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ABSTRACT. — We establish a central limit theorem for the density fluctuations of a one
dimensional particle system known as the totally asymmetric simple exclusion process (TASEP]
Because of our method in this article, it is more convenient to regard TASEP as a growth model
Let the configuration spadeconsists of functions: Z — Z suchthat < h(i +1) — (i) < 1 for
all i € Z.. With rate one, each(i) increases by one unit provided that the resulting configuration
does not leave the configuration space; otherwise the growth is suppressed. We establish a cen
limit theorem for the rescaled height functiefi(x, 1) = eh([3], ‘) wherex € R, [7] denotes
the integer part of;, and (-, 1) denotes the conflguratlon afterseconds We assume that
initially, the probablllty law ofu® (x, 0) is the same ag(x) + /¢ B(x) + 0(,/¢) for a continuous
functiong and a continuous random process). It is expected that at later times, the rescaled
processu®(x, ) can be stochastically representedias, 1) + /¢ Z(x, t) + 0(,/¢) wherei is
the unique solution of the Hamilton—Jacobi equatipr= i, (1 — iz,) with the initial condition
u(-,0)=g(-),andZ(x, t) is arandom process that is given by a variational expression involving
B(-). This will be established ig is piecewise convex. We also define a random lattice curve
as a microscopic backward characteristic curve and prove a law of large numbers f20@2
Editions scientifiques et médicales Elsevier SAS

RESUME. — Un théoréme limite central est établi pour les fluctuations de la densité d’'un
systeme de particules unidimensionnel connu comme le processus d’exclusion simple totaleme
asymeétrique. La méthode employée conduit a la considérer comme un modéle de croissanc
0 2002 Editions scientifiques et médicales Elsevier SAS

1. Introduction

Various phenomena such as the formation of crystals and the spread of infections a
modeled by stochastic growth models. To simplify the geometry, we regard a crystal a:
a collection of cubes of small size with their centers lying on sartémensional lattice
(in practicen is 2 or 3), and assume that the growth can only occur in the direction of the
last coordinate axis. It is customary to take cubes of side length one in our microscopi
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description, and then multiply the side lengths by a small facttiat will go to zero at
the end. If initially the center of cubes lie in a set of the form

A0) = {(@i, k) e Z k < h(i)}

for someh : Z¢ — 7Z, then at later times our crystal is of the same form and the centers
of their cubes lie in the set

A@) = {3, k) € Z™ k< h(i, 1)}

for a function’ : Z¢ x [0, co) — Z. For themacroscopiadescription of our crystal we

rescaleh and study
W (x, 1) :sh(H, 5>, (1.1)
& &

where(x, 1) € RY x [0, oo) and[a] denotes the integer part of We normally assume
that the growth is random, and the rate at whigh) increases t& (i) + 1 depends on

the height differencesh(i) — h(j): j € Z%). Whend = 1 and if we assume thdt is
always nondecreasing, then a different interpretation of our model is available. One ma
interpret the height difference(i) = (i + 1) — (i) as the number of particles that are
sitting at the sité. With such interpretation the increase/dif) by one unit is equivalent

to the jump of a particle from the site+ 1 to the sitei, modeling a one-dimensional
fluid. For a class of such models, it was shown in Rezakhanlou [9] that the limit of
uf(x,t) ase — 0 exists and the limiting function solves aHamilton—Jacobiequation

of the form

it; + H(iiy) =0, (1.2)

for a suitable functior . In [9] the macroscopic density(x, 1) =lim._on([3], ) was
studied in the context of hydrodynamic limit and it was shown that the fungtien,
satisfies a conservation law of the form

o+ H(p):=0. (1.3)

It is well-known that Eq. (1.3) enjoys the followingnonotonicityproperty: If p; and

02 are two solutions of (1.3) and ib;1(x, 0) < pa2(x, 0), then p1(x,1) < pa(x,t) for

all :. A refined version of this principle leads to the so-calleutropy inequalities.

In general (1.3) does not possess classical solutions, and (1.3) has infinitely man
nonclassical (weak) solutions that share the same initial data. If we require that fol
a solution, the entropy inequalities hold, then for a given initial data there exists a
unique solution. Such a solution is physically relevant because the entropy inequalitie:
are closely related to the second law of thermodynamics. To apply the method of [9]
one needs to have two properties for the underlying particle system. First, one neec
to assume that for each densjiythere exists an ergodic invariant measure forjhe
process that has the average density equal ®econdly, one needs to assume that the
jump rates (or the growth rates for theprocess) satisfy certain monotonicity so that the
aforementioned monotononicity for the solutions of (1.3) are also true microscopically.
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The two properties we just described are true for the so-cttkadly asymmetic simple
exclusion proces§TASEP). In the TASEP, one assumes that there exists at most one
particle per site, and the jump froim+ 1 to i is suppressed if the siteis occupied.

In this case,H (p) = —p(1 — p), which is nothing other than the average of the jump
rate with respect to the unique ergodic invariant measure with depsityn [14],
Seppaldinen was able to derive (1.3) for the generalized exclusion processes. He ca
a particle systenk -exclusion if each site can have at mdstparticles and a jump is
suppressed if such restriction is violated. The important aspect of his work is that it doe:
not rely on the existence of the ergodic invariant measures. In [14] however, only the
existence off is shown and no simple expression for the functiéns given. In [12],
Rezakhanlou generalizes the work of [14] to a class of growth models that are define
in all dimensions. It was observed in [12] that the key property in [14] that was used for
the derivation of (1.2) is some type sifrong monotonicityTo motivate the definition of
strong monotonicity, first recall that i is convex, then by Hopf—Lax—Oleinik formula,

i can be expressed by a variational formula of the form

i(x, 1) —Inf{u(y O)+tL( t y)} (1.4)
wherelL is the convex conjugate df :
L(q) =sup(pq — H(p)).
p

Let us writeg(y) for u(y, 0) and let us denote(-, r) by T, g. ThenT; is a semigroup, and
more importantly, a consequence of (1.4) is the following strong monotonicity property
of T;:

T,(nf g,) = inf T;g,. (1.5)

In [12] we showed that a microscopic version of such a strong monotonicity is valid
for a class of growth models that includes tkeexclusion processes. For a given
nonnegative functionv:Z¢ — Z with v(0) = 0, we definel' = I', to be the set of
functionsh : Z¢ — 7 such thath(i) — h(j) < v(i — j) for everyi, j € Z¢. Now h(i)
increases toi(i) + 1 with rate one, but this increase is suppressed if the resulting
configurationx’ does not belong td". If we choosev(x) = Kx* with x € Z and

K € Z*, then our model coincides with&-exclusion process. Let us call our model-a
exclusion process.It turns out that a microscopic analog of (1.5) is true fipeealtiusion
processes (see (2.3) of Section 2). A consequence of such a strong monotonicity proper
is the following microscopic version of (1.4):

us(x,t)=irvlf{u5(y,0)+w5(x,y,t)}, (1.6)

wherew®(x, y, 1) = ew([Z], [f] ‘) andw(i, j,t) denotes the height function at time
t that initially starts fromw(z Js 0) =v( — j). See (2.7) of Section 2 for a proof of

(1.6). The formula (1.6) for the first time appeared in [14]. The analog of (1.6) for a
closely related particle system known as Hammersley Process was derived by Aldou

and Diaconis in [1].
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Apparently, the onlyv-exclusion process with an explicit simple formula for its
invariant measures is TASEP.

Our goal in this article is to establish a central limit theorem for the convergence of
to i in the case of TASEP. To motivate the statement of the main results of this article, le
us start with formulating some conjectures for thexclusion processes or even more
general growth models. Let us pretend that, ) is defined for allk e R¢, t > 0, andh
is a sufficiently nice function. It is expected thatatisfies

h+ H(hy) =divA(hy) + &+ R (1.7)

where A is a suitable vector-valued functiof,is a space-time white noise, allis

the remainder. Of coursk may involve differential operators of higher orders and more
complicated randomness. The main aspect of the almost meaningless formula (1.7)
that various terms in (1.7) are scaled differently, and after a rescalihgtioé remainder
becomes smaller than the other terms and can be ignored. More precisely, we expect f
the functionu? to satisfy,

wf + H (1) = edivA(ut) + &3 £(x, 1) + 0(e). (1.8)

The derivation of (1.8) even for TASEP seems to be a difficult problem. To have a more
mathematically tractable problem, we address two consequences of (1.8).A/¥hén
we may ignor the random term on the right—hand side to write

ul + H(u) =edivA(ul) + o(e). (1.9)

What we will establish in this article is a consequence of (1.8). Assdmel. The
expression (1.8) certainly implies

u; + Hu) =0(/e). (1.10)
If at timer = 0, we have a central limit theorem of the form
u(x,0) = g(x) + Ve B(x) +0(Ve ), (1.11)
then we expect to have
ut (x, 1) =i (x, 1) +eZ(x, 1) +0(e), (1.12)

for a suitable random proces&(x, t). In fact, Z(x, t) can be calculated by replacing
0(/¢) with zero in (1.10). The result is

Z(x,t)= inf B(y) (1.13)

yel(x,t)

wherel (x, 1) is the set ofy at which the infimum in (1.4) is attained. (For calculatihg
we should definéd (p) = —p (1 — p) for p € [0, 1] and setH (p) = o0 if p ¢ [0, 1].)
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In fact we can prove more, namely, if we replacaith x 4+ /ee on the left-hand side
of (1.12), then (1.12) is still valid provided that the proc&ss replaced with the

Z¢(x, 1) = yeilrzjt){my) + eU(?) } (1.14)

We establish (1.12) in the case of TASEP, provided that thd Getr) is finite and for
everyy € I (x, t), the functiong is convex in a neighborhood of
In some sense, the procegss a solution to the linear equation

Z,+ H'(it,) Zx =0, (1.15)

with the random initial conditior¥ (x, 0) = B(x). Similarly, if the initial conditiong is
differntiable, then the process® satisfies the same equation but now with the initial
condition B(x) + g'(x)e. Since in general is not differentiable and the coefficient
H'(ii,) is multivalued at the nondifferentiability points of the functian Eq. (1.15)
does not possess classical solutions and the formulas (1.13)—(1.14) offer some type
generalized solutions to (1.15).

To describe our next result, let us assume that i x,, then B(x;) # B(x,) with
probability one. Such an assumption implies that there exists a uniqgue miniitize)
such thatZ (x, r) = B(y(x,t)). Let y°(x, #) be any random process such that for each
(x,t) ande > 0, the pointy*®(x, t) is a minimizer in the variational problem (1.5). In
the last section we show that the finite dimensional marginalg® ¢f, t) converge to
the finite dimensional marginals of the process, t). Whenu is differentable atx, ¢),
then the sef (x, ¢) consists of a single point and (x, ) converges to the only element
of I(x,7). Whenu is not differentiable atx, r), thenI (x, r) consists of more that one
point and the limit ofy®(x, ¢) is a suitable random point ih(x, 7). Such a poinix, t)
lies on adiscontinuity shocland ify € I (x, ), then a characteristic line emenating from
y attime 0, is involved in the formation of such a shock.

The central limit theorem (1.12) for the simple exclusion process was establishec
by Ferrari and Fonte [5] in two cases, either when thprocess is in equilibrium,
or wheng(x) is the infimum of two linear functions. The latter case in the language
of conservation laws, corresponds to a Riemann solution of (1.3). In Ferrari et al. [6]
the work of [5] is generalized to the case of an initial datéhat is the infimum of
finitely many linear functions. In comparison with [6] our result is stronger because we
allow more general initial data. The work of [5] however applies to simple exclusion
processes for which(i) can decrease as well.

The proof of (1.12) is naturally divided into parts:

u®(x, 1) <u(x,t) +/eZ(x, 1) +0(Ve), (1.16)

u®(x, 1) > i(x, 1) +/eZ(x,1) +0(/e). 1.17)

It turns out that the proof of (1.16) is a straightforward consequence of the work of
Johansson [7] and holds for arbitrary initial dgtaln fact Johansson shows that if the
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initial height function is of the fornk (i, 0) =i, then

uf (x, 1) :tLG) +0(%3). (1.18)

See Section 4 for more details on how (1.18) implies (1.16). Our main contribution is
(2.17) and for this we need to assume that the initial data is piecewise convex. Ou
approach can been used to obtain (1.16) provided that we assume the initial data
piecewise concave. Such an assumption can be avoided if we appeal to (1.18).

In spirit our method is close to the method of Rezakhanlou-Tarver [13] and
Rezakhanlou [11]. In these papers a central limit theorem for the convergence of
is established wherne® satisfies a Hamilton—-Jacobi equation

X
uf+H<—,ufc,a)> =0,
€

where the random Hamiltonia#/ (%, p, w) is stationary and ergodic in the spatial
variable. If we assumél (y, p, w) is convex inp, then formula (1.6) is true wherne® is
now given by

wé(x, y,t) =inf { /L(e_ly(G), Y'(0), ») de}.
0

Here the infimum is over smooth curves|0, ] — R with y(0) = y andy () = x, and
L(y, g, w) denotes the convex conjugate B{y, p, w) in the p-variable. The sequence
u® converges to a function that solves enhomogenizedHamilton—Jacobi equation of
the form (1.2). The main result of [11] asserts that (1.12) is valid for the sequénce
provided that we have a central limit theorem for the solutions of the form

uh(x, 1) =q°(x,1,0) —tH(p) = &q (% w) —tH(p),

whereg satisfies lim_.0 g (x, w) = xp. In the case of TASEP, the role of are played

by random height functions for which the height differences are distributed according
to an equilibrium measure with densipy As we mentioned earlier, a result of Ferrari
and Fontes [4] establishes a central limit theorem for the convergencg @b apply

the arguments of [11], we need a stronger version of [4] result, namely, the family of
processes

JE(x,t, p) =2 (ul (x, 1) — xp)

is convergent as goes to zero. (See condition (iv) of Theorem 2.8 of [11])

Unfortunately we have not been able to prove this for our model. In fact such a strong

central limit theorem would allow us to have (3.2) of Section 3 within place ofR®.

The piecewise convexity assumption on the initial data can be dropped if we can prove

(3.2) withY*. An interested reader should compare (3.2) with Assumption 2.3 of [11].
The organization of this paper is as follows. In the next section the main results are

stated. A suitable bound on the fluctuations:dfis given in Section 3 when the initial
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height function isz (i, 0) = i*. The statement (1.12) is established in Section 4. The last
section is devoted to a law of large numbers for the progéss

2. Notations and main results

The space of configuratioris consists ok : Z — Z such that G k(i + 1) — k(i) <1
for all i € Z. We also writel” for the set of functiong : R — R with

gx)—gN < (x=—y*,

for every x,y € R. The process:i(i,t) is a Markov process with the infinitesimal
generator

(AF)(k) =) 1(k' €T)(F (k') = F (k) (2.1)

where F : Z” — R is any cylindrical function £ (k) depends on finitely mank(i)’s)
andk’ is defined by

i k@) +1 ifj=i,
k = ; e
W= g
When necessary, we wrilg(i, ¢; k) for the process with the initial configuratidn i.e.,
h(i,0; k) = k(i). The functionv(i) =it € I' plays a key role in our arguments. In fact,
one can easily see thatife I' andk(j) = a, thenk(i) < a + v(i — j). It was shown
in [12] that we always have

(2.2)

h(i,t;igfka):igfh(i,t;ka) (2.3)
where{k,} is a family of configurations of with inf, k, = k finite. From
k(i) = irj]f{k(j) +v(i — j)} (2.4)

and (2.3) we deduce
hi,t;k)y=infh(i,t;v(-, j,k(j))), (2.5)
J

wherev(r, j, k(j)) = k(j) +v(r — j).

The proof of (2.3) follows from a suitable construction of the prodggst) in terms
of a sequence of independent rate one Poisson proc@s6esi € Z). Let D denote the
set of step functiong : [0, co) — Z* such that for an increasing sequence of numbers
oo(¢) =0,01(£), ..., we havel(r) =k for 1 € [0 (£), ok4+1(£)). We setQ,, = D% and
let P;, denote the law of a sequence of independent rate one Poisson processes. Givel
realization

w1 = (El() i EZ) € Qdya

we can define a sequenee (¢;): r,i € Z) whereo, (¢;) is therth time the procesg has
increased by one unit. We s@f;, to be the set of realizations; for which allo,.(¢;) are
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distinct. It is not hard to show tha‘tdy(ﬁdy) = 1. For everyw; € Qdy we can construct
the proces&(i, t; k) = h(i, t; k, w1) by adding one taé (i) at each timer,(¢;) provided
that the resulting configuratiolf stays inI". From our construction we see that if for
someu € Z, we havek(i) = k(i) + a for everyi € Z, then

h(i,t; k) =h(i,t; k) +a. (2.6)

In particular
h(istiv (-, jok())) = k() +h(i 15 07),
wherev’/ (i) =v(i — j).
To ease the notation, we write(i, j, ) = w(i, j, t; w1) for h(i, t; v/). As a result,
(2.5) becomes
hi, t; k) =inf{k(j) + w(, j, D)} (2.7)
J

This is (4.9) of [14]. See also [1] where a similar formula is derived for the Hammersly
Process. (The Hammersly process is another example of a strongly monotone particl
system.)

Throughout the paper we writey € 2o for the randomness of the initial data,
w1 € R4, for the randomness of the dynamics, amébr the pair(wo, w1). The space of
such pairs will be denoted k. Recall that the probability distribution af; is denoted
by P,;,. The corresponding expectation is denotedayy. In the nonequilibrium case
we write p¢(dwg) for the probability measure at time zero (that may depend)and
this combined with the probability measure coming from dynamics will be denoted by
P?(dwg, dw1). The correspondind expectation is denotedey

Given a realizationw; = (¢;(-): i € Z) € Qq,, We define

Tjw1= (Li—;(-): i €Z) € Qqy.
We also define the shift operatoy onI" by
T;k(i) =k — j),
for everyk € I and everyj € Z. From our construction, it is not hard to see
h(Gi —j,t;k,w) =h(,t; Tik, Tjw1). (2.8)
The translation invariant equilibrium measures for the TASEP are well-known. To

define them, let us consider a random height funéin; o) and a probability measure
P’ (dwo) so thathf(0; wo) = 0, and the sequence

(n6 (s wo) = ho (i + 1; wo) — h§(i; wo): i € Z)
are independent identically distributed random variables with

P’ ({0 nG(i; wo) =1}) =p.
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The probability measure” (dwp) at time zero combined with the probability measure
associated with the dynamics is denotedRBf(dwg, dw;). The corresponding expecta-
tion is denoted byE”. Define

h*(i,t) = h* (i, t; w) = h* (i, 1; wo, w1) := h(i, t; h§(-; wo), w1). (2.9
We may choos&, = {0, 1}Z so thatwg € Qg is of the form
wo = (noi): i € Z).
For such a realizatiomg, the shifted realization is defined in an obvious way:
Tjwo= (noi — j): i €Z).
Note that we always have

ho(i; wo) — ho(j; @) = ho(i — j; T—jwo).
From this, (2.6) and (2.8) we deduce
h* (i, t; wo, w1) — h”(j, 0; wo) = h (i, t; hy(; wo) — hy(j; wo), w1)
=h(i,1; Tjho(:; T_jwo), w1)
=h"(i — j, t; T_jwo, T_jw1). (2.10)
It is shown in Ferrari and Fontes [4] that

Iimos‘lEp[ (x, 1) —u (x —tH'(p),0) — tL(H'(p))]* =0, (2.11)

whereu; (x, t) = eh”([1], g) and L is the convex conjugate df. A simple caculation
revealsL(H'(p)) = p?. Note that the translation invariance Bf and (2.10) imply that
the left-hand side of (2.11) is independentxoin particular, (2.11) is equivalent to

lim s‘lEp[ S(tH'(p), 1) — tL(H'(p))]" =

Also, in (2.11) we may replace with x + ,/ce. This equivalent variation of (2.11) will
be used in Section 3.

We now state a definition for the convergence of processes.

DEFINITION 2.1.-Let (2, F, p) and (Q, F, p) be two probability measures and
supposeD CR". LetX¢: D x Q — R be a sequence of measurable functions such that
for eachw € Q, the functionX*(-, ) is continuous. LeX : D x Q — R be a measurable
function such that for each € Q, the functionX (-, @) is continuous. We may regait
(respectivelyX) as a function from2 (respectively®?) into the space of continuous
functionsC (D; R). Then we say that the processgs converge to the process if for
every compact set € D and every bounded continuous functibBnC(A; R) - R, we
have

I|m F(X*(w))p(dw) = /F X(@)) p(dw). (2.12)
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We say the finite-dimensional marginals &f converge to the finite-dimensional
marginals ofX if we require(2.12)to hold only for setsA C D that are finite.

In our second definition, we define several sets of points) for which different
versions of our central limit theorem (1.12) will be established.

DEFINITION 2.2.—Leti be a solution 0f1.2) and let/(x, t) consist of pointy at
which the infimum ir{1.4) is attained. LetG, be the set of pointé, ¢) for which the set
I (x,t) is bounded, the set

[, t): =10, )N (x —t,x +1)

is finite, and for every € I(x,1) the functiong(-) = it (-, 0) is convex in a neighborhood
of y. We also define

G, ={(x,1): gis differentiable at every € I (x, 1)},
Ga={(x,0): I(x,1) S [x —t,x +11},
Gs=G1N Gy, Gs=G4NGa.

See Lemmas 4.2—-4.4 of Section 4 and Remark 2.7 for some relavant information abot
the sets€G; — Gs.

To state our main results, first take a functigr . Let (Qq, F, p°) be a family of
probability measures an@® : R x Q¢ — R: ¢ > 0) be a family of measurable functions
such thatg® (-, wp) € I for everywy, and the processes

B (x; wo) =& Y2(g"(x, w0) —g(x)); >0 (2.13)

converge to a continuous proceBsx, wp) ass — 0. Setg® (i, wo) = [ 1g%(ie, wo)].
Define

X tr .
u®(x,t; w) = Sh({—}, —; 8°(-, wo), wl)-
el e

THEOREM 2.3. —Lete: R — R be a continuous function and set = x + e(x).4/e.
Then the finite-dimensional marginals of the processes

1
X (x%,t, 01, 00) = —=(u’ (x°, t; 0) —u(x,1)); (x,1) € Ga, (2.14)

NG

converge to the finite-dimensional marginals of the process

Z¢(x,t,wg) = Inf Bé(x,y,t;wo); (x,t) € Gy, (2.15)
yel(x,t)

where,

BC(x, . t; wo) = B(y; wo) + L’ (x - y)e(x).

Whene = 0, the setG 4 may be replaced with the possibly larger sat.
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The main ingredient for the proof of Theorem 2.3 is a variant of

ws(x,y,t):zL<$> +0(e). (2.16)

(Note that (2.16) is consistent with Theorem 2.3 because the initial Wétagj, 0)
is deterministic.) A variant of (2.16) will be established in Section 3. The proof of
Theorem 2.3 will be given in Section 4.

Given a point(x, t) and a realizationw = (wq, w1), let I°(x, 1) = I°(x, t; w) denote
the set ofy at which the infimum in (1.6) is attained. We also wite(x, 1) = y% (x, 1; ®)
(respectivelyy? (x, t) = y° (x, t; w) ) for the largest (respectively smallest) number in
I¢(x,1).

THEOREM 2.4. —Letx® be as in the previous theorem. Suppose thatfer0, every
(x,t) and every pair of distinct pointgy;, y»), we haveB¢(x, y1,t) # B¢(x, y,t)
almost surely, and thatBe(x, yi1, t) — B¢(x, y2, )| < T occurs with positive probability.
Choosey(x, t) = y(x, t; w) to be the unique poing € I (x, ) at which the infimum in
(2.15)is attained

Z¢(x, 1) = B(5(x. 1)) + L/(w>e(f(x, 0).

Then the finite dimensional marginals @f. (x*, 7): (x,t) € Gs) converge to the finite
dimensional marginals afy(x, r): (x,t) € Gs). Again, where = 0, we may replace the
setGs with the setG1 N Gas.

Note that Lemma 4.4 of Section 4 implies thatif, 1) ¢ Gs, thenI(x,t) contains a
nonempty interval. That is why the processésin Theorem 2.4 are restricted to the set
Gs C G3 so that the sef (x, 1) is finite whenevelx, 1) € Gs.

Example2.5. — Letp?:R — [0, 1] be a function that has first-kind discontinuities
and assume® is right continuous. Choose the measyrein such a way that the
random variablesn(i,0): i € Z) are independent ang®(n(i,0) = 1) = p%(ei+).
The configurationi (-, 0) is defined uniquely fromz(0,0) =0 and 2 + 1,0) —
h(i, 0) = n(i, 0). But standard arguments, one can show that the procdssas =
e Y2’ (x,0) — [y p°(y)dy) converge to a continuous Gaussian procBs) with
B(0) = 0 and the varianceE B%(x) = [y p°(1 — p%dy if x > 0, and EB?(x) =
fxo p°(1 — p%dy if x <0. By convergence oB® to B, we mean the convergence of the
processeég to the proces® whereB¢ is a continuous process Wit (x) — B (x)| <
¢ for all x. The processB® is defined by linear interpolation between the points
(ie, B%(ig)). It is not hard to see that the conditions of Theorem 2.4 are satisfied for
the corresponding“(x, y, t).

We write B(x, p; wg) for Bf(x;we) when the initial datap® is identically the
constantp.

Remark2.6. — A better rate of convergence is expected for (2.11). It is conjectured
that in fact

E°[u’(tH'(p),1) — tL(H'(p))]* = O(e*3).
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If we assume this, then one can readily check that our results are still valid is
replaced withe®, provided thatx € (0, 2/3).

Remark2.7. — When the function: is differentiable at(xo, 75), then I(xo, ) =
{y(x0, t0)} is a singleton and

Xo — y(xo, to))

i1y (Y01 10) = p (xo. fo) = L/( .

In general, the set

D¥ii(xo, fo) = {L/(Xot_ y): y e I(xo, zo)}
0
coincides with the set of the limit points of the set
{ity (x, 1): u is differentiable atx, ¢) }

as(x, t) approaches the poitikg, #9). (See for example [2].) In particular, If(xg, o) N
(—00, xg — tg] # @, then 1e D*u(xq, to). Similarly, if I (xq, 1) N [xg + f9, 0) # @, then
0 e D*i(xg, tg).

3. A bound on the fluctuations of w¢®

In this section, we use (2.11) to establish a suitable version of (2.16). Recall thai
x® = x + e(x)/e, wheree is a continuous function. Set

O-2? + R (x%, y,t; wq) f
Yo(x,y,z, ;o) =4 ¥ _
Ré(x%, y,t; w1) if

{x—tH'(p)} if pe(01),
Ip(x,t):{

Ré(x,y,t) = R¥(x, y,t; w1) = w®(x, y,t; w1) — tL (x _ y),
1
1

[x + ¢, 00) if p=0,
(—oo,x —1t] if p=1.

The setl,(x, ) is simply the setl (x, r) when the initial data ig(y) = py. The main
result of this section is Lemma 3.1.

LEMMA 3.1.-Let A be a finite subset aR x (0, c0). Let p € [0, 1] and define
$(x,t) =x—tH'(p). Then there exist a function) (-) = v (-; A) withlimgy_ov¥f (6) =
0, and a se2° (8, p) = Q°(8, p; A) C Qq, Such that

Puy(Qay — Q2°(8, p)) <6,
and if y(-) is any function witdim,_,q v (8) =0, ¥ > v, then

lim sup  sup inf e Y2y (x, v, §(x,1),t; w1) = 0. (3.2)
=0 (x ed w1eQe,p) 1Yo (x.DISY () ( )
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We state several lemmas that will be needed for the proof of Lemma 3.1. The first
lemma appeared as Lemma 4.2 of [11] and its proof is omitted.

LEMMA 3.2. —Letu be asin(1.4)and let the sefA be as in Lemm&.1.Define

a) =, ilt’;fA[min{g(y) + tL(x%y): IV <1y —1(x,1)] > x} —a(x, t)} .

Thena,(2) > 0if A > 0 andlim;_,qa,(A) = O for sufficiently large?.

Next we state and prove a lemma that is related to the fact that the speed of propagatic
in our model is finite.

LEMMA 3.3. —For everyT > 0, there exists a functiof¥, (w;) such that
u®(x, 1) =inf{u’(y,0) + w’(x, y,0): |y| <5 (w1)}, (3.3)
for every(x,t) with |x| < T,r [0, T], and

limsupé’(w1) < 27, (3.4)

e—0
in probability.

Proof. —Define random walks;" (¢; w1) with x*(0; w1) = i such that;” jumps to the
left andx;" jumps to the right with rate one. We use the realizatigr= (¢;(-): j € Z) of
the Poisson processes to decide when to jufngVore precisely, it (—, w1) = j and
Lit+)=L;(t—)+1, thenx (t4; w1) = j £ 1. From the definition of the processit is
not hard to show that i, (j) = ko(j) for j € [i — €,i + €], and ifx;", (r) <i < x;;,(2),
then

h(i, t; k1) =h(,t; k). (3.5)

Givenk e I" and¢ € Z*, define
ke(ry=inf {k())+v@ =}
lj—il<e
Evidentlyk,(j) = k(j) for j € [i — £,i + £]. From this, (2.3) and (3.5) we deduce that
h(i,t;k) =h(, 15 k) = | _iULZ{k(J') +w(, j, 0}, (3.6)
JHx
whenever;”, (1) <i < xj,,(¢). We now define
Tl T
EET(Q)]_) =8€([—:|, —;wl). (37)
& &

where

€(L1, Loy w1) =inf{€: x*,(Li;w1) < —La < Lo < x; (L1 w1) },
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for every pair of positive numberd.1, L,). Eq. (3.3) is an immediate consequence of
(3.6) and the definitior?..
It remains to show

limsupt? (w1) < 2T

e—0

in probability. This is a straightforward consequence of
Pyy(€(L1, Lo; w1) > r) < Pyy(xt (L1) > — L) + Pay(x7 (L) < Lp),
and a law of large numbers for the random walks O
The next lemma appeared as Theorem 4.1 in [12] and its proof is omitted.
LEMMA 3.4. —For everyT > 0,

lim E;, sup sup sup |w®(x,y,t) —tL (?) ‘ =0. (3.8)

¢—>0 ST 1<T |yI<T

To this end let us fix a functiog : Z™ — (0, c0) and a sequence of non-decreasing
functionsa = (a,: r € Z*) with limy_, o, () = O for everyr € Z*. Let K(«, B) denote
the set of function®(x) such that

1b(x1) — b(x2)| < ar(|x1 —x2]),  [b(x1)| < B(r),

for everyxy, xp with |x1], |x2| < r and each € Z*. We then define

Qo(et, B) = {(wo, w1): B(-; wo) € K(a, B)}.

Note that our assumption on the procdssimplies that for everys > 0, there exists
(«®, B%) andeg(8) > 0 such that

inf P*(Qf(c’, %)) = 1-86. (3.9)

O<e<eg($)

We write Qg(a, B; p) for Qf(a, ) when the initial distribution is the equilibrium
measurep”. Hence

P(OE (0 RS. >1_
0<a<ao(6)P (Q(a®, B p)) =1-36. (3.10)
Furthermore, giverd > 0, Lemma 3.3 implies that there exist a set of realizatif®s
and a positive number; (§) such that

(x,t) e [T, TI x [0, T], w1€ Qi) = €5 (w1) <2T +1,
(3.11)
inf Py, (Q4(5)) > 1—3.
O<e<e1(8)

As the next step, we show that every minimizer in (1.6) is close to a minimizer in (1.4).
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LEMMA 3.5. —Let the setA be as in Lemma.1. For every/, ¢, 5 > 0, there exist
£2(8) = £2(8; A) > 0, two functionsys () = s (-; A), ¥s.0(-) = ¥s,¢(-; A) with

éiLno Vs(0) =0, éiL“o Vs.0(0) =0,
and a set¢(8) = Q¢(8; A) C Q5(a®, %) such that
PE(QE(8)) > 1— 35,
and ife € (0,£2(8)), (x,1) € A, w € Q¢(8), z € I°(x°,t; w) N [—£, £], then
ut (x°, t; w) = inf{u(y, 0; wo) + w (x°, y, ;1) |y — I (x, )| <s(e)},  (3.12)

and,
|z =T (x,0)] < ¥s.(8). (3.13)
Proof. —AssumeA C [-T,T] x (0, T] and setl, =T + 1. Define

’

x J—
Ms,l(a)l) = Sup Sup Sup wﬁ(x’ y’tawl) —tL (—y>
Ix|<T1 1<T |y|<e t

e, O) = Eq M. (3.14)
Q5 = {11 M. o(01) < ple, )72}
By Chebychev Inequality,
Py (Qay — Q1) < MI(LS(Z)ZB/Z = (e, O)Y2
By Lemma 3.4, we can fings(§) such that for € (0, £3(6)),
Pay (Qay — 23) < 8. (3.15)
We then set
Q°(8) = {(wo, @1): (wo, 1) € (e, B°), w1 € QTN Q). (3.16)
From (3.9), (3.11) and (3.15) we deduce,
PE(QF(8)) > 1— 38, (3.17)

for every positives < £2(8) = min{eg(8), £1(8), £3(3)}.
For (3.13), it suffices to find a functiow; ((-) such that limp_ ;s (@) = 0, and for
every(wo, 1) € 2°(3), (x, 1) € A, and everyy with |y| < £, |y — I (x, )| > Vs ¢(e),

u® (x°, 15 wo, w1) < u®(y,0; wo) + w’ (x°, y,1; w1). (3.18)
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To constructys ¢, let us writea; ! for the right-continuous inverse af. By Lemma 3.2,
we certainly havez;*(1) > 0 if A > 0 and lim_oa; (1) = 0. We now claim that
Ws.o(e) = a;*(c1y/E + 2u(e, £)%?) will do the job for a suitable constant; to be
determined later. To see this, suppdser) € A, |y — I(x,1)| > A, |y| < £ and lety(y)
denote the closest point iN(x, ¢) to y. Take(wg, w1) € 2¢(8). We certainly have

[uf (y, 0; o) — g(3)| < VB (0),

& _
‘wf(xf, Vot w) — tL(x y)’ < e, Y2

Chooselg large enough so that if € I (x, ¢) for some(x, t) with |x| < T andr € [0, T,
then|y| < £o. Hence, fort > £,

u®(y, 0; wo) + w’ (x°, y, 15 w1)

t_y) _ JEBO) — (e, )V

xé‘

>g(y)+tL<

> ¢(y) +1L (?) — JeB () — (e, Y2 — co e

> i(x, 1) +ac(h) — ep’ () — (e, Y — coi/e
x =y
t

=g(y(») +rL( >+az()») — VB (0) — (e, Y2 — co/e

=g(y(») +1L (x_tiy(y)) + ag(A) — Ve (0) — (e, OY? — 2co /e

> uf (3(3), 0; @) + w* (x, 5(), 1; w1) + ag(A) — 2/2B° (£)
— 2u(e, )2 — 2co /e

for some constanty. Setc; = 28°(£) + 2co. Then ifa, (1) — c1/€ — 2u(e, £)Y? > 0,
the pointy can not be in the set®(x®, t; w). Thus, if [y — I(x,1)| > ¥5s..(¢), then
y ¢ I¢(x%, t; w), proving (3.13).

Defineys = s ¢,, Wheret; = max(2T + 1, £o). Now (3.12) follows from Lemma 3.3,
(3.11) and (3.13). O

Remark3.6. — Evidently (3.12) is also true if we replagg with any ¢ > 5.

Proof of Lemma 3.1. By definition

xf—y

w® (x°, y, 15 »1) :tL( > + R (x%, y, t; w1). (3.19)
Fix p € (0, 1) and define

S¢(x, t, p; wo, w1) = u;, (x, 15 wo, w1) — uj, (x —tH'(p), 0; wo) — tL(H'(p)). (3.20)



F. REZAKHANLOU / Ann. I. H. Poincaré — PR 38 (2002) 437-464 453

Note that (2.11) implies

i _ 2
lim e *E” sup [S*(x, 1, p; wo, w1)]” =0.
e—0 (x,1)eA

From this and (2.10) we deduce

lim e *E* sup [S*(x%, ¢, p; wo, a)l)}z =0. (3.21)
=0 (x,H)€A
Define
Qi(p) ={w: sup g~l2ge (x°,t, p;0) <p(e)}
(x,t)€A
where

$(e) =& YVAEP{ sup [S*(x. 1, p: o, w1)] "
(x,1)EA

By Chebyshev inequality,

—1Ep S€ 2

where the supremum is over the getFrom this and (3.21) we learn that there exists a
positivee4(8) such that ife € (0, £4(8)), then

PP (Q—Q1(p) <

PP (%5, p)) = 1—36. (3.22)

We apply Lemma 3.5 where the initial distribution is the equilibrium meagdrés
aresult, for every > 0, there exists(8), ¥4 (-) and a sef25(3, p) such that

lim y§(0) =0, P*(Q5.0) >1-3, (3.23)

for every positives < €5(5), everyw € Q5(8, p), and everyy (-) with limy_o ¥ (0) =0,
v =Yy,

&

. xf—y
u® (x%,t; wo, w1) = inf u®(y,0; w +tL< )+R5 x5y, },
o 0, 1) y—l,,|<w(s){ oy 0) ; (x,y 1)

wherel, = I,(x, t) was defined in (3.1). We next define
Q5(8, p) = Q5(p) N Q5(8, p) NQG(’, B%; p).
By (3.10), (3.22) and (3.23),

PP (55, p)) > 1—35. (3.24)
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To ease the notation, let us wrigefor y(x,t) = x — tH'(p). For every positive
e < &6(8) = mMin(e4(8), e5(8)), (x,1) € A, and everywo, w1) € Q5(4, p),
u (5 + Vee(x), 0; wo) + tL(H'(p)) + S (x*, 1, p; wo, 1)
= u} (x°, t; wo, w1)

— inf {u;(y,o;wo)+zL<x_

ly=31<v (&)

= inf {py+\/538(y,p;wo)+\/5L/<x_

ly=II<¥ (e)
+IL< . >+Rg(x v, t; wl)}+0(\/§)
=/eB*(3, p; wo)+«fL( )e(X)

inf {py+tL( t y) +R5(x5,y,t;w1)}+0(x/5)

ly=J31< ¥ (e)

y) +R8(x£,y,t;w1)}

y>e<x) (3.25)

where for the second equality we used Lemma 3.5, and for the last identity we used th
the fact that25(s, p) C Q(e’, B%; p). Here and below, by@/¢) we mean an error term
ri (w) for WhICh there exists a functiotf,(¢) such that

. Y(e)
stho Ve
for everyw € Q4(8, p). Observe that fow € Q§(c?, B°; p),
u (9 + ge(x), 0; o) = (§ + vee(x)) p + VB (§ + Vee(x), p; wo)

= (3 + Vee()p + VB (3. p: wo) + 0(V/&).

From this, (3.25) and the fact th&5(5, p) C Q3(p) we deduce that itv € Q5(3, p),
then

=0, |[ri(®)| <¥a(e),

(y+ee(x))p+tL(H' (p))= inf {,oy+tL< » >+Rg(x ytwl)}

ly=3I<¥ (e)
4oL ( )e(x) +o(ve). (3.26)

Note that sincep € (0, 1), we have

x=y
t

‘<1.

Moreover, sincdy — 3| < ¥ (¢), we also have

xX—=y
t

‘ -1 (3.27)
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provided that is sufficiently small. An elementary calculation yields

2 4
,0y+tL<u)—,oy—tL(H()) %, ,0=L/(¥). (3.28)

From this and (3.26) we deduce (3.2) in the casg af(0, 1), provided that we choose
Q°(8, p) = {w1: (wo, w1) € Q5(8, p) for somew}.

We now turn to the casg < {0, 1}. We only treat the casg = 1 because the case
o =0 can be treated in the same way. Note that in this case

ui(x,t) =x+ O(e). (3.29)

Also, the set

At i={y: ly—Lx, 0| <Y}
can be written as the union of two sets;

A*=A1UA:=(—o0,x —t]U{y: O<y— 3y <y(e)},

wherey = x — . We certainly have

inf {ul(y,o a)o)—l—tL< g_y> + RE(x, y, 1; wl)}
ye

=yi21:§{y+tL( )+IL<
)

)e(X)+R5(x5,y»f;w1)} +0o(ve)

- injg{y+tL( (. y. 1 wl)}—l-«/EL/(x_j))e(x)—l-o(\/E)
yEAS

(=D

= IQL T+R (x*, v, t;01) ¢ +x +/ee(x) +0(/e), (3.30)

where for the last equality, we uséd(1) = 1 and the elementary identity

-y (y— )2
tL -
y+ ( t ) X 4

for y € (3, x + 1), which follows from the fact thal.(¢) = (¢ + 1)?/4 for ¢ € [-1, 1].
On the other hand,

&

inf {ui(y, 0; wo) + tL(x — y) + R (x*,y. 13 wl)}
yeAL t

= inf {y—i—tL(x t_y> +R8(x8,y,t;a)1)} + O(e)

yEAL

=x + Jge(x) + inj R®(x*, y,1; w1) + OC(e). (3.31)
yeAL




456 F. REZAKHANLOU / Ann. I. H. Poincaré — PR 38 (2002) 437-464

This is because #— > 1, then

and if

then,

tL(x t_y> —x° —y+O(e).
Finally observe that (3.29)—(3.31) imply

x + ee(x) =ui(x°, t; wo, w1)

) X% —
= inf {u;(y, 0; wo) —|—tL< y) + R*(x%, y, 1; wl)}
yeA®
— M2
= min{ inf R*(x®, y,t; @1), inf [u + R*(x%, y,1; wl)} }
yeAy yeA]

+x + ee(x) +0(Ve).
This evidently implies (3.2) whep=1. O

4. Proof of Theorem 2.3

This section is devoted to the proof of Theorem 2.3. We start with four lemmas. The
first lemma is an immediate consequence of (1.18) and the translation invariance of th
measureP;,. Lemma 4.2 is a trivial consequence of the definition of the getr). The
proofs of Lemmas 4.1 and 4.2 are omitted.

LEMMA 4.1. —Supposex® = x + /ee and y* = y + /ee. Then for every(x,1) €
R x (0, 00),

w5ty =1 () +0(e),
in probability.
LEMMA 4.2. —Suppose € I (x,t) andg is differentiable aty. Then

g =12, (@.1)

LEMMA 4.3. —Suppose € I (x,t) andg is convex in the sdty — r, y +r]. Then
- X=Y -
g —gm»m=L (Ty) y =, (4.2)

foreveryy e[y —r,y +r].
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Proof. —If y € I(x, 1), then the fact thaj is a minimizer implies that
—L’(Q) +8/(5-) <0< —L/(?) + 8/ G).

This and the convexity of imply,

g <) g6, 800 -8 > dGR0 - 5.

This evidently implies (4.2). O

LEMMA 4.4.—If ye I(x,t) N (=00, x — 1), then[y,x — ] C I(x,t) and g(y) =
gy) +v(y —y) for everyy € [y, x — t]. Similarly, if y € I(x,t) N (x + ¢, 00), then
[x+2,y]CI(x,1) andg(y) =g(¥) + v(y — y) for everyy € [x + ¢, y].

Proof. —~We only establish the first claim because the proof of the second claim
is similar. Recallv(z) = z* and thatL(z) = v(z) for every z with |z| > 1. Suppose
yel(x,t)N(—oo,x —t)andy e[y, x —t]. Then

g0 +1L (170 ) =) 00 = ) < 5G) +vix = )

=g() +1L (x_y), 4.3)

t
because

gy)—gM<viy—y=y—-y=x—y)—x—y)=vx—y) —v(x—y).

From (4.3) we deduce thate I (x, ¢). This implies that in fact the inequality in (4.3) is
an equality. Hence

gy)—g(y)=vix—y)—v(x—y) =v(y—y). O

The rest of this section is devoted to the statement and the proof of Lemma 4.5 whicl
is the main ingredient for the proof of Theorem 2.3. We omit the straightforward proof
of the fact that Lemma 4.5 implies Theorem 2.3 and refer the reader to Section 5 of [13]

To this end, let us define

254 (x, v, 1 o) = B (; o) + L/(x :y)e(xx

Z%%(x,t; wo) = _inf  Z%%(x, y,t; wg).
el (x,1)

) LEMMA f1.5. —Let A be a finite subset afi4. For everye, §, n > 0, there exists a set
Q¢(8,n) = Q(8, n; A) C Q such that

PE(Q— Q7 (8, 1)) <78,
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limsup sup sup e V2|uf(x°,1; 0) —i(x,1) — e Z°(x, t; w0) | <. (4.4)
e—=>0  (x,)€A »eQE(s)

Proof. —Givené > 0, letQ*(§) andv;s be as in Lemma 3.5. Recall
PF(QF(8) =1-35, Q°(5) C (e’ B), (4.5)
and limy_ov5(0) = 0. For every function) with limy_.q¥ (8) =0, ¥ > 5, and every
(wo, w1) € 2°(8),
u®(x°,1; wo, w)

= inf £(y,0; (v 1
\y—l(x,r>|<w(s){u (7, 0 w0) + w" (x*, y, 1 01) }

- inf +/eB*(y; wo) + w' (x°, y, t; @
\y—l(x,r>|<w(s){g(y) VeB* (y; wo) (x%,y 1)}

= inf inf +/eB%(y; wo) +wl(x%, y, t; w
_VEI(XJ)\_V—ﬂSl//(é?){g(y) \/_ (y 0) ( Y l)}

=_inf {VeB*Fiwo)+ inf [g(3)+w'(x",y,1;01)]} +0(Ve)

el (x,1) ly—3I<¥ (e)
— inf {ﬁBs(y'w )+ inf [g(y)+zL (xs _y) — (1)
el (x,1) I N} S ’

+ R (x%, v, 13 wl):| } +it(x, 1) +0(Ve)

— i (5. ; XYy _ =
_iellqi,r>{ﬁ3 (y’w0)+y—ym<f¢<a>[g(y)+m( t ) u(x, 1)

+ JEL/(X - y)e(x) +RE(x, 013 wl)} +adx, r)} +o(vE).  (46)

Let us write M, (y; w) for the expression inside the curely brackets in the last line of
(4.6) and set
M (@)= inf M,(G;w), M= inf M),

yel(x,0) yel*(x,1)

Mi@) =_inf M.5;0),

yel

where
T, )=I(x, )N (x —t,x +1), IFe, ) =1(x, 1) N{x £,
I (x,t)=1(x,t)N(—00,x — 1), IT(e,t)=1(x,t)N(x +1t,00).

Now (4.6) can be written as
ut (x°, 1; ) = min{ M, (0), M (w), M} (0), M7 (), M} (@)} +0(Ve).  (4.7)

On the other hand, H € I (x,7), —t <x — y <t, —t <x — ¥y < ¢, andy is sufficiently
close toy, then
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g(y) +1L (?) i) =gy +1L (?) — () — 1L (?)

_ x— (y = 3)?
= — By — A
g(y) — gk ( ; )(y y)+ 7
_ 52
S - ’
4¢
where for the last inequality, we used Lemma 4.3. For evesyl (x, 1), SetQ¢ (3, y) :=
Qe(3/r, p(¥)), wherep(y) is the unique numbes € (0, 1) that satisfies —tH'(p) =,
the number is the cardinality of the seat(x, 7), and the sef?(-, -) is as in Lemma 3.1.
We then set

(4.8)

QB = [ Q6.HNALEO.
yel(x,1)
From Lemma 3.1 and (4.5) we deduce

PE($F(8)) > 1—46. (4.9)
Let us assume
v > max yf. (4.10)
yel(x,1)

From (4.8) we deduce that far € ¢ (8),

M@ > int {VEE (5ion + vEL(*

yel(x,0)

— )_])e(x)

. y‘n<1//()Y5(x Vv, 9,15 a)l)}+12(x,t)+0(\/5)
—i(x, 1)+ inf {Bs(y;wo)+L/(x_y)e(x)}+O(ﬁ), (4.11)
yel(x,t)

where for the equality we used (4.10) and Lemma 3.1.
We now turn to the tern*. If the set/* (x, ) is not empty, we havé*(x, 1) = {y}

for y. = x & 1. We claim
M (@) > VBB 0+ VL (S et
Yo(x,y,y-,t;w1) +iu(x, 1) +0(/¢)
_y‘)eoc)
inf Yé(x,y,y_,t; i(x,t)+0 . 4.12
oM Yy Y- oy G 1) + (Ve) (4.12)

The second inequality is obvious becaysec I1(x, t) = (oo, x — t], and for the first
inequality in (4.12), we simply apply (4.8) with= y_ when

inf
[y=y=I<y (e)

> VB (s wp) + VEL' (

xX—y
t

‘ <1, (4.13)
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and use

2(y) +1L (?) —ii(x,1) >0, (4.14)

when
X =Yy

‘ >1. (4.15)
From (4.12) and Lemma 3.1 we deduce

X —y_

M;(w)>a(x,z)+ﬁ{38(y'_;wo)+L/( )e(x)}+o(ﬁ), (4.16)

provided thatw € Q¢(8) N Q¢(8,1) and ¢ > ¢3. In the same way we show that if
w € Q(8) N Q(S,0) andy > ¥, then

M (@) > i(x, 1)+ \/E{B%y;; wo) + L/(x _f)e(x)} +o(ve).  (417)

We now turn to the termaf*. The numbers,. = x + ¢ are defined as before. Again we
use (4.8) withy = y_ when (4.13) holds and apply (4.14) when (4.15) holds. We obtain

Moz ot [Ves Gion +vEL (0 e

yel~(x.t t

+ inf  Yéx,y,y_,t;w }+12x,t+0 £
L (x,y,y 1) (x,1) +0(y/¢)

> inf {ﬁBS(y;wowﬁL’(’c_y)eu)}

yel—(x,1) t

inf Yo(x,y,y_,t;w) +u(x,t) +0( /e
ly—I1(x.0)| <Y (e) (X, y, ¥ V) +i(x, 1) +0(Ve)

=u(x, 1)+ e 1m(f ){Bs()_/; o) +L/(x :y)e(x)} +o(ve), (4.18)
yel~(x,t

where for the second inequality we used(x, ¢t) C I;(x, t) and for the last equality we
used Lemma 3.1. The terv can be treated likewise.

SetQ (8) = Q°(8) N (8, 1) N Q4(8, 0). Evidently (4.9) implies

PE(Q°(8)) > 1—66. (4.19)
Additional to (4.10), we assume
¥ = max(yy, ;).
From (4.7), (4.11) and (4.16)—(4.18) we deduce that# (wg, w1) € 2°(5), then
ut (x°, t; @) Zi(x, 1) + /e Z (x, t; ) + 0(V/¢ ). (4.20)

If $ €1(x,r)andy® =y + /ce(x), then by (1.6) and Lemma 4.1,
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u® (x°, 1; wo, 1) <u’ (¥, 0; wo) + w’ (x°, 3°, 15 w1)

— 4 (5, 0 o) + tL(x - y) +0(s%9),

in probability. Define

x_
Q5(5) = {a)i ’wg(xg,jzs,t;wl) —tL( p y)‘ <87/12}.

Choose a finite set

J(x, 1) :==y1, Y2, .., Y5} S 1 (x, 1)
such that for everw € Q§(a?, B°),

‘ inf Z®®(x, y,t; wo) — |nf Z%(x,y,t; w0)|
yel(x,t) eJ(x,t)

Note that the sef depends 0@, n and can be chosen to be independent o fact we
may choose the set in such a way that every € I(x, r) satisfies|y — J(x,1)] < 7.
First chooser large enought so that(x,t) C [—r,r]. Then use (4.5) and choose
small enough so that, (t) + cot < n wherecg is a bound on the Lipschitz constant
of L'(**)e(x) as a function ofy. We then set

Qem= () ) 2%,

(x,t)eA yeJ(x,t)
Q°(8, ) = Q°(8) N 2B, ).
From Lemma 4.1 and (4.19) we know that
PE(Q°(8,m) > 178,

for sufficiently smalle. Forw € Q¢(8, n) andy € J (x, 1),

u® (x°, 15 wo, )

<g(y8)+t[,(x;y>+\/538(y8;600)+87/12

(5 )+tL( : )+f38(y w0) +0(VE)
—g(y)+«/_g(y)e(x)+tL( . )+«/_B (¥; wo) +0(V/¢)

_g(y)+fL( )e(x)-i-tL( z )+fB (7; w0) +0(v/5 )

=i(x, 1)+ /eZ(x,y,1; wo) + 0(V/¢),
where for the third equality we used Lemma 4.2. As a result,

us(xs,t;wo,wl)gﬁ(x,t)—l—ﬁ_ inf Z”( ,1;w0) +0(+/¢)
ia(x, 1)+ /¢ Inf Z9%(x,y,t; w0) + nve+0(Ve). (4.21)

yel(x,t)
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This and (4.20) complete the proof of (4.4)0

Remark4.6. — Note that for the proof of (4.20), we only need to assdn®G;. Itis
only for (4.21) that we need the differentiability gfat the pointsy in I (x, ).

5. Proof of Theorem 2.4

The main ingredient for the proof of Theorem 2.4 is Lemma 5.1. Once we have this
lemma, we can repeat the proof of Theorem 2.5 of [11] to conclude Theorem 2.4.
Write 17 (x, t, ) for I°(x,t, w) N [—£, £].

LEMMA 5.1. —Let Q#(8, n) be as in Lemmd.5 and assume thad is a finite subset
of Gs. For every positive,

limsup sup  sup sup  |Z%(x,z,t;w0) — _inf Z9%(x, y,1; wo)| < .
e—>0  (x,1)€A weQe(8,n) z€l; (x%,t,0) yel(x,1)

Proof. —Letz € I] (x*,t, w) andw = (wo, w1) € Q¢ (8, n). Lety be any function with
limg_.o ¥ (68) = 0. We certainly have,

u® (x°, 15 wo, w1)
= inf  {u*(y,0;w0) + w*(x*, y,1;01) }

ly—zI<y(e)
= inf {g(y) + Ve B (y; wo) + tL<x/ — y) + R (x*, .13 wl)}
ly—zI<y (&)
. xX—y
= inf tL| —= R?(x%, y,t;
Iy—z|<10(8){g(y) + ( t ) + (x Y wl)}
+«/5L/(xt_z>e(X) + VeB®(z; wo) + 0(V/¢). (5.1)

Let us writey(z) for the closest point in the sé(x, ¢) to the pointz. As in (4.8) we can
write,

x—y _
g(y) +tL (T) —u(x,1)

=g(y)+1tL (Q) —g(y(2)) —tL (x _ty(Z))

_ (y — ¥(2))?
) (V=3@) + ==

— ) —g(5@) - L/(x 2

S 2
> (y—y@)

yra (5.2)

provided that
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Otherwise we use
g@%+ﬂ(£%£)—ﬁ&¢)>0

inf  Y(x,y, y();t)
(5.3)

From this, (5.2) and (5.1) we deduce,
ly—zI<¥ (o)

us (xs, t, o, C()]_) 2 IZ(X, t) +

+VEZ%* (x, 7, 1; wo) + 0(+/¢ ).

Note that sinced € Gs, we havel (x, 1) C [x —, x +t]. Also note thaly — z| < ¥ ()
implies|y — y| < ¥ (¢) wherey = ¢ + 5, andy;s , is as in Lemma 3.5. Define

yily—JI<y(e)} ifyex—t,x+1),
@@= y-3<v¥@)}) ify=x—1,
yiy—y<y(e)} ify=x+t,

Evidently (5.3) implies

u® (x°,t; wo, w1) > u(x, 1) + E}Qf( ) Y (x, v, ¥(2); 1) +VEeZ%(x, 2, 1; wo) + O(V/E ),
yeJs yz

where @./¢) is uniform inw € Q°(8, ) andz € 17 (x%,t, w). We then apply Lemma 3.1

to deduce,
u® (x°, t; wo, w1) = i(x, 1) +/€Z°(x, 2, 1; wo) + 0(V/€).
(5.4)

This and Lemma 4.5 imply
27z, ) = Inf CZ55(x, 3. 15 w0) < O(D) + 1,
y x,t

where @1) goes to zero uniformly i € Q°(8, ) andz € I} (x*,t, w). On the other

Z%%(x,z,t; w0) — Z°(x, t; wo)
yel(x,t)

hand, by (3.13)
=Z°*(x,y(z), t; w0) — _Inf  Z*(x, §,1; wp) +0(1) > 0o(1).
This and (5.4) complete the proof of lemmat
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