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ABSTRACT. – It is well known that the exclusion, zero-range and misanthrope particle systems
possess families of invariant measures due to the mass conservation property. Although these
families have been classified a great deal, a full characterization of their extreme points is
not available. In this article, we consider an approach to the study of this classification. One
of the results in this note is that the zero-range product invariant measures,

∏
i∈S µα(·), for

an infinite countable setS, under mild conditions, are identified as extremal forα(·) ∈ HZR

whereµα(i)(k)=Z(α(i))−1α(i)k/g(1) · · ·g(k) with g andZ the rate function and normalization
respectively, andHZR is the set of invariant measures for the transition probabilityp.  2001
Éditions scientifiques et médicales Elsevier SAS

Keywords:Simple exclusion process; Zero-range process; Misanthrope process; Invariant
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RÉSUMÉ. – Il est bien connu que le procesus d’exclusion, le processus de zero-range et
le processus des misanthropes possdent des familles de mesures invariantes, en raison de la
propriete de conservation de la masse. Bien que ces familles aient ete beaucoup etudiees,
il n’existe pas de caracterisation complete de leurs points extremaux. Dans cet article, nous
considerons une approche de cette clarification. L’un de nos resultats etablit pour le processus
de zero-range avec un ensemble denombrable de sitesS que les mesures invariantes produits∏

i∈S µα(·) (ou µα(i)(k) = Z(α(i))−1α(i)k/g(1) · · ·g(k), g etant la function de taux etZ
la normalisation) sont extremales pourα(·) ∈ HZR, HZR designant l’ensemble des mesures
invariantes pour la probabilite de transitionp.  2001 Éditions scientifiques et médicales Elsevier
SAS

1. Introduction and results

We describe an approach from the “folklore” to study ergodic properties of conserv-
ative interacting particle systems. This method, in particular, applies to the zero-range,
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misanthrope and simple exclusion processes discussed in [3,5] and [10]. Some of the
main interest in such particle systems is that they possess infinite families of invariant
measures. This is intuitive — since no particles die or are born, one expects collections
of equilibria, each equilibrium supported on configurations of a fixed particle density.

One of the interesting questions, then, is to classify all the invariant measures. Or
equivalently to characterize the extremals in the convex set of invariant measures.
Besides being important in the study of the process invariance properties, these extremal
measures are significant in understanding the process time-ergodic properties: When
initial configurations are governed by an extreme measure, the process evolution is
ergodic with respect to the time shifts [13] (see also [1] in this connection). Part of the
motivation behind this note are some applications which would follow from an ergodic
theorem. Determining all the extremal measures in all cases, however, seems difficult.
In this article, we prove that a wide class of explicitly known invariant measures for
zero-range and misanthrope systems are extremal in lieu of a complete classification.
The method discussed also applies to exclusion processes, but given their rather studied
characterization [10], no new extensions are presented here. As a comparison to the other
systems, however, we list some of the related exclusion results.

We now introduce some notation: Let
 be the configuration space corresponding
to an infinite countable setS. For exclusion dynamics,
 = {0,1}S , and for zero-range
and misanthrope dynamics,
 = NS whereN = {0,1,2, . . .}. Let η(t) = {ηi(t)}i∈S be
the process configuration at timet whereηi(t) is the number of particles ati ∈ S at
time t . Let also {p(i, j)} for i, j ∈ S be the single particle jump probabilities. The
exclusion, zero-range, and misanthrope systems are Markovian processes generated by
the infinitesimal operatorsLSE, LZR, andLM respectively acting on test functionsφ:

LSEφ =∑
ηi(1− ηj )

(
φ
(
ηij

)− φ(η)
)
p(i, j),

LZRφ =∑
g(ηi)

(
φ
(
ηij

) − φ(η)
)
p(i, j), and

LMφ =∑
b(ηi, ηj )

(
φ
(
ηij

) − φ(η)
)
p(i, j),

whereηij = η− δi + δj is the new configuration which moves a particle fromi to j , δk
is the configuration empty at all sites except for a single particle atk, and the functions
g(·) :N → R+, b(·, ·) :N ×N → R+ are known as rate functions. The construction of
these systems fromLSE,LZR, andLM , found in [10,3] and [5] respectively, require some
conditions:

(SE) supj
∑

i p(i, j) < Cp.

(ZR) supk |g(k + 1)− g(k)|<Cg.

(M) b ↑ (↓) in the first (second) coordinate andp(i, j)= p(j − i).

To avoid some complication, we assume throughout thatp(i, j) is irreducible; note
that many statements, including Theorem 1.4, are valid under the weaker assumption
(p(i, j)+ p(j, i)) is irreducible. Also, we assume the conditons:

(ZR) g(0)= 0, infk�1g(k)= I > 0 and lim|i|→∞ p(i, j)= 0 for all j .
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(M) b(0, i) = 0 for all i,

b(i, j)

b(j + 1, i − 1)
= b(i,0)b(1, j)

b(j + 1, i − 1)b(1, i − 1)
for i � 1, j � 0

and eitherp is symmetric orb(i, j)− b(j, i)= b(i,0)− b(j,0) for i, j � 0.

Whenp(i, j) is positive recurrent the invariant measures concentrate on configura-
tions with finite numbers of particles, The behavior is of a different category and we
do not consider this case here. Details and exact statements may be found in [10] for
exclusion dynamics and [19], and [3] for the casesg(k) = I (k � 1) and generalg(·) ↑
for zero-range dynamics; hereI (·) is the usual indicator function.

In this note, throughout, we fix attention on the situation whenp(i, j) is either null-
recurrent or transient, that is the case of infinite numbers of particles. For misanthrope
dynamics, this is already assumed by takingp translation invariant.

We now list some of the existing results. Many rely on the double stochasticity of
p, that is when

∑
j p(i, j) = 1 for all i. We note whenp is symmetric or translation

invariant, that is,p(i, j) = p(0, j − i), double stochasticity is automatically satisfied.
With this stochasicity condition, the exclusion, zero-range, and misanthrope processes
all possess families of identically distributed product invariant measures supported on
configuration hyperplanes of fixed densitiesρ.

Denote byBρ the Bernoulli product measure indexed overS with coin-tossing
marginal, Bρ{ηi = 1} = 1 − Bρ{ηi = 0} = ρ, all i ∈ S. Let HSE = {0 � ρ(·) �
1:

∑
i p(i, j)ρ(i)= ρ(j)}, the set of invariant measures ofp. DefineB̃ρ(·) as the product

measure overS with coin-tossing marginal at sitei ∈ S with success probabilityρ(i) for
ρ ∈HSE; then as in Theorem 8.1.24 of [10] define

Bρ(·) = lim
t
B̃ρTt ,

whereTt is the process semi-group.
For α(·) :S → R+, let Zα(·) be the product measure indexed overS with marginals

µα(i) onN . Here, forα > 0,

µα{k} = 1

Z(α)

αk

g(1) · · ·g(k)
for k � 1 andµα{0} = Z(α)−1 whereZ(α) is the normalization. Whenα = 0, setµ0

to be the point mass on 0. Let alsoHZR = {0< α(·) < lim inf k g(k):
∑

i p(i, j)α(i) =
α(j)}.

LetMρ be the product measure overS with common marginalνρ onN satisfying

νρ{i + 1}
νρ{i} = νρ{1}

νρ{0}
b(1, i)

b(i + 1,0)

for ρ > 0. Forρ = 0, letM0 be the point mass on the configuration with no particles.
We denote byEα(·) or Eρ expectation with respect to these measures.
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For zero-range dynamics, we make a further assumption onZα(·) in order to satisfy a
technical condition in Theorem 1.8 of [3] and to state some of the claims below. Consider
the restricted set of configurations
′ ⊂
 defined in (2.1). We will assume that

(ZR) Zα(·)(
′)= 1.

We note this condition is always satisfied whenα(·) is constant org(k)� δk, all k � 0;
in fact, it remarked in [3], that with a different construction, with a different subset
′,
this condition is always true. In a sense, restricting the process to
′ prevents blow-up
and we refer to the discussion in Section 2 and to [3].

Let I denote the set of invariant measures for these processes and letIe be the set of
extremal measures inI .

Recall the assumptions above, (SE), (ZR) and (M). We state the theorem:

THEOREM 1.1. – (1)(Liggett [10]) For simple exclusion(SE) with doubly stochastic
p, {Bρ : constantρ ∈ [0,1]} ⊂ I .

(2) (Andjel [3]) For zero-range dynamics(ZR), {Zα: α ∈HZR} ⊂ I .
(3) (Cocozza[5]) For misanthrope dynamics(M), {Mρ : 0� ρ <∞} ⊂ I .

There are extensions of this theorem, notably to the case whenp is symmetric or
null-recurrent with respect to extreme points.

We have now the following (some results, when overlapping with others, are not stated
in the generality found in the original papers):

THEOREM 1.2. – (1) (Liggett [10]) For simple exclusion(SE) with symmetricp,
{Bρ(·): ρ ∈HSE} = Ie.

(2a)(Andjel[3]) For zero-range dynamics(ZR) with g increasing, and null-recurrent
p, {Zα(·): α ∈HZR} = Ie.

(2b) (Saada[15]) For zero-range dynamics(ZR) with g(k) ≡ I (k � 1) and transient
doubly stochasticp, {Zα: 0� α � 1} ⊂ Ie.

(2c) (Liggett [9]) For zero-range dynamics(ZR) with g(k) ≡ k and transient
translation invariantp, {Zα: 0 � α <∞} = Ie.

(3) (Andjel, Cocozza and Roussignol[4]) For misanthrope dynamics(M) in d = 1
such that

∑
ip(i)= 0 and

∑ |i|p(i) <∞, {Mρ : 0 � ρ <∞} = Ie.
An important result which identifies a situation when a particularBρ,Zα, or Mρ , for

constantρ andα, is extremal is the following theorem due to Saada [15]. Suppose the
operatorsA, A∗ andA + A∗, whereA∗ is theL2 adjoint ofA, generate conservative
particle system semi-groups.

THEOREM 1.3. – Supposev is invariant for the processes generated by the operators
A andA∗. Assume also thatv is extremal for the symmetrized process operatorA+A∗.
Then we have thatv is extremal forA andA∗.

An immediate corollary, noting Theorem 1.3, which fills in more pieces is the
following:

COROLLARY 1.1. – (1)Under(SE), for doubly stochasticp, {Bρ : 0 � ρ � 1} ⊂ Ie.
(2) Under (ZR), for doubly stochasticp, {(p(i, j) + p(j, i))/2} null-recurrent, g

increasing, and for constantα, Zα ∈ Ie.
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(3) For misanthrope processes(M) in d = 1, Mρ ∈ Ie when b(i, j) − b(j, i) =
b(i,0)− b(j,0) for i, j � 0 and

∑ |i|p(i) <∞.

The new results in this note focus on zero-range and misanthrope systems; as
remarked earlier, nothing new is added for simple exclusion. In combination with some
of the previous statments, for clarity, they are:

THEOREM 1.4. – (1)For zero-range dynamics(ZR), {Zα(·): α(·) ∈HZR} ⊂ Ie.
(2) For misanthrope dynamics(M), {Mρ : 0 � ρ <∞} ⊂ Ie.
Our main contribution is that we do not need null-recurrence ofp or increasing

assumptions ong to determine the extremality for zero-range processes ofZα(·) for
α(·) ∈ HZR. Also, for misanthrope systems, no assumptions beyond (M) are required
to ensure extremality ofMρ for ρ constant.

Part of what remains as an open problem is to show that the set{Zα(·): α(·) ∈ HZR}
exactly comprises the set of extremalsIe. We have not attempted a full summary of the
existing results and we refer to Chapter 8 of [10], [3] and [4] for further results.

The article is organized as follows: In Section 2, we describe the Dirichlet-form
technique in the “folklore” to prove parts (1) and (2) of Theorem 1.4. In Section 3,
we present a few simple applications.

2. Dirichlet-form approach

In this section, we discuss a technique in the “folklore” to prove extremality of
invariant measures utilizing the Dirichlet form of the process. In this connection, see
Sections 4.3, 4.4 of [10] with respect to Glauber dynamics, Section II.1.1.3 of [18]
with respect to dynamics with Gibbs invariant measures, and the last lemma of [8] with
respect to interacting Brownian particles. For clarity, we concentrate on the zero-range
process and prove part (1) of Theorem 1.4, although the arguments also apply to simple
exclusion and misanthrope systems. Perhaps of specific interest is that the approach here
applies to inhomogeneous measuresZα(·).

We recall now some of the details of the zero-range construction in [3] and extend the
process toL2. Different from simple exclusion systems, the process semi-groupTt is not
constructed from Hille–Yosida considerations. Rather,Ttf (η) = Eη[f (η(t))] is shown
to exist on a class of functionsL defined on a subset
′ ⊂
 of the configuration space.
Following [3], for fixedg andp, let β(i) = ∑∞

n=0 2−npn(i,0). We can take


′ =
{
η: ‖η‖ = ∑

i∈S
|ηi|β(i) <∞

}
, and (2.1)

L = {
f : |f (η)− f (ξ)| � c‖η − ξ‖ for all η, ξ ∈
′, somec

};
for f ∈ L, let L(f ) be the smallest such constantc. Let alsoL′ ⊂ L be the bounded
functions inL. It is proved in Lemma 2.2 of [3] thatTt :L → L, and in factTt :L′ → L′.
Formally, a measurev is invariant for the process if for allf ∈L′,∫

Ttf dv =
∫
f dv.
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The restriction of configurations to
′ makes sense in that explosion should be ruled out.
In fact, by assumption (ZR), the invariant measuresZα(·) for α(·) ∈HZR are all supported
on
′, and it can be shown that the process never leaves
′.

With respect to a givenp, consider the invariant product measureZα(·). The goal in
the next series of lemmas is to extend the process toL2(Zα(·)).

Define now the “triple norm” function,||| · ||| :
′ → R by |||η||| = ∑
g(ηi)β(i). Fix

alsoSn be an increasing sequence of finite subsets ofS such thatS = ⋃
n�1Sn. Note that∑

j p(i, j)β(j)� 2β(i) and that, forf ∈ L, we have∣∣g(ηi)(f (ηij ) − f (η)
)
p(i, j)

∣∣�L(f )g(ηi)p(i, j)
(
β(i)+ β(j

)
�L(f )Cg|ηi |p(i, j)(β(i)+ β(j)

)
,

so that forη ∈
′, LZRf (η) is well defined and

∣∣LZRf (η)
∣∣ � 3L(f )|||η||| � 3L(f )Cg‖η‖. (2.2)

Take note also, from Lemma 3.2 of [3], that

Eα(·)[|||η|||] = ∑
i

α(i)β(i) <∞. (2.3)

In fact,

LEMMA 2.1. – |||η||| ∈ L2(Zα(·)).

Proof. –As the{g(ηi): i ∈ S} are non-negative and independent, write

Eα(·)
[
(|||η|||)2]=∑

i,j

Eα(·)[g(ηi)g(ηj )]β(i)β(j)

=∑
i �=j

α(i)β(i)α(j)β(j)+∑
i

Eα(·)
[
g(ηi)

2]β(i)2.
Observe thatEα(·)[g(ηi)2] = α(i)Eα(·)[g(ηi + 1)]. So that the last sum above, through
the Lipshitz bound (ZR) ong after adding and subtractingg(ηi), is bounded above by

∑
i

α(i)Eα(·)[g(ηi + 1)]β(i)2 �
∑
i

Cgα(i)β(i)
2 + ∑

i

α(i)2β(i)2.

Noting 0� β(i) � 1 and (2.3) gives

Eα(·)
[
(|||η|||)2] � max(Cg,1)Eα(·)[|||η|||](1+Eα(·)[|||η|||])<∞

to finish the lemma. ✷
The following discussion borrows from pp. 205–208, Chapter 4 in [10]; certain proofs

are included here for completeness.

LEMMA 2.2. –Tt on L′ extends by continuity to a Markov semi-groupT α
t on

L2(Zα(·)).
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Proof. –Forf ∈ L′, let Ttf (η)=Eη[f (η(t))] be the conditional expectation off , so
that by Schwarz inequality,

[Ttf (η)]2 � Ttf
2(η).

Then

‖Ttf ‖2
L2(α) =

∫
[Ttf ]2 dZα(·)

�
∫
Ttf

2dZα(·)

=
∫
f 2dZα(·) = ‖f ‖L2(α(·)).

As simple functions are contained inL′, L′ is dense inL2(α(·)). ThereforeTt extends to
a Markov semi-groupT α

t onL2(α). ✷
Let now LZR

α be the Markov generator associated toT α
t acting on the following

domain:

Dom(α)=
{
f : lim

t→0

T α
t f − f

t
exists inL2(α(·))}.

LEMMA 2.3. – We haveL′ ⊂ Dom(α) and thereforeLZR
α onDom(α) extendsLZR on

L′. In fact,LZR
α is the closure ofLZR onL′.

Proof. –Let f ∈ L′ andη ∈
′. It is proved just after Lemma 2.6 of [3] that

L(Ttf )� L(f )exp(3Cgt). (2.4)

Also, the pointwise convergence is proved in Lemma 2.7(f) of [3]:

lim
t→0

Ttf (η)− f (η)

t
=LZRf (η).

In addition, part (b) Lemma 2.7 of [3] gives that

Ttf (η)− f (η)

t
= 1

t

t∫
0

LZRTsf (η) ds.

This last statement, combined with (2.2), (2.4), and Lemma 2.1 yields, for 0< t � 1,
that

t−1|Ttf − f |(η)� C(f,g)|||η||| ∈ L2(Zα(·)).

Also, by (2.2) and Lemma 2.1,|LZRf (η)| � Cf |||η||| ∈ L2(Zα(·)). Therefore, asT α
t

extendsTt onL′, we have by dominated convergence forf ∈ L′ that

1

t

(
T α
t f − f

)
(η)→ LZRf (η)

converges inL2(Zα(·)) ast ↓ 0. Hence,LZR
α extendsLZR onL′ andL′ ⊂ Dom(α).
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Now as Tt :L′ → L′ and L′ ⊂ Dom(α) is dense inL2(Zα(·)), we conclude by
Lemma 1.3.3 of [6] thatL′ is a core forLZR

α . This finishes the proof. ✷
We will need a certain representation of the Dirichlet form of the process. Define the

Dirichlet formDα(·)(f )= −Eα(·)[f (LZR
α f )] ands(i, j) = (p(i, j)+ α(j)

α(i)
p(j, i))/4.

LEMMA 2.4. – Letf ∈ Dom(α). Then,

Dα(·)(f )= ∑
Eα(·)

[
g(ηi)

(
f
(
ηij

)− f (η)
)2]

s(i, j)

where the series converges.

Proof. –We first prove the equality forf ∈L′: By (2.2) and (2.3), we have that

Eα(·)
[∑
i,j

∣∣f (η)g(ηi)(f (ηij )− f (η)
)
p(i, j)

∣∣] �Eα(·)[Cf |||η|||]<∞,

so that by Fubini’s theorem,

Dα(·)(f )= −∑
i,j

Eα(·)
[
f (η)g(ηi)

(
f
(
ηij

) − f (η)
)
p(i, j)

]
. (2.5)

First note that the sum on the right side is absolutely summable therefore permitting
rearrangement. Let now∇xyh(η) = h(ηxy) − h(η), and let alsoa(x, y) = p(x, y) −
α(y)

α(x)
p(y, x). Observe, with the Radon–Nikodym derivative corresponding to change of

variablesη to ξ = ηyx,

dZα(·){ξ }
dZα(·){η} = µα(y)(ηy − 1)µα(x)(ηx + 1)

µα(y)(ηy)µα(x)(ηx)
= g(ηy)

g(ηx + 1)

α(x)

α(y)

and therefore the relation

Eα(·)
[
f (η)g(ηx)

(∇xyf (η)
)
p(x, y)

] = −Eα(·)
[
f
(
ηyx

)
g(ηy)

(∇yxf (η)
)α(x)
α(y)

p(x, y)

]
.

Now, from the sum (2.5), add together theij andji pairs and calculate:

Eα(·)
[
f (η)g(ηi)

(∇ij f (η)
)
p(i, j)

]+Eα(·)
[
f (η)g(ηj )

(∇jif (η)
)
p(j, i)

]
= −Eα(·)

[
f
(
ηji

)
g(ηj )

(∇jif (η)
) α(i)
α(j)

p(i, j)

]
+Eα(·)

[
f (η)g(ηj

)(∇jif (η)
)
p(j, i)

]

= −Eα(·)
[
g(ηj )

(∇jif (η)
)2 α(i)

α(j)
p(i, j)

]

+Eα(·)
[
f (η)g(ηj )

(∇jif (η)
)(
p(j, i)− α(i)

α(j)
p(i, j)

)]
.

Note that the calculation above is invariant under interchange ofi and j so that the
pair-sum also equals

−Eα(·)
[
g(ηi)

(∇ij f (η)
)2α(j)

α(i)
p(j, i)

]
+Eα(·)

[
f (η)g(ηi)

(∇ij f (η)
)
a(i, j)

]
.
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Adding half of this line and half of the previous last line gives that the pair sum becomes

−(1/2)
{
Eα(·)

[
g(ηj )

(∇jif (η)
)2 α(i)

α(j)
p(i, j)

]
+Eα(·)

[
g(ηi)

(∇ij f (η)
)2α(j)

α(i)
p(j, i)

]}

+ (1/2)
{
Eα(·)

[
f (η)g(ηj )

(∇jif (η)
)
a(j, i)

] +Eα(·)
[
f (η)g(ηi)

(∇ij f (η)
)
a(i, j)

]}
.

Note that the separate summations of all the expectations are absolutely summable from
the same method as in the beginning of the proof.

Now rewrite the first line as half of the present form and half of the form changed by
transformingη to ηij andηji respectively in the two expectations to obtain

−Eα(·)
[
g(ηi)

(∇ij f (η)
)2
s(i, j)

] −Eα(·)
[
g(ηj )

(∇jif (η)
)2
s(j, i)

]
.

Observe that the sum of theseij pairs is the desired result.
What remains is to show that sum of the terms in the second line vanish. To this

end, write the term in brackets, by change of variablesη to ηij and the formula
α(j)

α(i)
a(j, i) = −a(i, j) for the first expectation, and then changeη to ηji to get the last

line below:

Eα(·)
[(
f
(
ηij

) + f (η)
)
g(ηi)

(∇ij f (η)
)
a(i, j)

]
=Eα(·)

[(
f 2(ηij ) − f 2(η)

)
g(ηi)a(i, j)

]
=Eα(·)

[(
f 2(ηij ) − f 2(η)

)
g(ηi)p(i, j)

]+Eα(·)
[(
f 2(ηji) − f 2(η)

)
g(ηj )p(j, i)

]
.

Noting thatf 2 ∈ L′, observe that theij sum of the last expression isEα(·)[LZRf 2] = 0
from Lemma 2.9 [3].

All this proves the lemma forf ∈L′.
We now extend the representation to Dom(α): Let

R(f )= ∑
Eα(·)

[
g(ηi)

(
f
(
ηij

) − f (η)
)2]

s(i, j)

for f ∈ Dom(α) such that the series converges. Forf ∈ Dom(α), takefn ∈ L′ so that
fn → f andLZR

α fn → LZR
α f in L2(α(·)). Then

lim
n→∞Dα(·)(fn)=Dα(·)(f ), and

lim inf
n→∞ R(fn)�R(f )

by Fatou’s lemma. Therefore,R(f ) � Dα(·)(f ) and in particular,R(f ) < ∞ for f ∈
Dom(α). However also,

0�Dα(·)(f − fn)� ‖f − fn‖L2 · ∥∥LZR
α f −LZR

α fn
∥∥
L2

which vanishes asn → ∞. Hence, limn→∞ R(f − fn) = 0, and so limn→∞ R(fn) =
R(f ), to finish the proof. ✷

We will need the following two propositions for the proof of the main theorem:
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Consider a space
 with Borel setsB. Let Q be an invariant probability measure on

 for the Markov process{η(t), t � 0}. LetPQ be the probability on the path space with
initial distributionQ andTt be the process semi-group. AsTt is a contraction onL2(Q),
we have forf ∈ L2(Q) that

1

t

t∫
0

(Tsf ) ds → f̂

converges inL2(Q) to f̂ ∈ L2(Q) ast → ∞. The following result, found in Section 2
of [13] (see also IV.2 [14]), provides equivalences between ergodicity ofPQ and
extremality ofQ in the set of invariant probability measures. For the convenience of
the reader, we repeat the proof at the end of the section.

PROPOSITION 2.1. – All are equivalent:
(a) For setsA ∈ B, TtI (A)= I (A)Q-a.s. ⇒ Q(A) = 0 or 1.
(b) PQ is ergodic: For eachf ∈L2(Q), f̂ =EQ[f ], a.s.Q.
(c) Q is extremal: If for some0< ε < 1 and invariant probability measuresQ1 and

Q2, we haveQ= εQ1 + (1− ε)Q2, thenQ=Q1 =Q2.

Note that part (b) may replaced by more usual definition of shift-ergodicity (see
Corollary 5 in IV.2 [14]):7 shift-invariant⇒ PQ(7)= 0 or 1.

The following standard local limit theorem for independent (non-identically) distrib-
uted lattice valued random variables is taken from Theorem 7.4, p. 195 of [12]. The
statement here differs slightly in that we have replaced the “logN ” term in [12] by
“log cN ”; but the proof is the same and we refer the reader to [12].

PROPOSITION 2.2. – Let {Xi} be a sequence of independent r.v.’s taking integer
values and letSN = ∑N

i=1ηi , pij = P(Xi = j), andρN = ∑N
i=1E(Xi). Supposepi0 �

pij for all i andj . Suppose furthermore that

cN =
N∑
i

E(Xi −EXi)
2 ↑ ∞, γ N =

N∑
1

E|Xi −EXi|3 = O
(
cN

)
,

g.c.d.

{
m:

1

logcN

N∑
j=1

pj0pjm → ∞
}

= 1.

Then

sup
K

∣∣∣∣√cNP (SN =K)− 1√
2π

exp
{

−(K − ρN)2

2cN

}∣∣∣∣ = O
(

1√
cN

)
.

Proof of (1), Theorem 1.4. –From Proposition 2.1, it is enough to show every bounded
harmonic functionf is constantZα(·)-almost surely. For bounded harmonicf we see
thatLZR

α f = 0. It follows from the definition of the Dirichlet formDα(·) thatDα(·)(f )=
0. This immediately gives through Lemma 2.4 and the the positivityg(k) > 0 for k � 1
thatZα(·) almost surely

f
(
ηij

) = f (η) ∀i, j such thats(i, j) > 0 whenηi � 1. (2.6)
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A consequence of this property is that, ifηij denotes the configuration which
exchanges values ofηi andηj , then, due to the irreducibility ofs(i, j) (asp irreducible
andα(·) > 0), that

f (ηij )= f (η) for all i, j a.s. (2.7)

The property (2.6) allows us, in the following claim, to conclude thatf (η)

is measurable with respect to the tailσ -field of the coordinates{ηi : i ∈ S}. By
Kolmogorov’s 0–1 law, thisσ -field is trivial, hencef must be constant almost surely.
This finishes the proof. ✷

Note that whenα(·) ≡ α is constant, that is whenZα is i.i.d product measure,
the argument is simpler once we note that, by (2.7),f is finite-permutation invariant
and therefore constantZα-a.s. by Hewitt–Savage’s 0–1 law. This easier argument, in
particular, would apply to the misanthrope measures.

Also, note that the collection of setsA which stay invariant by the transformation
η → ηij is aσ -field A. Clearly,T ⊂ A ⊂ H ⊂ E whereT is the tailσ -field of theηi ’s,
H is the tailσ -field of theHn’s whereHn = ∑

i∈Sn ηi , andE is the exchangeableσ -field
of theηi ’s. Attempts to invoke triviality conditions forH andE , discussed in [11] and [2]
(see also [7] for 0–1 law statements in the context of Gibbs measures), failed. However,
as shown in the claim below, for the measuresZα(·), A = T .

CLAIM 2.1. –Let f be bounded function satisfying property(2.6). Then f is
measurable with respect to the tailσ -field of{ηi: i ∈ S}.

Proof. –Let Fk = σ {ηi, i ∈ Sk} and defineδi as the single particle configuration ati

andηi = η− δi as the configuration with one less ati. Also define, forn0 large enough,
the local bounded functionhε = Eα(·)[f |Fn0] so that‖f − hε‖L2(α(·)) < ε for ε > 0.
Correspondingly, denoteR(η)= f (η)− hε(η) as the error difference function.

Suppose now that whenη0 � 1,

f (η)= f
(
η0) a.s.Zα(·); (2.8)

that is, we may take away a particle at the origin without changing the function. For
f , with this feature, the claim follows: Let̄ηn be the configuration which equalsη
everywhere except in the setSn where the values are set to 0. Given (2.8), we see that
f (η) = f (η̄n) a.s. by simply moving all particles inSn to the origin and then removing
them one by one. This gives thatf is measurable with respect to the tailσ -field.

We now show that indeedf satisfies (2.8). As will be seen, the fact
∑

i α(i)= ∞, as
p is null-recurrent or transient, is essential.

We consider two cases: LetU = lim sup|i|→∞ α(i). In case 1, we assumeU > 0
and in case 2, we takeU = 0. Just as a remark, we note thatU > 0 for p such that∑

i p(i, j) � 1 for all j by the (maximum) principle thatα(i) does not take on its
maximum inS.

Case 1.Assume thatU > 0. Letxh ∈ S be a site which is outside the support ofhε(η).
Now observe that whenη0 � 1, (2.6) givesf (η0,xh)= f (η) a.s. andhε(η0,xh)= hε(η

0).
To show (2.8), we try to control theL2 difference:
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Eα(·)
[(
f (η)− f

(
η0))2

, η0 � 1
]=Eα(·)

[(
f
(
η0xh

)− f
(
η0))2

, η0 � 1
]

=Eα(·)
[(
h
(
η0xh

) +R
(
η0xh

) − h
(
η0)−R

(
η0))2

, η0 � 1
]

� 2Eα(·)
[
R2(η0xh

)
, η0 � 1

] + 2Eα(·)
[
R2(η0), η0 � 1

]
.

Evidently then, controlling the termsEα(·)[R2(η0xh), η0 � 1] andEα(·)[R2(η0), η0 � 1],
say in terms of‖R‖L2 < ε, would be enough to finish.

To this end, recall that infk�1g(k)= I > 0 and compute the following:

Eα(·)
[
R2(η0,xh

)
, η0 � 1

]=Eα(·)
[
µα(0)(η0 + 1)

µα(0)(η0)

µα(xh)(ηxh − 1)

µα(xh)(ηxh)
R2(η), ηxh � 1

]

=Eα(·)
[

α(0)

g(η0 + 1)

g(ηxh)

α(xh)
R2(η)

]

� 2Cf

α(0)

I
Eα(·)

[
g(ηxh)

α(xh)
|R|(η)

]

� C(f,α, g)

α(xh)

√
Eα(·)

[
g2

]
Eα(·)

[
R2

]

= C(f,α, g)

α(xh)

√
α(xh)Eα(·)[g(ηxh + 1)]Eα(·)

[
R2

]

� C(f,α, g)

α(xh)

√
α(xh)

(
C + α(xh)

)‖R‖L2. (2.9)

Above, we use in the third step the bound‖R‖L∞ < Cf , in the fifth step the identity
Eα(·)[g(ηi)f (η)] = α(i)Eα(·)[f (η + δi)] and in the sixth step the zero-range Lipschitz
bound ong(·). Note that as lim supα(i) = U > 0, we may findxh (no matter how
large the support ofhε is) so thatα(xh) > U/2. Hence, the coefficient of‖R‖L2

in (2.9) may be bounded above uniformly inxh and we have for some constantC,
Eα(·)[R2(η0,xh), η0 � 1]<C(f,α, g)‖R‖L2 <C(f,α, g)ε.

Similarly and more easily,Eα(·)[R2(η0), η0 � 1] � (α(0)/I )Eα(·)[R2(η)]<C(α,g)ε2.
As ε is arbitrary, this finishes the proof.
Case 2.AssumeU = 0. The difficulty with the previous argument is that now we

cannot control the coefficient in (2.9). So, instead of placing the particle at the sitexh
we will put it in a far region whose occupation distribution is more tractable. Recall that∑

i α(i)= ∞.
Lethε, n0 andR be as before. Forl > n > n0, define the annulusAn,l ⊂ S as the region

between the setsSn andSl and denoteTn,l = ∑
i∈An,l

ηi . Observe that the functionsf and
R, as a consequence of the invariance property (2.6), depends on the variables inAn,l

only through the sum of occupation numbers,Tn,l . In fact, for a fixedxn,l ∈ An,l , let
τn,l(η) denote the configuration where all particles inAn,l have been moved toxn,l .

Beginning as in case 1,Eα(·)[(f (η)− f (η0))2, η0 � 1] equals

Eα(·)
[(
f
(
τn,l(η)

) − f
(
η0))2

, η0 � 1
]

=Eα(·)
[(
f
((
τn,l(η)

)0,xn,l) − f
(
η0))2

, η0 � 1
]

� 2Eα(·)
[
R2((τn,l(η))0,xn,l)

, η0 � 1
]+ 2Eα(·)

[
R2(η0), η0 � 1

]
.
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We need now only to bound appropriately the two terms in the last line. Note that the
second term is handled exactly as in case 1.

For the first term, some additional notation is required. Define the setE = {η: |Tn,l −
ρn,l|/√cn,l �M} for fixedM and note thatZα{Ec} �M−2. Let alsoξ = τn,l(η) so that
in particularξxn,l = Tn,l . DenoteZα(·),n,l as the induced measure ofξ with respect toZα(·)
andEα(·),n,l as its expectation. Denote alsoµα(·),n,l as the induced measure corresponding
to ξxn,l . Note thatZα(·),n,l is the product measure

∏
i /∈An,l

µα(i)×∏
i∈An,l

i �=xn,l

µ0×µα(·),n,l. The

following change of measure fromξ to ξxn,l ,0 will be useful:

dZα(·),n,l{ξxn,l ,0}
dZα(·),n,l{ξ } = µα(0)(ξ0 + 1)

µα(0)(ξ0)

µα(·),n,l(ξxn,l − 1)

µα(·),n,l(ξxn,l )

= α(0)

g(ξ0 + 1)

Zα(·){ζ :
∑

i∈An,l
ζi = ξxn,l − 1}

Zα(·){ζ :
∑

i∈An,l
ζi = ξxn,l }

.

Let alsoρi = Eα(·)[ηi] andσ 2
i = Eα(·)[(ηi − ρi)

2]. Defineρn,l = ∑
i∈An,l

ρi andcn,l =∑
i∈An,l

σ 2
i . Let alsoγ n,l = ∑

i∈An,l
Eα(·)[|ηi − ρi|3] andpij = Zα(·){ηi = j}.

Now split the expectationEα(·)[R2((τn,l(η))
0,xn,l ), η0 � 1] into

Eα(·)
[
R2((τn,l(η))0,xn,l)

, η0 � 1,E
]+Eα(·)

[
R2((τn,l(η))0,xn,l)

, η0 � 1,Ec
] = J1 + J2

respectively. As‖R‖∞ <Cf , we haveJ2 <C(f,α, g)M−2.
Rewrite now the termJ1 as

J1 =Eα(·),n,l
[
R2(ξ0,xn,l

)
, ξ0 � 1,E

]
=Eα(·),n,l

[
α(0)

g(ξ0 + 1)

Zα(·){ζ :
∑

i∈An,l
ζi = ξxn,l − 1}

Zα(·){ζ :
∑

i∈An,l
ζi = ξxn,l }

R2(ξ),E′
]
,

where we change variablesξ to ξxn,l ,0, andE′ = {ξ : |ξxn,l − 1− ρn,l|/√cn,l �M,ξxn,l �
1}.

To estimateJ1 further, we invoke Proposition 2.2. To apply the proposition, we
show that the occupation numbers inAn,l satisfy the hypotheses: (1) Note thatpi0 =
Z(α(i))−1 → 1 asα(i) vanishes for|i| ↑ ∞ andpij � (α(i)/I )jZ(α(i))−1 � pi0 as
soon asα(i) � I . As α(i) → 0 we may choosen so that, for the variables indexed in
An,l , the first condition onpij is satisfied. (2) Explicit calculation gives that

ρi = 1

Z(α(i))

α(i)

g(1)
+ α(i)2

Z(α(i))

∑
k�2

kα(i)k−2

(g(k) · · ·g(1)) .

Note, asU = 0, that αmax = max{α(i), i ∈ S} < ∞ exists. It is not difficult now to
conclude that there are constantsC ′(α, g) > C(α,g) > 0 such that for largen andl > n

that

C ′ ∑
i∈An,l

α(i)� ρn,l, cn,l, γ n,l � C
∑
i∈An,l

α(i).
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This together with the fact that
∑

i∈An,l
α(i) diverges asl increases gives the second

condition. (3) To see that the g.c.d. is 1 we show that 1 is in the set. Calculate
pi0pi1 = Z(α(i))−2 · α(i)/g(1). For n large enough, we have that

∑
i∈A(n,l) pi0pi1 is

equivalent tocn,l . The fact thatcn,l diverges withl gives the last condition.
We now apply Proposition 2.2 to estimate the fractionZα(·){ζ :

∑
i∈An,l

ζi = ξxn,l −
1}/Zα(·){ζ :

∑
i∈An,l

ζi = ξxn,l } on the setE′. The error term in the proposition is

absolutely bounded byC(α,g)/
√
cn,l for some constant 1< C(α,g) < ∞, say. Forl

large, this error may be bounded byC(α,g,M). We see now that the fraction above on
the setE′ is bounded above by anotherC(α,g,M).

Putting these estimates together gives the bound

Eα(·)
[
R2(τn,l(η)), η0 � 1

]
<C(α,g, f )M−2 +C(α,g,M)Eα(·),n,l

[
R2(ξ)

]
.

Now Eα(·)[R2(η)] =Eα(·),n,l[R2(ξ)] so thatC(α,g, f )M−2 +C(α,g,M)ε2 is a further
bound which is as small as we want. This finishes the proof.✷

Proof of Proposition 2.1. –
“(b) ⇒ (c)” Let Q be an invariant measure whose path measure is ergodic. Write

Q= εQ1 + (1− ε)Q2 for 0< ε < 1 andQ1 andQ2 invariant measures. It follows that
bothQ1 andQ2 are absolutely continuous with respect toQ. Let nowf be a bounded
function. Then, ast → ∞, 1

t

∫ t

0(Tsf ) ds converges in probabilty toEQ[f ] and f̂ with

respect toQ andQ1 respectively. By absolute continuity,̂f = EQ[f ] Q1-a.s., and so
EQ1[f ] = EQ1[f̂ ] = EQ[f ]. This gives thatQ1(B) = Q(B) for B ∈ B and therefore
Q1 =Q.

“(a)⇒ (b)” Let Q be an invariant measure and suppose thatPQ is not ergodic.
Then there exists anf ∈ L2(Q) such thatf̂ is not constantQ-a.s. Letc be such that
Q(A) = ε, 0< ε < 1 whereA = {f̂ > c}. Now, asTt f̂ = f̂ Q-a.s. andTt is a positive
contraction taking 1 into 1, we have thatTtI (A)= I (A) Q-a.s.: First, asTt is a positive
operator,|f̂ | = |Tt f̂ | � Tt |f̂ |, so that, asTt is anL2 contraction, we have thatQ-a.s.
Tt |f̂ | = |f̂ |. Therefore, max{0, f̂ } = (f̂ + |f̂ |)/2 is harmonic. Further, iff,g ∈ L2

are harmonic, then max{f,g} = max{f − g,0} + g is harmonic. Correspondingly,
min{f,g} = −max{−f,−g} is harmonic. Of course, 1 is harmonic. All of this gives
that min{nmax(0, f̂ − c),1} for n � 1 is a sequence of bounded harmonic functions.
The limit, asn → ∞, is I (A) which is therefore harmonic by dominated convergence.
This proves the implication.

“(c) ⇒ (a)” Let A be such thatTtI (A) = I (A) Q-a.s. andQ(A) = ε for 0< ε < 1.
As the process begun onA stays inA with Q-probability 1, we have thatQ1(B) =
ε−1Q(B ∩ A) andQ2(B) = (1 − ε)−1Q(B ∩ Ac) are distinct invariant measures such
thatQ= εQ1 + (1− ε)Q2. ThereforeQ is not extremal.

This finishes the proof. ✷
3. Applications

We remark in this section on some consequences of Theorem 1.4. Consider the
following two problems.
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Invariance principle

Letf (η) be a local function on the state space
. With respect to initial configurations
distributed byBρ or Zα for which functionsf does

1√
λ

λt∫
0

f
(
η(s)

)
ds → B

(
σ 2(f )t

)

for σ 2(f ) < ∞ asλ → ∞? Given extremality ofBρ or Zα and under some conditions
onp and the rateg, this problem was resolved in [17]. WithZα now seen to be extremal
in more cases than before, we note the corollary to Theorem 1.4:

COROLLARY 3.1. –Corollary 1.1of [17] is valid in all dimensions, not only as before
in dimensionsd = 1,2 when extremality ofZα was not clear in higher dimensions.

Please see [17] for more details.

Tagged particle motion

Consider a zero-range system onZd with initial distribution governed byZα{· | η0 �
1} for α constant; in other words, a distingued, or “tagged” particle is placed initially at
the origin. Letx(t) be the position of the tagged particle at timet (notex(0) = 0) and let
ρ(α) = Eα[η1], the mean particle density at a site. Also assume the jump probabilities
are irreducible, translation invariant,p(i, j) = p(j − i). Saada proves in [16] for zero-
range dynamics with rateg(k)≡ I (k � 1), that (a) if

∑ |i|p(i) <∞, thenZα-a.s.,

x(t)/t → (
1− ρ(α)

)∑
ip(i)

and (b) ifp is mean-zero and
∑ |i|2p(i) <∞, then with respect toZα,

x(t)/
√
t →N

(
0,

(
1− ρ(α)

)
D
)
,

where thed-dimensional covarianceD = (
∑

z∈Zd zizjp(z)). The proof relies on the
extremality given in parts (2a) and (2b) of Theorem 1.2.

The same proof for generalg, noting part (1a) of Theorem 1.4, applies to yield the
corollary:

COROLLARY 3.2. –Consider the tagged particle zero-rangesystem above withg
satisfying(ZR).

(a) If
∑ |i|p(i) <∞, thenZα-a.s.,

x(t)/t → (
α/ρ(α)

)∑
ip(i).

(b) If p is mean-zero and
∑ |i|p(i) <∞, then with respect toZα ,

x(t)/
√
t →N

(
0,

(
α/ρ(α)

)
D
)
,

whereD is thed-dimensional covariance,D = (
∑

z∈Zd zizjp(z)).



154 S. SETHURAMAN / Ann. Inst. H. Poincaré, Probabilités et Statistiques 37 (2001) 139–154

Acknowledgement

I would like to thank Ellen Saada for many useful, pleasant conversations. I would
like also to thank E. Andjel, N. Jain, S. Olla, J. Sethuraman and S. Varadhan for useful
discussions. I would also like to thank the referee for careful and helpful comments. In
addition, thanks to Niati Sanzu for help with French translation.

REFERENCES

[1] Albeverio S., Kondratiev Y.G., Rockner M., Ergodicity ofL2-semigroups and extremality
of Gibbs states, J. Funct. Anal. 144 (1997) 394–423.

[2] Aldous D., Pitman J., On the zero–one law for exchangeable events, Ann. Probab. 7 (1979)
704–723.

[3] Andjel E.D., Invariant measures for the zero range process, Ann. Probab. 10 (1982) 525–
547.

[4] Andjel E., Cocozza-Thivent C., Roussignol M., Quelqes complements sur le processus des
misanthropes et le processus “zero-range”, Ann. Inst. Henri Poincare 21 (4) (1985) 363–
382.

[5] Cocozza-Thivent C., Processus des misanthropes, Z. Wahr. Verw. Gebiete 70 (1985) 509–
523.

[6] Ethier S., Kurtz T., Markov Processes: Characterization and Convergence, Wiley, New York,
1986.

[7] Georgii H.O., Canonical Gibbs Measures, Lecture Notes in Mathematics, Vol. 760,
Springer-Verlag, Berlin, 1979.

[8] Guo M.Z., Papanicolaou G., Self-diffusion of interacting brownian particles, in: Prob.
Methods in Math. Phys., Taniguchi Symp. Katata/Kyoto, Academic Press, 1985, pp. 113–
151.

[9] Liggett T.M., Random invariant measures for Markov chains, and independent particle
systems, Z. Wahr. Verw. Gebiete 45 (1978) 297–313.

[10] Liggett T.M., Interacting Particle Systems, Springer-Verlag, New York, 1985.
[11] Mineka J., A criterion for tail events for sums of independent random variables, Z. Wahr.

Verw. Gebiete 25 (1973) 163–170.
[12] Petrov V.V., Sums of Independent Random Variables, Springer-Verlag, New York, 1975.
[13] Rosenblatt M., Transition probability operators, in: Proc. Fifth Berkeley Symp. Math.

Statist. Prob., Vol. 2, 1967, pp. 473–483.
[14] Rosenblatt M., Markov Processes. Structure and Asymptotic Behavior, Springer-Verlag,

New York, 1971.
[15] Saada E., A limit theorem for the position of a tagged particle in a simple exclusion process,

Ann. Probab. 15 (1) (1987) 375–381.
[16] Saada E., Processus de zero-range avec particule marquee, Ann. Inst. Henri Poincare 26 (1)

(1990) 5–17.
[17] Sethuraman S., Xu L., A central limit theorem for reversible exclusion and zero-range

particle systems, Ann. Probab. 24 (4) (1996) 1842–1870.
[18] Spohn H., Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1991.
[19] Waymire E., Zero range interaction at Bose–Einstein speeds under a positive recurrent single

particle law, Ann. Probab. 8 (1980) 441–450.


