim inf Nv,m, Fatou’s lemma completes the proof. D

LEMMA 3.2. - Let 0  p  1 and let G be any graph where = 0.

Consider the process {~t} obtained from {~t} by setting, for every edge e,
the set {t : = 1} to be the closure of the set {t : rit (e) = 1}. Then

for every vertex v we have

{t E ~0, oo) : v percolates in = ~0, oo) : v percolates in 

In particular, a. s. this set of times is closed.

Proof. - For each edge e, the process (e)} changes its value only at a
countable (random) set of times At these times, q and ~ agree
a.s. on all other edges. The evolution of different edges is independent and
the status of a single edge does not affect the existence of infinite clusters,
so the assumption on PG,p (C) implies that a.s., at all times all

open clusters in ~ are finite. Since the set of edges is countable, we are
done. D

Vol. 33, n° 4-1997.
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Next, we recall a basic correlation inequality. A probability measure on
a partially ordered topological space is said to have positive correlations
if any two increasing continuous functions have a nonnegative covariance
with respect to this measure - see §II.2 in Liggett [ 18] for background.
LEMMA 3.3 (Harris). - Let G be a graph with edge set E, and denote

X = ~0,1 ~ E. Let N be a positive integer, and equip X N with the

product topology and the usual (coordinatewise) partial order. Then for
any 0  p  1 and any 0  t1  ...  tN, the distribution of

..., which is a measure on X N, has positive correlations.
It is enough to verify this lemma for finite graphs, where it follows from

a more general inequality due to Harris [ 12], asserting that all attractive
spin systems with transitions only between comparable states, have positive
correlations; see Corollary IL2.21 in [ 18] .

LEMMA 3.4. - Let G be a graph and let v be a vertex of G. Suppose
that p E (0,1) satisfies Bv (p) = 0. Then the number Nv of times
in [0, 1] that v percolates is either 0 or oo.

Proof. - We proceed similarly to the proof of Lemma 4.2 in [21 ] .
Suppose, for contradiction, that = k) &#x3E; 0 for some 0  k  00.

Let l1i C 1~2 c 113 c ... be finite edge sets whose union contains all edges
of G, and denote by 0n the a-field generated by (e) : e E A~, t E [0, I]}.
By the martingale convergence theorem,

Therefore, using the obvious regular conditional distribution given 0n, we
can find n and a realization w of ~r~t (e) : e E 11~, t c [0, I]} such that

= 0.9. Let ~p be the conditional distribution of wp
given w, = 1~ ) &#x3E; 0.9. Explicitly, ~p is obtained by setting
1}t to w in A~, and independently running dynamical percolation outside
~1~ . For s &#x3E; 0, denote by As the event ~ v percolates for at least one t E
[0,~)}. Clearly is a left-continuous function of s. For

any prescribed s, we have 03A8p[v percolates at time s] = 0, so by
Lemma 3.2 ~p(~) is also right-continuous in s. Hence there exists

q E (0,1) such that = 0.5. Consider the event 

{v percolates for at least k different times in [~ 1]}. Clearly, ~p(B~) 2::

0.4, because ~ Nv = I~ ~ C ~4~ U The events Ay and Ry are increasing,
and therefore the conditional probabilities ~p[~ ~ I I 
are increasing functions of since the dynamical percolation process is
attractive (see [18]) and reversible.
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Thus by the Markov property and Lemma 3.3,

Since the events {Nv = 1~ ~ and n are disjoint, we conclude that

~p(Nv ~= k)  1 - 0.2 = 0.8, which is the desired contradiction. D

Remark. - (i) Lemma 3.2 states that for any vertex v, {t E [0,1] :
v percolates in is a.s. a closed set. By the previous lemma applied to
all rational time intervals instead of [0,1], this set a.s. has no isolated points,
and therefore by elementary topology it is either empty or uncountable.

(ii) Steve Evans has pointed out that the lemma above can also be derived
from the general theory of Markov processes.
The proof of Theorem 1.3 is now very short.

Proof of Theorem 1.3. - The graphs considered in the theorem satisfy
the assumption of Lemma 3.1 for every vertex v (see [15] for T~ and [ 11 ]
for whence EP~ [Nv]  oo for all v. It follows that every vertex v

satisfies  ~} = 1, and hence, by Lemma 3.4 we conclude that
~Nv - O} == 1. D

Remark. - For the planar lattice lL2, the results of [16] imply that, in the

terminology of the proof of Lemma 3.1, limm~~ E[Nv,rn] = ~.

4. A SIMULTANEOUS ERGODIC

THEOREM AND DENSITY OF CLUSTERS

Denote by E the set of edges in and write e E A~ if e E E has at
least one endpoint in the cube An . If ~ and ç’ are in X = {0,1}~, we define

LEMMA 4.1. - Let f : R be continuous. For every ~ &#x3E; 0 there exists

8 &#x3E; 0 such that if ~’ )  8 then
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satisfy ~~1~(e;) _ ç-(2)(ei) for all i  k, then ~f(~(1~) _ f(~~z~~~  c/2.
Now suppose that ç-’)  8. Then for any edge e we have

since the ratio tends to d as n - oo. For each vertex v such that
Svç( ei) == for all i  k, the corresponding summand in (10) is at
most c/2 by the choice of k. The other summands are controlled by ( 11 ),
so that altogether

Finally, choose 8 such that the right-hand side is smaller than c. D

Proof of Theorem 1.4. - By countable additivity, it suffices to prove the
Theorem with t restricted to [0,1]. Given E &#x3E; 0, choose 8 from Lemma 4.1.
Partition the unit interval into subintervals ... JN of length  8. Letting
0 = = 1 denote the endpoints of these intervals, the
ergodic theorem yields

For any edge e and any i E {I, ... , let F(e, i) be the event that 
changes its value at least once during the time interval The probability
that an exponential random variable with mean &#x3E; 1 takes a value  ~ is
less than 8, so the strong law of large numbers gives

Any t E [0,1] is in some subinterval Ji; on the event in (14) we have
~t2 )  8, so Lemma 4.1 implies that

In conjunction with (13) and the triangle inequality, this completes the
proof. D
We note that an analogue of Theorem 1.4 holds if X is replaced by

{0,1}~ , and furthermore that it extends to more general settings. All we
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need in the proof is that the flip rates are bounded, whence we have the
simultaneous ergodic theorem for a wide variety of interacting particle
systems (including e.g. the contact process, the voter model, and Glauber
dynamics for the Ising model; see [18]) if these are started with ergodic
translation invariant stationary distributions.
We will now apply Theorem 1.4 to control the supremum over time of

the density of the infinite clusters.

COROLLARY 4.2. - Let G = Z~ and suppose that (C) = O. Let Ct (v)
be the event that v percolates in and denote by l~t ~v) the indicator of
this event. Then

Proof. - Denote by E the set of edges in For any configuration
ç E define := 1 if there is an open path in ~ from the origin
to Ak, and := 0 otherwise. Clearly,

for all t and any k. Theorem 1.4 and countable additivity imply that -a.s.,

The assumption 0 implies that 0 as oo, so

the corollary is proved. , 

D

5. CAPACITY CRITERIA FOR FLICKERING TREES

Let r be a finite or infinite tree with root p. (All trees herein are assumed
to be locally finite.) Let I v I denote the distance from the vertex v to the
root p, i. e. the number of edges on the unique path connecting v to p. Let
rn = {~ : H = n ~ denote the nth level of r. A vertex v # p which has
degree one is called a leaf of r. If r is finite, then let its boundary be

the set of leaves of r; if r is infinite, we let 9F denote the set of infinite

non-self-intersecting paths (called rays) from p. If v and w are vertices of
r, write v  w if v is on the path connecting p and w. Let v A w denote the

greatest lower bound for v and w ; pictorially, this is where the paths from
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p to v and w diverge. For an infinite tree, if extend this notation
by letting x A y be the greatest vertex in both x and y. This completes the
basic notation for trees, and we turn to the notation for capacities.

Let K : 9F x R be a nonnegative symmetric function. If  is a
signed measure on define the energy of  with respect to the kernel
K to be

The capacity of 9F with respect to the kernel K is defined by

_ ,t is a probability measure on 

When K(x, y) = h( (x /B for all x, where h is a nonnegative,
nondecreasing function, we write ~h instead of ~K and Caph instead of
CapK.
We now state the main result of this section. Since we introduce an

auxiliary random killing time T, we denote the underlying probability
measure P rather than ~p . The event that there is an open path from the
root to ar in qt is denoted {03C1~0393}.
THEOREM 5.1. - Consider dynamical percolation with parameter

0  p  1 on a tree r which is either finite or infinite with = 0. Let
T be a random variable with an exponential distribution of mean 1, which
is independent of the process ~r~t ~. Let

Then the event A == {::It E [0, T] : p Ä 8F) satisfies

where we can take C = 18.8871. Furthermore, if r is infinite, let ’Y’~
denote the random set of positive times at which the root p percolates. If

&#x3E; 0 then ’’Y’~ is a.s. uncountable, while if = 0 then

~’ ~ is a. s. empty.

Remarks

(i) It is easy to verify that h is increasing and h(n)  p-n for all n. These
properties also follow from the interpretation of h given in Lemma 5.2(iii)
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below. In the sequel, we will sometimes write h(v) instead of h(lvl) when
v is a vertex.

(ii) The event A is easier to work with than the perhaps more natural
event B = (3t E [0,1] : Noting that P(B)  P(AIT &#x3E; 1) 

and P(A)  e-kP(B) = P (B) /(I - e-1), we obtain

(iii) The easiest way to compute capacity on a tree is via its connection to
effective conductance. In describing this connection we follow Lyons ([19],
[20]) where more details can be found. Given a probability measure ~ on

and a vertex v of r, define to be the p-measure of the set of leaves

that are separated from the root by v, provided r is finite; if r is infinite,
consider instead the set of rays going through v. This defines a one-to-one
correspondence between probability measures on 9F and so-called unit
flows on r from p to are For nondecreasing h with h( -1 ) = 0, a simple
summation by parts (detailed in [19] and in [22]) shows that

Except for the summand h(0) which corresponds to v = p, this sum is
exactly the energy dissipation (in the terminology of Doyle and Snell [5])
of the flow ~, provided that the edge leading to each vertex v from its

parent is assigned resistance := By Thomson’s
principle (see [5]) the minimum of the energy dissipation over all unit

flows is the effective resistance Reff(r, Vh) between p and are Using the
definition of capacity and (18) we get

For the kernel h in Theorem 5.1, the ratio of Vh(n) and p-n /n is

bounded above and below by positive finite constants that only depend
on p. Therefore

Theorem 5.1 implies Theorem 1.5.

To get the last assertion of Theorem 1.5, take r to be spherically symmetric,
and note that Vh) is (by symmetry) not altered if we short-circuit
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all vertices on a fixed level of r to each other. Doing this for all levels, the
resistance between level n - 1 and level n becomes °r~n~ so that

which converges iff the sum in (4) converges.
Before proving Theorem 5.1, we prove a lemma concerning the behavior

of a pair of paths.

Notation. - Denote by {v Ä w~ the event that there is an open path in
rit between the vertices v and w. Similarly, when x is a ray of the tree,
{p~~} means that x is open at time t. == !j {p~~}.
For s &#x3E; 0 let Tv(s):= / 1 t vl dt be the amount of time in [0, s]
when the path from the root to v is open.

LEMMA 5.2. - Let u and w be vertices of f. With the notation of
Theorem 5.1 in force,

(i) E[Tw(T)] = 
(ii) &#x3E; 0] == E[Tw(T) = 

(iii) &#x3E; 0] = h ( w ) -1
(iv) .= f~ 

(v) If u  w then E[Tu(T)Tw(T) I _ 

Proof. - Let q = 1 - p.
(i) This is immediate from Fubini’s Theorem.
(ii) The first equality follows from the lack of memory of the exponential

distribution. Verifying the second equality requires a calculation like the
one in Lemma 2.2:

(iii) The required probability is the ratio of the expectations in (i) and (ii).
(iv) Since the process is reversible,
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Observe that for t &#x3E; s,

Change variables i = t - s in (19) to get

Substituting parts (i) and (ii) of the lemma into the last equation proves (iv).
(v) Applying the strong Markov property at the stopping time min ~ t :

p ~ w ~ , me get

Invoking (iii) and (iv) concludes the proof.
D

We now recall a basic fact from Potential Theory.

LEMMA 5.3. - Suppose that r is a finite tree Let K : ar x f~ be

a nonnegative symmetric kernel. Then there exists a probability measure
0 on ar which minimizes K-energy, and such a measure satisfies

y) for all x 

Proof. - Since r is a finite tree, depends continuously on p, so
the existence of a minimizing measure follows from compactness of the
set of probability measures on ar.
Now let x E ar and 0  E  1. The choice of 0 implies that

where 6x is the Dirac measure at x. Expanding, we find that

Dividing by E and letting E --~ 0 shows that
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The following lemma will be used several times in the sequel.
LEMMA 5.4 (One-sided Chebyshev inequality). - Let Y be a random

variable such that E[Y] &#x3E; 0 and Var[Y]  oo. Then for any 0  a  1

we have

Proof. - The random variable X : := 1 - Y/E[Y] has mean zero, so
inequality (7.5) in Feller [7], §V, gives that P(X  a) &#x3E; 2 a2 This
is equivalent to (20). D

Proof of Theorem 5.1. - We first prove the theorem when r is a finite
tree. The lower bound on P (A) is proved via the second moment method.
Let ~c be a probability measure on and consider the random variable

Lemma 5.2(i) implies that E(Z) = 1. Part (iv) of the same lemma gives

Using the Cauchy-Schwarz inequality (or Lemma 5.4 with a = 1) we
find that

taxing the supremum ot tne right-hand Sloe over all probability measures

M on ar proves the lower bound on P[A] in (17).
Proving the upper bound P(A)  is harder. Let Mo be a

probability measure of minimal h-energy on 9F. Embed the tree r in the
upper half-plane, with the root at the origin. If z, y E ar and x is to the
left of y or x = y, we write x  y (or equivalently, y ~ x). Lemma 5.3
implies that the following two sets form a cover of 9F:

Let AL = (3t E [0, T] : and define AR analogously.
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For any x EarL we define 7~ := inf{ t &#x3E; 0 : /)-~} , and for any
vertex v, let

denote the amount of time in the interval ~T~ T] that v is connected to
the root. We now come to the key step. For every x G 8rL write

Given a E (0, 1), define a random subset W = W(a) of 8rL by:

(recall that Tx (T) = In words, W consists of leaves in

arL that have an open path to the root before time T, and the vertices
along this path remain connected to the root for a "substantial" amount of
time. Our first task is to bound the conditional probability P[tV ~ 0 ~ ( AL]
from below. Let x* E 0rL be the first leaf in ~0393L to be connected to the
root, i.e. a leaf for which Tx* is minimal. (If there is a tie, let x* be the
leftmost of the minimizers.) Observe that AL = {Tx*  T~ .

Since Tx* is a stopping time for the dynamical percolation process, the
strong Markov property and Lemma 5.2(ii) imply that for each x E arL
and each v  x we have

Similarly, Lemma 5.2(v) implies that for u, w  x,

Therefore the definitions of Sx and 8rL imply that

and
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We can now apply the one-sided Chebyshev inequality (Lemma 5.4). Using
(25) and (26) we obtain

Therefore

Let Lw denote the leftmost vertex in the random set W. (So that Lw
is only defined when W is nonempty.) We now bound by using
a "first entrance decomposition" for E[Z]. The crucial observation is that
for any two leaves ~ -~ y, given the indicator of the event {/)~~ A ?/},
the is conditionally independent of the whole evolution on
edges on the path from the root to x and to the left of it. We also have that

Integrating overt E [T x A T, T], we infer that for x -~ ~ in 91B

whence

By Lemma 5.2(i)

Recalling the definition of W, we get
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Thus the inequality (27) yields

Consequently P(AL)  where

Translating the above argument into Hebrew ( i. e. , interchanging left and
right) yields P(AR)  since A = AL U AR (see (23)), the

inequality P(A) ~ 2CCaph(~0393) is proved for finite trees.
We now extend the result to infinite trees without leaves by a simple

limiting argument. Given such an infinite tree r, let r(n) denote the finite
tree consisting of levels 0 to n of r; the boundary of this tree coincides
with rn . Recall the process introduced in Lemma 3.2, and denote

:= {t E [0, T~ : in 

Compactness of 9F in the standard topology (see [20]) implies that
= {t E [0, T] : in Lemma 3.2 states that P-a.s. this

set is identical to

Thus by compactness of the sets we have P[A] = 
where A is the event that T~ ~ 0 and is the event that T~ ~ 0.
Using the easily verified fact that limn~~Caph(~0393(n)) = the

inequalities (17) already proved for finite trees, yield that (17) also holds
for infinite trees without leaves.

Finally, if r is an infinite tree with leaves, consider the leafless subtree
r’ which is the union of all rays in r. Since 9F = 0r’, the estimate (17)
for r is equivalent to the same estimate for r’.

It only remains to prove the zero-one law for infinite trees stated at the
end of the theorem. Denote

If Caph (ar) = 0 then = 0 a.s. by countable additivity and Remark
(ii) after Theorem 5.1.

Conversely, suppose that &#x3E; 0. Then

P{03B3n,~) ~  for all integers n &#x3E; 0}
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by (17) and stationarity. Since is an ergodic process under time
evolution (see [25]), the probability in (29) must be 1. It remains to

establish the last assertion of the theorem. If 0p(p) &#x3E; 0 (i. e. the root

percolates at a fixed time with positive probability) then a.s. has

infinite Lebesgue measure. On the other hand, if 9P (p) = 0, then applying
Lemmas 3.2 and 3.4 to all rational time intervals instead of [0,1] shows
that a.s. is a closed set with no isolated points; therefore it is a.s.
uncountable. D

6. HAUSDORFF DIMENSION OF PERCOLATING TIMES

We start by formulating an extension of the lower bound in Theorem 1.6.
Let a E (0,1), and let D C R be a closed set. The a-energy of a finite
Borel measure 03C3 on D is

The a-capacity of D is

where the infimum is over probability measures a on D and by convention,
00-1 = 0.

The following classical theorem relates capacity to dimension.

THEOREM 6.1 (Frostman [8]). - For any closed set D c I~, the critical

parameter &#x3E; 0 o~ is exactly the Hausdorff dimension
of D.

For the definition of Hausdorff dimension and the proof of Theorem 6.1,
see Kahane [13].
For a G (0,1 ), we will relate the a-capacity of the set of times at which

the root percolates, to the capacity of the tree boundary in the kernel

We use freely the notation established in the beginning of the previous
section.

THEOREM 6.2. - Consider a dynamical percolation process with parameter
p on a tree r, and let T be an independent exponential random variable
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of mean 1. Suppose that for some a E (0,1), the boundary c~r supports a
probability measure  with ( )  ~. Then the random set

supports a (random ) measure ~ of (random ) total mass ~~Q~~ such that
~l~ = 1 

P~~~~r~~ ~ 1 - a~ ~ ~2~h(~) - 1 (0,1)
(iii) 
Conseguently (letting a -j 1 in (ii)), &#x3E; 0~ &#x3E; 2~h(~)-1.
(Note that necessarily P~~~Q~~ _ ~) &#x3E; = ~~ &#x3E; ~.)
The following lemma will be useful in the proof.

LEMMA 6.3. - With the assumptions of Theorem 6.2, let z~  .r, be vertices

of r. Then

where ha (w) is an abbreviation for 

Proof. - For S  0 define Fw (s) := J: P[p Ä w p ° dt. Clearly
Fw ( s )  s, and Lemma 5.2(ii) implies that Fw(s) ~ h(w)p|w| for all s &#x3E; 0.

Since I = I p~-~t~], the left-hand side of (31 )
can be written, using integration by parts, as

By comparing the definitions of h and ha, we see that the right-hand sides
of (31 ) and (32) are equal. D

Proof of Theorem 6.2. - Observe that the last statement of the theorem
follows immediately from the preceding assertions (i)-(iii). To prove these
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assertions we first assume that F is a finite tree, and define the random
measure a on [0, oo ) by

Clearly, a is supported on Tr. The total mass ~03C3~ ( is exactly the random
variable Z introduced in (21), so that as already remarked, (i) follows

easily from Fubini’s Theorem. The inequality (ii) follows from Lemma 5.5
and (22). It remains to verify (iii), and this is analogous to Lemma 5.2(iv):

Observe that = 1 and

Change variables t = t - s and integrate ds to get that for any two leaves
x, y, the double integral in (33) can be written as

where the last inequality follows from Lemma 6.3. Therefore

as asserted in (iii).
Next, if r is an infinite tree without leaves, we define for each n the

measure an corresponding to the truncation of F to the first n levels. For
a vertex u of f, we use, as in Remark (iii) after Theorem 5.1, the notation

p(u) = E ar : u e ~}). If ’P is a compactly supported continuous
function on [0, oo), then the sequence of integrals
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forms a martingale with respect to the filtration where 0n is

generated by the process ~r~t (e) ~ restricted to edges e in the first n levels
of r. This martingale is bounded in L2 since  by (22).
By separability of the compactly supported continuous functions and the

convergence theorem for L2 martingales, we see that with probability 1 the

sequence of random measures an converges weakly to a random measure
a on the closed set (whence also an x an converges weakly to a x a.)
Clearly this random measure a satisfies (i) and (ii).

For every finite M &#x3E; 0, with probability one the integrals

converge to the corresponding integral with a replacing an. Thus by
Fatou’s lemma

Letting M - oo and using Lebesgue’s monotone convergence theorem
proves (iii) in this case.

Finally, the case where r is an infinite tree with leaves reduces to the
previous case as in Theorem 5.1. D

To prove the upper bound on dimension in Theorem 1.6 we will need

Lyons’ estimate for ordinary percolation.

LEMMA 6.4 (specialized from Theorem 2.1 of Lyons [20]). - Let r be a
(finite or infinite) tree and let p E (0, 1). Denote g(k) = Then

In particular, if r is spherically symmetric, then

An alternative proof of this lemma, in which the percolation probability
is interpreted as a hitting probability for a certain Markov chain, is in

Benjamini, Pemantle and Peres [4]. ..

Proof of Theorem 1.6" - By timewise ergodicity of ~r~t ~, the Hausdorff
dimension in the statement is an a.s. constant. As the lower bound on

dimension follows directly by combining Theorem 6.2 and Theorem 6.1, it
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only remains to establish the upper bound. Suppose that 0  a, p  1, and
r is a spherically symmetric tree such that

We will show this implies that the random set Ti := {t E [0, 1] : p Ä ar}
has Hausdorff dimension at most a almost surely. A routine countable-
additivity argument (as in the proof of Theorem 5.1) will then complete
the proof.

For any time interval I of length l/n and any edge e, we have
= 1]  p(l + by (5). Therefore Lemma 6.4

implies that there exists C = C(p) such that

Let

Clearly, E[Nn] is obtained by multiplying the left-hand side of (37) by
n. Thus

The right-hand sum diverges by the hypothesis (36). Therefore we have,
for any E &#x3E; 0, that

by Fatou’s Lemma. Thus

. " ---- I V

Since this is true for all E &#x3E; 0, and 03B31 is covered by Nn intervals of length
1 /n, the definition of Hausdorff dimension implies that the dimension of

is at most 0152. D

We conclude with an unsolved problem.

Question. - Given 0  p  1, which infinite trees r satisfy

[Vt 3 an infinite cluster in = 1 ?
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