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ABSTRACT. - Although necessary conditions for the bootstrap of the mean
to work have already been given, only the case of an i.i.d. séquence has
been exhaustively considered. We study such necessary conditions for (not
necessarily infinitesimal) triangular arrays showing that the existence of a
limit law in probability leads to infinitesimality and to the Central Limit
Theorem to hold for a rescaled subarray.

Our setup is based on a triangular array of row-wise independent
identically distributed random variables and any resampling size. While
our results are similar to those obtained in Arcones and Giné 
Henri Poincaré 25(1989) 457-481] for an i.i.d. séquence, our proof is
based on symmetrizations and the considération of U-statistics and allows
a unified treatment without moment assumptions. @ Elsevier, Paris
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RÉSUMÉ. - Bien que les conditions nécessaires au fonctionnement du

bootstrap de la moyenne aient déjà été données, seul le cas d’une séquence
de variables aléatoires indépendantes et de même loi (i.i.d.) a été considéré
exhaustivement. Nous étudions de telles conditions nécessaires pour un
tableau triangulaire (pas nécessairement infinitésimal) en montrant que
l’existence d’une loi limite en probabilité conduit à l’infinitésimalité et à la
vérification du Théorème Central du Limite pour un sous-tableau normalisé.

Notre cadre se base sur un tableau triangulaire de variables aléatoires
indépendantes et de même loi sur chaque ligne et de n’importe quel taille
d’enchantillonnage. Bien que nos résultats sont similaires à ceux obtenus
dans Arcones et Giné Henri Poincaré 25(1989) 457-481] pour
une séquence i.i.d., notre démonstration se base sur la symétrisation et la
prise en considération des U-statistiques et permet un traitement unifié sans
hypothèses sur les moments. @ Elsevier, Paris

1. INTRODUCTION

The différences between the asymptotic distribution of the bootstrap
sample mean for infinitesimal arrays and for sequences of independent
identically distributed (i.i.d.) random variables (r.v.’s) have been shown
in Cuesta-Albertos and Matràn (1998). After this work it becomes

mathematically natural to follow it by providing necessary conditions to
assure a bootstrap limit law.
We would like to emphasize, however, the interest of necessary conditions

from the point of view of statistical applications of the bootstrap. Recall that
one of the achievements of the bootstrap techniques since their introduction
by Efron (1979) is that it allows, via Monte Carlo method, to approximate
the distribution of the statistic of interest. In the simplest case of the mean,
given n observations Xi = ..., Xn of a random variable X, this
leads to obtain a large set of resamples of size m~ from ...,~}:

...~ ~ with sample mean ~

~ i? ... , ~ ~ with sample mean ~

~ i,..., ~ ~ with sample mean t;
l’Institut Poincaré - Probabilités et Statistiques



373NECESSARY CONDITIONS FOR THE BOOTSTRAP

with the guess that the sample distribution of ~,~...~ will be a good
approximation to the asymptotic distribution, if any!, of X.

Thus, as a matter of fact our interest is to ensure that if the bootstrap
distribution is, say approximately normal, then X will be approximately
normal. The mathematical justification of this procedure must be given by
a necessary condition.

Let us suppose that Bi, ..., Bn is a sample of Bernoulli trials. Two

approximations to the probability law of Sn == are usually
considered. First, the celebrated De Moivre’s Central Limit Theorem asserts

that, when properly normalized, the law of Sn is nearly normal. On the
other hand, the (not less celebrated) Poisson’s Theorem of Rare Events
allows to use the Poisson distribution to approximate the law of Sn.
As it is well known, from the mathematical point of view, with the

law of convergence of types in mind avoiding both convergences for the
same séquence (even rescaled), the problem is circunvented through the
considération of triangular arrays of random variables. This allows to give
mathematical meaning to the expression ’rare events’ through a compromise
between the sample size and the probability of success in the trials.

Thèse observations should make clear that necessary conditions obtained

in the setup of a séquence of i.i.d. random variables can only give answers
to the following question:

If we assume that the distribution type summand does not depend
and wide range of sample the distribution of the

corresponding bootstrap sum can be approximated by a law, what can
we say about the distribution sum?

However, from the point of view of applications the interesting question
should be

7~ sample, the distribution of the bootstrap sum can be
approximated by a law, what can we say about the distribution of
the sum of the original sample ?

and the appropriate setup to discuss this problem is given by triangular
arrays of row-wise i.i.d. random variables, which will be the setup
considered in this paper.

The first necessary condition for the bootstrap of the mean for i.i.d.

sequences and resampling size equal to the sample size, i.e. m~ = n, was
given in Giné and Zinn (1986) showing that the bootstrap works a.s. if and
only if the common distribution of the séquence has finite second moment,
while it works in probability if and only if that distribution belongs to
the domain of attraction of the normal law. Hall (1990) completes the

Vol. 35, n° 3-1999.
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analysis in this setup showing that when there exists a bootstrap limit law
(in probability) then either the parent distribution belongs to the domain of
attraction of the normal law or it has slowly varying tails and one of the
two tails completely dominates the other.
The interest of considering resampling sizes différent to the sample

size was noted among others by Swanepoel (1986) and Athreya (1987).
For général arbitrary resampling sizes, but still in the setup of an i.i.d.

séquence, Arcones and Giné (1989) obtained:
Let ~ l’ X£ ~ , bootstrap sample obtained from 1.i.d.r.v.’ s

and set Denote by ~ the conditional law
given the sample. Then, provided that mn / oo, if there exist a non-

degenerated random probability measure constants {a}~n=1, an / oo,
and r.v’s cn, measurable on the 03C3-fields 03C3(X1, X2,..., Xn), n E N,
satisfying 

/ . ,

(a) there exist a Lévy measure v, and cr~ &#x3E; 0 such that for every T &#x3E; 0

(b) If c &#x3E; 0 and

then,

(c) If limsup &#x3E; 0 then v == 0 and cr~ &#x3E; 0.

(d) If liminf &#x3E; 0 then X belongs to the domain of attraction of
the normal law with norming constants bn = 

As observed earlier, the fact that thèse results concem a séquence of .

i.i.d.r.v.’s prevents them from properly discussing the question of interest
above. To our best knowledge, only Mammen (1992) addresses the problem
(in the setup of linear statistics) considering triangular arrays, but with

Henri Poincaré - Probabilités et Statistiques



375NECESSARY CONDITIONS FOR THE BOOTSTRAP

resampling sizes, equal to the original sample size n). Our
général theorem on necessary conditions for the bootstrap of the mean will
cover any resampling rate.

Before stating our main result, we introduce some notation. We

will consider a triangular array, = 1,...,~; ~ EN},
oo, of row-wise i.i.d.r.v.’s (from now on a triangular array).

X~ i,X~,...,~~(?r~ -~ (0) will be a bootstrap sample, i.e., an i.i.d.
sample given with law ~- and (bootstrap) sum
S*n = where 03B4x denotes Dirac’s measure on x. As usual, P*
and E* will respectively denote the conditional probability and expectation
given the sample, while ~(~?) is the distribution of the r.v. Z and /~*(Z)
is the corresponding conditional distribution of Z.
As in Araujo and Giné (1980), N( a, o~) ~ crPois v is a général infinitely

divisible law written as the convolution of a normal law and the generalized
Poisson law associated to the Lévy measure v. Moreover, for any given
r.v. X, and 03B4 &#x3E; 0, we denote X03B4 := and X03B4 := 

Convergence in distribution, in law or weak convergence will be terms

indistinctly used through the paper, and will be denoted by 1, while 2014~
will mean convergence in probability.
We state now our main result.

THEOREM 1.1. - Let mn / 00, and C e [0,0o]. If there
probability constants {~}~=i? ~ ~ oo, and random

variables An, measurable on the a(Xn,j : j = 1,...,~),?~ E N
satisfying 

I ..

in probability, then:

(i) p is infinitely divisible. Thus, p == N( a, 03B12) * c03C4Pois v.
(ii) If C == 0 then there exist constants {bn}~n=1 such that

The constants bn must satisfy

where 7rn is a median for Xn,j.

Vol. 35, n° 3-1999.
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(iii) If c &#x3E; 0 then v m 0 and there exists {cn}~n=1 such that

The constants cn must satisfy

where 03C0n is a median of Xn,j.
Remark 1. - Note that the sum in (ii) in the previous theorem does not

include all the values in the sample. D

Even though our results are similar to those in Arcones and Giné (1989),
the difficulties that arise in the triangular array setting are very différent. In
addition to the usual techniques in the study of the Central Limit Theorem,
to carry out the proof we handle a uniform approximation between some
U-statistics and their corresponding projections made possible through
Lemma 2.1. The use of U-statistics is a conséquence of the impossibility
of avoiding the use of symmetrizations to get independent summands in
some steps (see Remark 2).

2. PROOFS

Our proof of Theorem 1.1 is based on symmetrization. Let

~*i,..., be a new bootstrap sample independent of ~ ~ ..., 
(i.e., X~...,X~ are 1.1.. r.v’s with law and inde-

pendent of X~, .~~~J. Let ~r - ~ Then

in probabilité where p is the probability measure such that p(A) == p( -A)
for every Borel set A. Let = 1, ...,?r~~, n ~ N} be a triangular
array of row-wise i.i.d. r.v.’s such that = where

is an independent copy of When the limit resampling rate, c,

is finite, we will use (2.1) to show that, {Y~j:~=l,...,m~~GN}
verifies the hypothèses of the Central Limit Theorem. Then we will

obtain the convergence of the original array. In order to prove the

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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convergence for = 1,..., n E N} we need a lemma conceming
the approximation of a U -statistic by its Hoeffding projection. First we
introduce some notation.

Let h : Rm - R be a symmetric integrable function. With the notation
d(Pi x ... x Pm), the Hoeffding projections of h

are defined as

for xi E R and 1 ~ k  m. For convenience, we denote 03C00 h = Pm f.
Thèse projections induce a décomposition of the U -statistic

into the sum of U-statistics of orders k  m, namely, the Hoeffding
décomposition:

We will use this decomposition to prove the following lemma, which
provides a bound for the L2-distance between a U-statistic of order 2 and
a sum of independent r.v’s. The main interest of this result relies on the
fact that this bound is valid for all symmetric kernels.

LEMMA 2.1. - Let Xi, ..., Xn be independent identicaly distributed

random variables. Assume that h : 1R2 ---* R is a symmetric function
such that E X2)  00. With the above notation, let Ûn(h) ==

U(0)n(03C00h) + 2 (l)( ( 7ri ) Then

Proof. - According to Hoeffding’s expansion, i7~(~) =
L~(7T2 h). Note that E UÉ~~ (7r~ h) = 0, so that it suffices to prove that

Now observe that ~(~ - 
We can easily check that Var = Var h(Xi, X2) -
2V ar Tri h(Xi) and = 0. Therefore

Vol. 35,n° 3-1999.



378 E. DEL BARRIO, J. A. CUESTA-ALBERTOS AND C. MATRÀN

which completes the proof. D

Now we prove convergence for (Yn,j : j == 1, ..., mn, n E N) when
C  00.

LEMMA 2.2. - Under the hypotheses of Theorem 1. 1 and using the above
notation, if c  00 and Tn == Yn,j then .

Proof - Conditionally given ~(~ - ~) is a sum
of i.i.d r.v’s. From every subsequence {~~} we can extract a further

subsequence such that r§,1(S§§,, - S§§1,) converges weakly in a

probability one set. In that set, {~~(~~j 2014 X§§1 , ~ ) : j = 1 , 2, ... , is

infinitesimal (see e.g. Breiman (1968), p. 191). Hence, we can conclude that

and that p * p is infinitely divisible, i.e. there exist ~ ~ 0 and a symmetric
Lévy measure, p, such that p * p = cr~) ~ crPois ~. By infinitesimality,
necessary conditions in the CLT (see e.g. Araujo and Giné (1980), p. 61)
imply that there exists a Lévy measure ~ such that

for every 8 &#x3E; 0 such that = 0 and

for every séquence {ï~}~i such that Tn ~ 0.
The conditional distribution of X§§ ~ - given is

hence

and we can use Lebesgue’s Theorem and (2.2) to obtain

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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which implies that {Y~j :j=l,...,m~~eN} is infinitesimal.
Now observe that, using the same notation as in Lemma 2.1 and the fact

that the law of X~ i - is symmetric,

where = ~_,~,,~ while

where Thus, we can rewrite (2.3) and

(2.4) as

for every 8 &#x3E; 0 such that = 0 and

for every {7~}~ such that Tn ~ 0.
Since

and

we can use Lemma 2.1 to conclude that

and also that

Vol. 35,n° 3-1999.
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which, together with (2.5) and (2.6), provide

for every 8 &#x3E; 0 such that == 0 and

for such that Tn ~ 0. Note that is a sum of

independent r.v’s, namely

Since

1 = 1, ..., kn n ~ is an infinitesimal array. By the
CLT (see e.g. Araujo and Giné (1980), pg. 61, Theorem 4.7(iii)) and
(2.9), ~ E A similar reasoning shows that m~ E

- ~. Now (2.7) and (2.8) imply

for every 8 &#x3E; 0 such that = 0 and

for every {7-~}~ such that Tn ~ 0.
Note that E = &#x3E; 8) and that E = Var

Observe also that (2.12) implies

which completes the proof. D

Now we are ready to prove our main result.

l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof of Theorem 1.1. - Assume first that c  oo. Let be as in

Lemma 2.2. If 7rn is a median of then Lévy inequalities (see e.g.
Feller (1966), pag. 147) imply that

that = 1,2,..., mn n ~ N} is an infinitesimal array. On

the other hand, since

then

holds, which together with

implies that p is infinitely divisible, namely, p = ~V(~,Q;~) ~ crPois v. By
Lemma 2.2 p * p = cr~) ~ crPois Hence, c~~ = ~ and v + ~ == ~.
The infinitesimality and (2.13) imply that

for every 8 &#x3E; 0 such that ~{2014~} = 0. Therefore

Observe that the array { -7r &#x3E;ò~ j : j == 1, ..., kn n E N) is
 "~J " "

infinitesimal, thus we can employ the CLT to conclude

and

Let Sn = ~ (Xn,j - ~). By Lemma 2.2, if S§j is an independent
copy of Sn then

Vol. 35, n° 3-1999.



382 E. DEL BARRIO, J. A. CUESTA-ALBERTOS AND C. MATRÁN

This means that Sn is shift-tight (see Araujo and Giné (1980),
Corollary 4.11, p. 27). Let {7~}~ be a sequence such that 5~
is shift-convergent. By the infinitesimality of {(X~j 2014 =

1, 2, ..., rnn, n E N} and using again Theorem 4.7 in Araujo and Giné
(1980), there exist 03B2 2 0 and a Lévy measure À such that

for every 7- such that ~{2014~,7-} = 0.
By (2.14) necessarily À = v. Furthermore,

which implies N(0,203B22) * c03C4Pois(03BD+03BD) = 7V(0, 03C32) *c03C4Pois . Uniqueness
in the Lévy-Khintchine representation, pro vides /?~ = ~/2 = o~. Thus,
from every sequence we can extract a subsequence such

that

therefore

which completes the proof of (ii).
Assume now that c E (0,oo). Note that (2.15) implies that

for every 7- &#x3E; 0 such that ~{-T, r} = 0. From ( 2.14) we obtain that

for every 8 &#x3E; 0 such that ~{2014~} = 0. According to the CLT, these
facts imply

Now, by Theorem 11 in Cuesta and Matrán (1998), we obtain that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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in law, where N is a Poisson random measure with intensity measure v.
But, as we have shown in (2.13),

in probability, then necessarily N = v. This can only happen if v = 0.
Hence

Finally, suppose c = oo. Reasoning as above we can obtain that

and conclude from this that

and

Since oo, (2.16) can only happen if (passing to subsequences)
is eventually zero on a probability one set. Hence

v == 0 and we can rewrite (2.17) as follows:

Now call Zn,j == /f£ (Xn,j - 03C0n) and Z*n,j == mn kn 1 rn(X*n,j - xn),
j == 1 , 2, ..., kn. Then, by Lévy’s and Chebychev’s inequalities and (2. 18)

3-1999.
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Observe that the r.v. &#x3E; 8) == follows a

binomial distribution with parameters kn and &#x3E; 8), hence the
bound above implies that

From (2.19) it is easy to conclude, employing the CLT that

Since

(2.20) implies that

Now, from (2.20) and (2.21) we obtain that

in probability, but, as shown before, this implies

which completes the proof. D

Remark 2. - The symmetrization employed in the proof of Theorem 1.1
is necessary to achieve the conclusion. We could use the initial hypotheses
to obtain, in a similar fashion as in Lemma 2.1, the infinitesimality

= 1,2,..., (hence, the infinite divisibility of

p = A~(~~,c~~) ~ crPois v), and also the convergences

for every 8 &#x3E; 0 such that ~{-~~} = 0 and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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for every 7 &#x3E; 0 such that ~{2014~,~} = 0. It is easy to argue as above to

get the infinitesimality of = 1,2, The CLT

and (2.22) provide

In order to complete the proof we should show that

for every T &#x3E; 0 such that ~{-~ ~} = 0. However, we can not use the CLT
to conclude this directly from (2.23) because

is not a sum of independent r.v’s. This difficulty is sorted out in the proofs
in Giné and Zinn (1989) and Arcones and Giné (1989) for the bootstrap of
1.i.d.r.v. ’ s mainly through Lemma 2 in Giné and Zinn (1989), which shows
that if the array comes from a sequence of 1,i,d.r.v.’s and EXf = oo, then

but a similar result in our setup without additional moments restrictions is
not available. On the other hand our proof jointly handles both cases of
finite and infinite variance. D
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