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ABSTRACT. — It is well known that the exclusion, zero-range and misanthrope particle systems
possess families of invariant measures due to the mass conservation property. Although the
families have been classified a great deal, a full characterization of their extreme points i
not available. In this article, we consider an approach to the study of this classification. One
of the results in this note is that the zero-range product invariant meagjresitq (., for
an infinite countable sef, under mild conditions, are identified as extremal dar) € Hzr
whereuy ;) (k) = Z(a(i))_la(i)k/g(l) -- - g(k) with g andZ the rate function and normalization
respectively, andizr is the set of invariant measures for the transition probabjlityy 2001
Editions scientifiques et médicales Elsevier SAS
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RESUME. — Il est bien connu que le procesus d'exclusion, le processus de zero-range €
le processus des misanthropes possdent des familles de mesures invariantes, en raison de
propriete de conservation de la masse. Bien que ces familles aient ete beaucoup etudiet
il n'existe pas de caracterisation complete de leurs points extremaux. Dans cet article, nou
considerons une approche de cette clarification. L'un de nos resultats etablit pour le process
de zero-range avec un ensemble denombrable de it les mesures invariantes produits
[Tics o) (OU pay (k) = Z(a(i) ta@)¥/g1)---g(k), g etant la function de taux ef
la normalisation) sont extremales pou(-) € Hzr, Hzr desighant 'ensemble des mesures
invariantes pour la probabilite de transitipno 2001 Editions scientifiques et médicales Elsevier
SAS

1. Introduction and results

We describe an approach from the “folklore” to study ergodic properties of conserv-
ative interacting particle systems. This method, in particular, applies to the zero-range
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misanthrope and simple exclusion processes discussed in [3,5] and [10]. Some of th
main interest in such particle systems is that they possess infinite families of invarian
measures. This is intuitive — since no particles die or are born, one expects collection:
of equilibria, each equilibrium supported on configurations of a fixed particle density.

One of the interesting questions, then, is to classify all the invariant measures. O
equivalently to characterize the extremals in the convex set of invariant measures
Besides being important in the study of the process invariance properties, these extrem
measures are significant in understanding the process time-ergodic properties: Whe
initial configurations are governed by an extreme measure, the process evolution i
ergodic with respect to the time shifts [13] (see also [1] in this connection). Part of the
motivation behind this note are some applications which would follow from an ergodic
theorem. Determining all the extremal measures in all cases, however, seems difficul
In this article, we prove that a wide class of explicitly known invariant measures for
zero-range and misanthrope systems are extremal in lieu of a complete classificatiol
The method discussed also applies to exclusion processes, but given their rather studi
characterization [10], no new extensions are presented here. As a comparison to the ott
systems, however, we list some of the related exclusion results.

We now introduce some notation: L& be the configuration space corresponding
to an infinite countable set. For exclusion dynamics; = {0, 1}%, and for zero-range
and misanthrope dynamicE, = NS whereN = {0,1,2,...}. Let n(¢) = {n;(t)}ics be
the process configuration at timewheren;(¢) is the number of particles dte S at
time r. Let also{p(i, j)} for i, j € S be the single particle jump probabilities. The
exclusion, zero-range, and misanthrope systems are Markovian processes generated
the infinitesimal operatorsSE, LZR and L™ respectively acting on test functiogs

L% => "n1-n)(6(n") — o) pG. j).
L*p=>"gm)(#(n”) —pm)p.j), and
LMe=>"bmi,n)(¢(n") —dm)pa, j),

wheren/ = n — §; + §; is the new configuration which moves a particle fromo j, §;

is the configuration empty at all sites except for a single particke ahd the functions
g():N —> R, b(-,):N x N — R, are known as rate functions. The construction of
these systems froSE, LR andL™, found in [10,3] and [5] respectively, require some
conditions:

(SE) sup; >ip, j)<C,.
(ZR) sup. lg(k +1) — g(k)| < Cs.
(M) b1 () in the first (second) coordinate apdi, j) = p(j —i).

To avoid some complication, we assume throughout that;) is irreducible; note
that many statements, including Theorem 1.4, are valid under the weaker assumptic
(p(, j)+ p(j,i)) isirreducible. Also, we assume the conditons:

(ZR) g(0) =0, infi>18(k) =1 >0 and lim;_. p(i, j) =0 forall j.
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(M) b(0,i) =0 foralli,

b(i, j) _ b(i,0)b(1, j)
b(j+1i—-1) b(+Li-DbAi-1)

fori>1,j>0

and eitherp is symmetric o (i, j) — b(j,i) =b(i,0) — b(j,0) fori, j > 0.

When p(i, j) is positive recurrent the invariant measures concentrate on configura-
tions with finite numbers of particles, The behavior is of a different category and we
do not consider this case here. Details and exact statements may be found in [10] fc
exclusion dynamics and [19], and [3] for the cagék) = 7 (k > 1) and generak(-) 1
for zero-range dynamics; hefé-) is the usual indicator function.

In this note, throughout, we fix attention on the situation wie€i ;) is either null-
recurrent or transient, that is the case of infinite numbers of particles. For misanthrope
dynamics, this is already assumed by takjnganslation invariant.

We now list some of the existing results. Many rely on the double stochasticity of
p, that is when}_; p(i, j) = 1 for all i. We note wherp is symmetric or translation
invariant, that is,p(i, j) = p(0, j — i), double stochasticity is automatically satisfied.
With this stochasicity condition, the exclusion, zero-range, and misanthrope processe
all possess families of identically distributed product invariant measures supported ot
configuration hyperplanes of fixed densitjes

Denote by B, the Bernoulli product measure indexed owerwith coin-tossing
marginal, B,{n; =1} =1 — B,{n; =0} = p, all i € S. Let Hsg = {0 < p(-) <
1: 3 p@, j)p@) = p())}, the set of invariant measuresjmeefineém.) as the product
measure ove§ with coin-tossing marginal at sitec S with success probability (i) for
p € Hsg, then as in Theorem 8.1.24 of [10] define

B,y =lim B, T,

whereT; is the process semi-group.
Fora():S — Ry, let Z,, be the product measure indexed oewith marginals
M) ONN. Here, fore > 0,

. 1 ak
C Z() g(D)---gk)

Mo (K}

for k > 1 andu, {0} = Z(«)~* where Z(«) is the normalization. When = 0, setjug
to be the point mass on 0. Let al#fy,zx = {0 < a(-) < liminf, g(k): >, p(, ja(i) =

a(j)}-
Let M, be the product measure ovewith common marginal, on N satisfying

vli +1} _ vp{l} b(1,7)
vp{i} vp10} b(i 4+ 1,0)

for p > 0. Forp = 0, let My be the point mass on the configuration with no particles.
We denote by, ., or E, expectation with respect to these measures.
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For zero-range dynamics, we make a further assumptiaf,@nin order to satisfy a
technical condition in Theorem 1.8 of [3] and to state some of the claims below. Considel
the restricted set of configurations c ¥ defined in (2.1). We will assume that

(ZR) Zoy(EH =1,

We note this condition is always satisfied whef) is constant og (k) > 8k, all k > 0;
in fact, it remarked in [3], that with a different construction, with a different subSet
this condition is always true. In a sense, restricting the process pyevents blow-up
and we refer to the discussion in Section 2 and to [3].

Let Z denote the set of invariant measures for these processes &dkethe set of
extremal measures Ib.

Recall the assumptions above, (SE), (ZR) and (M). We state the theorem:

THEOREM 1.1. — (1)(Liggett[10]) For simple exclusioiSE with doubly stochastic
p, {B,: constanp € [0, 1]} C Z.

(2) (Andjel[3]) For zero-range dynamic&ZR), {Z,: @ € Hzr} C Z.

(3) (Cocozzd5]) For misanthrope dynamiogvl), {M,: 0< p < oo} C Z.

There are extensions of this theorem, notably to the case whienrsymmetric or
null-recurrent with respect to extreme points.

We have now the following (some results, when overlapping with others, are not statec
in the generality found in the original papers):

THEOREM 1.2. — (1) (Liggett [10]) For simple exclusion(SE) with symmetricp,
{Bp(.): p € Hsg} =17,.

(2a) (Andjel[3]) For zero-range dynamic&R) with g increasing, and null-recurrent
Pi{Zucy: @ € Hzg} =1,.

(2b) (Saadd[15]) For zero-range dynamic&ZR) with g(k) = I (k > 1) and transient
doubly stochastip, {Z,: 0<a <1} CZ,.

(2¢) (Liggett [9]) For zero-range dynamicgZR) with g(k) = k and transient
translation invariantp, {Z,: 0 <« < 00} =Z,.

(3) (Andjel, Cocozza and Roussigrd]) For misanthrope dynamicéM) in d =1
such thatyip(i) =0and}_ |i|p(i) < oo, {M,: 0< p <00} =T,.

An important result which identifies a situation when a particligy Z,,, or M,,, for
constantp ande, is extremal is the following theorem due to Saada [15]. Suppose the
operatorsA, A* and A + A*, where A* is the L? adjoint of A, generate conservative
particle system semi-groups.

THEOREM 1.3. — Suppose is invariant for the processes generated by the operators
A and A*. Assume also thatis extremal for the symmetrized process operator A*.
Then we have that is extremal forA and A*.

An immediate corollary, noting Theorem 1.3, which fills in more pieces is the
following:

COROLLARY 1.1. - (1)Under(SB), for doubly stochastip, {B,: 0< p <1} C Z,.
(2) Under (ZR), for doubly stochasticp, {(p(i, j) + p(j,i))/2} null-recurrent, g
increasing, and for constant, Z, € Z,.
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(3) For misanthrope processe§V) in d =1, M, € Z, whenb(i, j) — b(j,i) =
b(i,0) —b(j,0) fori, j >0and> |i|p(i) < 0.

The new results in this note focus on zero-range and misanthrope systems; a
remarked earlier, nothing new is added for simple exclusion. In combination with some
of the previous statments, for clarity, they are:

THEOREM 1.4. — (1)For zero-range dynamic&R), {Z,.): a(-) € Hzr} C Z,.
(2) For misanthrope dynamiog\f), {M,: 0< p < oo} C Z,.

Our main contribution is that we do not need null-recurrencep afr increasing
assumptions org to determine the extremality for zero-range processeZef for
a(-) € Hzg. Also, for misanthrope systems, no assumptions beyond (M) are required
to ensure extremality a¥/, for p constant.

Part of what remains as an open problem is to show that thgZset: «(-) € Hzgr}
exactly comprises the set of extremd]s We have not attempted a full summary of the
existing results and we refer to Chapter 8 of [10], [3] and [4] for further results.

The article is organized as follows: In Section 2, we describe the Dirichlet-form
technique in the “folklore” to prove parts (1) and (2) of Theorem 1.4. In Section 3,
we present a few simple applications.

2. Dirichlet-form approach

In this section, we discuss a technique in the “folklore” to prove extremality of
invariant measures utilizing the Dirichlet form of the process. In this connection, see
Sections 4.3, 4.4 of [10] with respect to Glauber dynamics, Section 11.1.1.3 of [18]
with respect to dynamics with Gibbs invariant measures, and the last lemma of [8] with
respect to interacting Brownian particles. For clarity, we concentrate on the zero-rang
process and prove part (1) of Theorem 1.4, although the arguments also apply to simp
exclusion and misanthrope systems. Perhaps of specific interest is that the approach he
applies to inhomogeneous measures,.

We recall now some of the details of the zero-range construction in [3] and extend the
process td.2. Different from simple exclusion systems, the process semi-gfpigonot
constructed from Hille-Yosida considerations. Ratligy,(n) = E,[ f(n(t))] is shown
to exist on a class of functions defined on a subs&’ C ¥ of the configuration space.
Following [3], for fixedg and p, let (i) =>",2,27" p"(i, 0). We can take

5= {n: Il =3 ImlB ) <oo}, and (2.1)
ieS
L={f:1fm)— fE&I|<cln—¢&l|foralln&eX’, somec};

for f € L, let L(f) be the smallest such constantLet also£’ c £ be the bounded
functions inL. It is proved in Lemma 2.2 of [3] tha, : £ — £, and in factT, : £’ — L’.
Formally, a measure is invariant for the process if for alf € £/,

/T,fdv:/fdv.
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The restriction of configurations ®’ makes sense in that explosion should be ruled out.
In fact, by assumption (ZR), the invariant measuzgs, for o (-) € Hzg are all supported
on ¥’, and it can be shown that the process never le@ves

With respect to a giverp, consider the invariant product measug . The goal in
the next series of lemmas is to extend the proce€g(d,.)).

Define now the “triple norm” function||| - ||| : ' — R by |||n||| = >_ g(n) B (). Fix
alsoS, be an increasing sequence of finite subsets @fch thatS = (J, -, S,. Note that
> p, j)B(j) < 2B(i) and that, forf € £, we have

g (f () = FD)pG, D <LNHgm) pl, H(BGE) + B()
SLNHCelnilpG, j)(BG) + BU)),

so that fory € &/, L?Rf () is well defined and

ILZRf ()| < 3L(HOIII < 3L(F)Celinll. (2.2)

Take note also, from Lemma 3.2 of [3], that

EolllInll=>_a@B) < o (2.3)

In fact,
LEMMA 2.1.— [|Inll] € L3(Zy))-

Proof. —As the{g(n;): i € S} are non-negative and independent, write

Eoiy [A1MIIDZ] = Eay[8m)gmNIBGB()

iJj

=Y a@OBDa(NBG) + D Eacy[gMi)?] B
i#j i

Observe thaiEa(.)[g(m)z] =a(i)Eylg(n: + D]. So that the last sum above, through
the Lipshitz bound (ZR) o after adding and subtractingn;), is bounded above by
> () Eay[g(i + DB <D Coa (DB + D a(i)?B(i)>.

Noting 0< B(i) < 1 and (2.3) gives
Eoy [(11011D?] < Max(Cy. 1) Eoy I Inl111(14 Eaey[llInll[]) < 00

to finish the lemma. O

The following discussion borrows from pp. 205-208, Chapter 4 in [10]; certain proofs
are included here for completeness.

LEMMA 2.2.-T; on L' extends by continuity to a Markov semi-grodff on
L2(Zy())-
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Proof. —For f € L', letT; f (n) = E,[ f (n(¢))] be the conditional expectation ¢f, so
that by Schwarz inequality,

[T, TP < T, f2(n).
Then

17,7132, = [P dZu
</th2dza(-)

:/fzdza(.) =1 f 2@y

As simple functions are contained 4, £’ is dense in.?(«(-)). ThereforeT; extends to
a Markov semi-grou* on L?(a). O

Let now LZR be the Markov generator associated7t6 acting on the following
domain:

. T f - .
Dom(a) = {f: Ilmo# exists |nL2(a(-))}.
t—
LEMMA 2.3.—We havel’ ¢ Dom(a) and thereforel. 2R on Dom(x) extends.?R on
L'. In fact, LZR is the closure of.“Ron L'

Proof. —Let f € £ andn € ¥'. Itis proved just after Lemma 2.6 of [3] that
L(T, f) < L(f) exp(3C,1). (2.4)
Also, the pointwise convergence is proved in Lemma 2.7(f) of [3]:

im LS ) = f ()

- __7ZR
lim 7= = LR ().

In addition, part (b) Lemma 2.7 of [3] gives that

Lim—fm 1] s
T —t/L T,f(n)ds.

0

This last statement, combined with (2.2), (2.4), and Lemma 2.1 yields, for & 1,
that

tTUNTf = FI) < Cf @llInlll € LA(Zag)-

Also, by (2.2) and Lemma 2.1L7Rf ()| < Cs|lInll| € L?(Zy(,). Therefore, as®
extendsT; on £’, we have by dominated convergence foe £’ that

1
—(Tf = £) ) — LFf ()

converges in.3(Z,,) ast | 0. Hence LZR extendsL?R on £’ and £’ ¢ Dom(«).
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Now as7,:£ — £ and £ C Dom(x) is dense inL?(Z,.,), we conclude by
Lemma 1.3.3 of [6] that’ is a core forL2R. This finishes the proof. O

We will need a certain representation of the Dirichlet form of the process. Define the
Dirichlet form Dy (f) = —Eo)[f (LZRA)] ands (i, j) = (p(, j) + L p(j, i) /4.

(i)
LEMMA 2.4.—Let f e Dom(a). Then,

Daty(F) =Y Eay [80) (f (1) = £ ()]s (G. )
where the series converges.
Proof. —We first prove the equality fof' € £': By (2.2) and (2.3), we have that

Eq() {Z g (f (7)) = f£) G, D[ < Eay[CrllInllI] < oo,
i,J

so that by Fubini’'s theorem,

Doiy(f) == Eay [fgm) (f (") = f() pG, )] (2.5)

LJ
First note that the sum on the right side is absolutely summable therefore permitting
rearrangement. Let now,,a(n) = h(n**) — h(n), and let alsoa(x, y) = p(x,y) —
%p(y,x). Observe, with the Radon—Nikodym derivative corresponding to change of
variablesn to & = »>~,

dza(-){g} — ,U*a(y)(ny - l)l’La(x)(nx + 1) _ g(ny) a(x)
dZa(~){77} Ma(y)(ny),uot(x)(nx) g(nx + 1) Ol(y)

and therefore the relation

Eoy [fMgme) (Vay f() p(x, y)] = —Eqq, {f(n”)g(ny)(vyxf(n))%p(x, |-

Now, from the sum (2.5), add together ttjeand ji pairs and calculate:

Eoy [fMgm) (Vi f) pG, D] + Eacy [f M egmi) (Vi f ) p (i, i)]

_ _Ea, [f(nf")g(nj)(v‘ﬁf(n)) %p(i, j)] + Eaeo [f 2 ) (Vi F ) pGis D]
— —E., [g(n,,-)(vﬁf(m)z%p(i, j)}

Coal)
+ Eqy |:f(77)g(77j)(vjif(77)) (p(j,i)— @P(l, J))}
Note that the calculation above is invariant under interchangearfd j so that the
pair-sum also equals

—E4) {g(m)(vijf(ﬂ))z%l?(j, i)} + Eoy [f(Dgmi) (Vij f()a, j)].
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Adding half of this line and half of the previous last line gives that the pair sum becomes

—<1/2>{Ea<.> {g(nj)(vﬁf(n))z%pa, j)] 4 Eu {g(m)(%f(n))z%p(j, i>} }

+ (U D{Eay [fDgm) (Vi f()a(G, D] + Eagy [ f (Mg mi) (Vij f () a(i, j)]}.

Note that the separate summations of all the expectations are absolutely summable fro
the same method as in the beginning of the proof.

Now rewrite the first line as half of the present form and half of the form changed by
transformingn to '/ andn/’ respectively in the two expectations to obtain

—Euey [) (Vi £ (D) 25G, )] = Eaey [0 (Ve £ 1) 5G]

Observe that the sum of thegepairs is the desired result.

What remains is to show that sum of the terms in the second line vanish. To this
end, write the term in brackets, by change of variabjeto »"/ and the formula
Z(({))a(j, i) = —a(i, j) for the first expectation, and then changéo /! to get the last
line below:

E.oy [(f(07) + ) g (Vi; £ () ad, j)]
= Eoo[(f2(n7) — £2(m)gmi)adi, j)]
= E,o [(F2(n7) = £2) g pG, )] + Eay [(F2(077) = £2() ) p Gy i)].

Noting that f2 € £', observe that théj sum of the last expression B, [L*Rf%] =0
from Lemma 2.9 [3].

All this proves the lemma fof € £'.

We now extend the representation to D@m Let

RO =" Eaiy [gm) (f(n) = )]s )

for f e Dom(«) such that the series converges. Foe Dom(w), take f,, € £’ so that
fu— fandLZRf, — LZRf in L?(a(-)). Then

n'Lmoo Doy (fu) = Doy (f), and

liminf R(f,) > R(f)

by Fatou’'s lemma. Therefor& (f) < Dyy(f) and in particular,R(f) < oo for f €
Dom(«). However also,

0< Doty (f = f) SIIf = fulliz - |LERf — LERf]| 2

which vanishes ag — oo. Hence, lim_ o R(f — f,) =0, and so lim_,o R(f,) =
R(f), to finish the proof. O

We will need the following two propositions for the proof of the main theorem:
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Consider a spac® with Borel setsB. Let Q be an invariant probability measure on
¥ for the Markov procesg (), t > 0}. Let P be the probability on the path space with
initial distribution Q and7; be the process semi-group. Asis a contraction oiL?(Q),
we have forf e L?(Q) that

1 ¢ .
;O/(Tsf)ds—>f

converges inL3(Q) to f e L?(Q) ast — oo. The following result, found in Section 2

of [13] (see also IV.2 [14]), provides equivalences between ergodicity’ &fand
extremality of Q in the set of invariant probability measures. For the convenience of
the reader, we repeat the proof at the end of the section.

PrROPOSITION 2.1. — All are equivalent

(@) ForsetsA e B, T;1(A)=1(A)Q-a.s.= Q(A)=0or 1

(b) P2 is ergodic For eachf € L2(Q), f = Eylf], a.s.Q.

(c) Q is extremal If for some0 < ¢ < 1 and invariant probability measure@; and
Q2, we haveQ =eQ1+ (1 —¢)Q>, thenQ = 01 = Q».

Note that part (b) may replaced by more usual definition of shift-ergodicity (see
Corollary 5 in V.2 [14]): A shift-invariant=> P2(A) =0 or 1.

The following standard local limit theorem for independent (hon-identically) distrib-
uted lattice valued random variables is taken from Theorem 7.4, p. 195 of [12]. The
statement here differs slightly in that we have replaced the Mbgerm in [12] by
“log cy”; but the proof is the same and we refer the reader to [12].

PrROPOSITION 2.2. — Let {X;} be a sequence of independent r.v.s taking integer
values and letSy = Zi"’zl ni, pij = P(X; = j),andp" = ZfV:lE(X,»). Supposep;q >
p;; forall i and j. Suppose furthermore that

N

N
=Y E(X;—EX)*to0,  y"=) E|X;—EX;>=0(c"),

1

1
gcd{ logc NZP/OP/m—>oo}—1

Then

(K —pM)? 1
Jc_NP(SNzK)——exp{ oo }‘_o<m>.

Proof of (1), Theorem 1.4. From Proposition 2.1, it is enough to show every bounded
harmonic functionf is constantZ,,-almost surely. For bounded harmorfcwe see
that LZRf = 0. It follows from the definition of the Dirichlet fornd, ., that D,,(f) =
0. This immediately gives through Lemma 2.4 and the the positgity > 0 fork > 1
that Z, (., almost surely

sup
K

f(Y)y=f@m) Vi, jsuchthas(, j) > 0 whens; > 1. (2.6)
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A consequence of this property is that, 7f; denotes the configuration which
exchanges values af andn;, then, due to the irreducibility of(i, j) (asp irreducible
anda(-) > 0), that

fip)=fa foralli, jas. (2.7)

The property (2.6) allows us, in the following claim, to conclude that)
is measurable with respect to the tailfield of the coordinateqn;: i € S}. By
Kolmogorov's 0-1 law, thigr-field is trivial, hencef must be constant almost surely.
This finishes the proof. O

Note that whena () = « is constant, that is whe&z, is i.i.d product measure,
the argument is simpler once we note that, by (2/7)s finite-permutation invariant
and therefore constarff,-a.s. by Hewitt—Savage’s 0—1 law. This easier argument, in
particular, would apply to the misanthrope measures.

Also, note that the collection of set$ which stay invariant by the transformation
n — n;; is ao-field A. Clearly,7 Cc A C H C £ whereT is the tailo-field of then;’s,
H is the tailo-field of the H,’s where H, =, s n;, and¢ is the exchangeable-field
of then;’s. Attempts to invoke triviality conditions fok and€&, discussed in [11] and [2]
(see also [7] for 0—1 law statements in the context of Gibbs measures), failed. Howevel
as shown in the claim below, for the measufgg,, A ="7.

CLAIM 2.1.-Let f be bounded function satisfying proper{2.6). Then f is
measurable with respect to the tailfield of {n;: i € S}.

Proof. —Let F;, = o {n;, i € S;} and define’; as the single particle configurationiat
andn’ =n — §; as the configuration with one lessiaiAlso define, fomg large enough,
the local bounded function, = E, [ f|F,] SO that| f — h.ll 2y < & for e > 0.
Correspondingly, denot®(n) = f(n) — h.(n) as the error difference function.

Suppose now that whep > 1,

fm=rfn° as.z,(); (2.8)

that is, we may take away a particle at the origin without changing the function. For
f, with this feature, the claim follows: Lej" be the configuration which equals
everywhere except in the st where the values are set to 0. Given (2.8), we see that
f(n) = f(n™ a.s. by simply moving all particles ifi, to the origin and then removing
them one by one. This gives thtis measurable with respect to the taifield.

We now show that indeed satisfies (2.8). As will be seen, the fgc}; o (i) = oo, as
p is null-recurrent or transient, is essential.

We consider two cases: Léf = limsup,_, ., (). In case 1, we assumg& > 0
and in case 2, we tak& = 0. Just as a remark, we note tHat> 0 for p such that
>ip@,j) <1forall j by the (maximum) principle thad(i) does not take on its
maximum inS.

Case 1Assume thalU > 0. Letx;, € S be a site which is outside the supportgfn).
Now observe that wheny > 1, (2.6) givesf (n%*) = £ (n) a.s. andi, (n%*) = h,(n°).

To show (2.8), we try to control the? difference:
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Eay[(F) = £(1%)% 00 = 2] = Eay [(£ (1) = £ (n°)). 110 > 1]
= Eoo[(h(n®*) + R(n®) — h (%) = R(1%))* no > 1]
2oy [RZ(1™), mo = 1] + 2Eq ) [R?*(n°), mo > 1].

Evidently then, controlling the terms,,[R?(n®"), no > 1] and E,,[R?(n°), no > 11,
say interms of|R||; 2 < ¢, would be enough to finish.
To this end, recall that ipf1 g(k) = I > 0 and compute the following:

1 _
Ea(') [RZ(UO,xh>’ 1o = 1] _ Eot(~) |:Moz(0)(770 +1 Mol(xh)(nxh
Ha©(M0)  Ma(y) (Mx,)

a©  g0m) 52 ]
(- R
o e et

1)
R%(n), ny, =1

< 2Cfa(lo) Eq() {g((nx’l)) IRI(n)}
C(af(xa)g) V Eao 89 Eaiy [ R2
= % o (xp) Eq(y[8 (N, + DIEa() [R?]
< %Wx,,)(c+a(xh>)||R||Lz. (2.9)

Above, we use in the third step the boupt||,~ < Cy, in the fifth step the identity
Eyolgm) f(m)] = a(@)Eylf(n+ 8] and in the sixth step the zero-range Lipschitz
bound ong(-). Note that as limsup(i) = U > 0, we may findx, (no matter how
large the support of:, is) so thata(x,) > U/2. Hence, the coefficient ofR|| 2

in (2.9) may be bounded above uniformly ip and we have for some consta@t
Ea(~)[R2(770’Xh)’ no 2 1] < C(fa o, g)”R”L2 < C(f’ a, g)g

Similarly and more easilg,, [ R?(n°), no > 1] < (¢ (0)/1) E,(,[R?(n)] < C(a, g)&>.

As ¢ is arbitrary, this finishes the proof.

Case 2.AssumeU = 0. The difficulty with the previous argument is that now we
cannot control the coefficient in (2.9). So, instead of placing the particle at the,site
we will put it in a far region whose occupation distribution is more tractable. Recall that
>oia(i) =00

Leth,, npandR be as before. Fdr> n > ng, define the annulug,,; C S as the region
between the set§, andsS; and denotd, ; = ZieAn,, n; . Observe that the functionsand
R, as a consequence of the invariance property (2.6), depends on the varialljgs in
only through the sum of occupation numbefs,. In fact, for a fixedx,; € A,,, let
7,./(n) denote the configuration where all particlesdip, have been moved to, ;.

Beginning as in case E,,[(f (1) — f(1°)? no > 1] equals

Eoy [(f (Ta()) = £ (1%)% 0 > 1]

= Eay [(f (s ) *™) = £(1%)% 00 > 1]
< 2E (o [R2((1aa () > ™). 0 = 1] + 2Eo () [R2(1°). 110 > 1].
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We need now only to bound appropriately the two terms in the last line. Note that the
second term is handled exactly as in case 1.

For the first term, some additional notation is required. Define th& se{n: |7, —
o™ /el < M} for fixed M and note thaZ, {E} < M~2. Let also¢ = t,,(n) so that
in particularg,, , = T,, ;. DenoteZ,, ,; as the induced measurefivith respect taZ,,
andE,., ,; as its expectation. Denote algg. » ; as the induced measure corresponding
to&,,,. Note thatZ,, ., is the product measuild;, , , i) X [Tiea,; 1o X o)1 ThE

i?'éxn,l

following change of measure frogto £::° will be useful:

dZayn {50 pa©E+ D) taynir, — 1)
dZooynif}  Ha@@)  Hami(Ex,,)
o a(0) Za){8: Diea,, Gi =8, — 1)
T 8G0+D  Zayfl Yiea,, bi=6n)

Let alsop; = Eqy[n;] ando? = Eq()[(n; — p1)?]. Definep™ =37,  pi andc™ =

Dican, o?. Letalsoy™! = >ica,, EeylIni — pi *landp;j = Zayini = j}.
Now split the expectatiot,, ., R?((t,.;(17))%*1), no > 1] into

Eoy [R¥((tas()) >, 0 = 1, E] + Eagy [R2((tas ) >™) 0 > 1, E] = 1+ )

respectively. Ag|R|l < Cs, we havel, < C(f,a, g)M 2.
Rewrite now the terny; as

J1=Eq(yni[R?(E%), &> 1, E]
a0 Zo{C: Xiea,, i =6, — 1)
8Go+1)  Zyo){&: Yica,, S =8}

where we change variablégo £:0, andE’ = {&: |&,,, — 1— p™!|//c" I < M, &,,, >
1}.

To estimateJ; further, we invoke Proposition 2.2. To apply the proposition, we
show that the occupation numbersAr) ; satisfy the hypotheses: (1) Note thab =
Z(a(@i))™t — 1 asa(i) vanishes fori| 1 oo and p;; < (a(i)/1)/ Z(a(i))™* < pio as
soon asx(i) < I. As a(i) — 0 we may choose so that, for the variables indexed in
A,.1, the first condition orp;; is satisfied. (2) Explicit calculation gives that

=Ey(ynl R?(£), E'|,

1 ) | a()? Z koo (i)*—2
© Z(a(i) g(D) Z(a(i))@z(g(k)---g(l))'

i

Note, asU = 0, thata,,,, = maxX{a(i),i € S} < oo exists. It is not difficult now to
conclude that there are constatitsa, g) > C(«a, g) > 0 such that for large and! > n
that

C' Y a@<pm Myt <C Yy al).

i€An i€An1
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This together with the fact thdf”,_, A «(i) diverges ag increases gives the second
condition. (3) To see that the g.c.d. is 1 we show that 1 is in the set. Calculate
piopin = Z(a(i)) % - a(i)/g(1). For n large enough, we have that, ., piopi1 is
equivalent tae™!. The fact that”/ diverges withl gives the last condition.

We now apply Proposition 2.2 to estimate the fraction,{¢: >"ica,, & = &x,, —
B/ Za) (&2 Yica,, S = &} On the setE’. The error term in the proposition is

absolutely bounded b¢ («, g)/+/c*! for some constant ¥ C(«, g) < oo, say. Forl
large, this error may be bounded bY«, g, M). We see now that the fraction above on
the setE’ is bounded above by anoth€Ka, g, M).

Putting these estimates together gives the bound

Eoy [R¥(tai(m)), 0= 1] < Ca, g, fIM %+ C(a, g, M)Eqy 01 [R%(E)].

NOW E,(,[R?(7)] = Eu(y.ni[R?(€)] sO thatC(a, g, fYM~2+ C(a, g, M)e? is a further
bound which is as small as we want. This finishes the progf.

Proof of Proposition 2.1. —

“(b) = (c)” Let Q be an invariant measure whose path measure is ergodic. Write
0=¢0:1+(1—-¢)0,for0< ¢ <1andQ; andQ, invariant measures. It follows that
both 9, and Q, are absolutely continuous with respect@o Let now f be a bounded
function. Then, as — oo, %fé(TSf)ds converges in probabilty t& [ f] and f with

respect toQ and Q, respectively. By absolute continuitf, = Eplf] Qi-a.s., and so

A

Eo,[f1=Eo,[f]1= Eylf]. This gives thatQ1(B) = Q(B) for B € B and therefore
01=0.

“(a)= (b)” Let Q be an invariant measure and suppose th&tis not ergodic.
Then there exists agf € L?(Q) such thatf is not constant)-a.s. Letc be such that
Q(A)=¢,0<e <1whereA ={f > c}. Now, asT, f = f Q-a.s. andl, is a positive
contraction taking 1 into 1, we have tHBEt (A) = I (A) Q-a.s.: First, ag; is a positive
operator,| f| = |T, f| < T;| f1, so that, aF; is an L2 contraction, we have thap-a.s.
T,| f| = | f]. Therefore, mag0, f} = (f + | f])/2 is harmonic. Further, iff, g € L2
are harmonic, then max, g} = max{f — g,0} + g is harmonic. Correspondingly,
min{ f, g} = —max{— f, —g} is harmonic. Of course, 1 is harmonic. All of this gives
that min{n max0, f —¢),1} for n > 1 is a sequence of bounded harmonic functions.
The limit, asn — o0, is I (A) which is therefore harmonic by dominated convergence.
This proves the implication.

“(c)= (a)” Let A be such thafl,7(A) = I(A) Q-a.s. andQ(A) =e for0<e < 1.

As the process begun o stays inA with Q-probability 1, we have thaQ,(B) =
e 1Q(BN A) and 0»(B) = (1 — ) 1Q(B N A°) are distinct invariant measures such
that Q =01+ (1 —¢) Q5. ThereforeQ is not extremal.

This finishes the proof. O

3. Applications

We remark in this section on some consequences of Theorem 1.4. Consider th
following two problems.
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Invariance principle

Let f(n) be alocal function on the state spaeWith respect to initial configurations
distributed byB, or Z, for which functionsf does

At
1
ﬁb/f(n(s)) ds — B(Gz(f)t)

for o2(f) < 0o asi — oo? Given extremality of3, or Z, and under some conditions
on p and the rate, this problem was resolved in [17]. With, now seen to be extremal
in more cases than before, we note the corollary to Theorem 1.4:

COROLLARY 3.1. —Corollary 1.10f[17] is valid in all dimensions, not only as before
in dimensions! = 1, 2 when extremality of,, was not clear in higher dimensions.

Please see [17] for more details.
Tagged particle motion

Consider a zero-range system Bfi with initial distribution governed byZ,{- | no >
1} for o constant; in other words, a distingued, or “tagged” particle is placed initially at
the origin. Letx(¢) be the position of the tagged particle at tim@otex(0) = 0) and let
o(a) = E4[n1], the mean particle density at a site. Also assume the jump probabilities
are irreducible, translation invariani(i, j) = p(j — i). Saada proves in [16] for zero-
range dynamics with ratgk) = I (k > 1), that (a) if}_ |i| p(i) < oo, thenZ,-a.s.,

x(0)/t = (1= p@) Y ipi)
and (b) if p is mean-zero and_ |i|?p(i) < oo, then with respect t&,,

x(1) /T N(0, (1- p(@)T),

where thed-dimensional covarianc& = (3_..,«z;z;p(z)). The proof relies on the
extremality given in parts (2a) and (2b) of Theorem 1.2.

The same proof for genergl, noting part (1a) of Theorem 1.4, applies to yield the
corollary:

COROLLARY 3.2. —Consider the tagged particle zero-ranggstem above witly
satisfying(ZR).
@) If >°)i|lp@Gi) < o0, thenZ,-a.s.,

x(0)/t = (a/p@) Y ip().
(b) If pis mean-zero and’ |i|p(i) < oo, then with respect t&,,,

x(1)/T = N(0, (a/p(@))T).

wherer is thed-dimensional covariancd; = (3", ;4 z2:z; p(2)).
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