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ABSTRACT. — The paper provides a recursive interpretation for the technique known as
bracketing with adaptive truncation. By way of illustration, a simple bound is derived for the
expected value of the supremum of an empirical process, thereby leading to a simpler derivatio
of a functional central limit theorem due to Ossiander. The recursive method is also abstracte
into a framework that consists of only a small humber of assumptions about processes an
functionals indexed by sets of functions. In particular, the details of the underlying probability
model are condensed into a single inequality involving finite sets of functions. A functional
central limit theorem of Doukhan, Massart and Rio, for empirical processes defined by absolutel
regular sequences, motivates the generalization.
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RESUME. — Cet article donne une interprétation récursive de la méthode fondée sur I'entropie
a crochets (“bracketing”) avec troncature adaptative. Pour illustrer cette approche, on montr
de maniére simple une inégalité maximale pour le processus empirique, laquelle implique ul
théoréme limite central fonctionnel di a Ossiander. Un autre T.L.C. fonctionnel, concernant
le processus empiriqgue associé a une suite absolument réguliére de variables aléatoires (di
Doukhan, Massart et Rio), motive une généralisation de la méthode. Cette généralisation n
requiert qu'un petit nombre d’hypothéses sur les processus et les fonctionnelles indexés par I
ensembles de fonctions. En particulier, les détails du modéle probabiliste sont résumés par ur
seule inégalité pour les ensembles finis de fonctions.
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1. Introduction

In the empirical process literature, many important theorems and inequalities have
been derived by a technique known as bracketing. Some of the arguments are lon
and involved, primarily because they require a delicate balancing act between sever:
sequences of constants. The modern refinements due to the Seattle group (Pyk
Alexander, Bass, and Ossiander — for a discussion of their contributions see Section ¢
are the most delicate of all because they combine bracketing with ingenious truncatiol
arguments.

This paper presents a general method for handling bracketing arguments witl
truncation. By way of illustration, | begin with the important special case of a process
constructed from independent random eleménis. ., &, taking values in a spac#'.

For f a real-valued function o/ with each f (&;) integrable, define the centered-sum

Spf = Eign(f(gi) —Pg(&)).

Remark— Throughout the paper | use the de Finetti notation [14, Chapter 1],
writing P for expectations as well as probabilities, and identifying sets with their
indicator functions. For exampl®g{g > ¢} might be written ask(gl{g > c}) or as
Jery~c §(0)P(dx) in traditional notation.

Some readers might be more familiar with the standardized fQum=S,, f/+/n, the
so-calledempirical processDivision by /n is natural for the derivation of some limit
theorems, particularly so for identically distributgg}, but it would merely complicate
the notation for the derivation of uniform approximations t@emtered-sum process
{S.f: f € F}indexed by a set of function& on X'.

The approximations in the present paper are derived (via bracketing and truncatiol
arguments) using mapd; from F into finite sets of approximating functions. The
main results take the form of bounds for quantities sucl sip- |S,(f — As f)]. (In
fact, the theorems involve truncated functions, but the modification has only a minor
effect on applications.) The behaviour of the process indexef iy thereby related
to the behaviour of a process,a: a € A} with A a finite set of functions. Such an
approximation underlies functional central limit theorems (fCLTs), functional laws of
the iterated logarithm, and the stochastic equicontinuity results that are so useful fo
asymptotic inference. The rederivation in Section 3 of the fCLT for{lid, due to
Ossiander [12], is typical.

A very simple form of bracketing is often used in textbooks to prove the Glivenko—
Cantelli theorem, the most basic example of a uniform law of large numbers. The
empirical distribution function¥, for a samplez,, ..., &, from a distribution function
F on the real line is defined by, (1) := >, ,{& < t}/n for eachr in R. That is, F,,(¢)
denotes the proportion of the observations less than or equal'te Glivenko—Cantelli
theorem asserts that sup),(r) — F(t)| converges to zero almost surely.

The strong law of large numbers ensures thar) — F(¢) — 0 almost surely, for
each fixed. The bracketing argument then leads to uniform bounds over suitably small
intervals,r; <t < 1p, by means of bounds that hold throughout the interval: for swe
haveF,(t1) — F(t;) < F,(t) — F(t) < F,(t2) — F(t1). The two bounds converge almost
surely toF (1) — F(t;) and F(t;) — F(t;). If ; andr, are close enough together then all
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the F,(t) — F(¢) values, forr; <t < 1, eventually get squeezed close to the origin. If
we cover the whole real line by a union of finitely many such intervals, we are able to
deduce that sypF, (1) — F(¢)| is eventually small.

It is more fruitful to think of the incremenf¥ (1,) — F(#;) as the£(P) distance
between the two indicator functioris-oo, #1] and(—oo, t,], where P is the probability
measure corresponding to the distribution functi®nThe concept of bracketing then
has an obvious extension to more general sets of funcffoors a setY'. The extension
also makes sense for norms on spaces of functions more general thah( Bhenorm.

In particular, it has proved most useful for variofi$ norms.

In what follows, # denotes the cardinality of a sgt

DeFINITION 1.—Leti/ be a vector space of functions equipped with a ndgrm.
Define the bracketing numbe¥ (§, ) for a subsetF of U/ as the smallesiV for
which there exists a partition of into subsetsFy, ..., Fy and functionsay, ..., ay
andb, ..., by inU for which|b|| < é and|f — a;| < b; pointwise whery € F;.

The bracketing defines two maps; and B;, from F into finite sets of functions:
As(f) :=a; and Bs(f) := b; when f € F;. | will refer to As(f) as theapproximating
function Rs(f) := f — As(f) as theremainder and Bs(f) as thebracketing function
The bracketing numbeN (-, F) is decreasing. It is of use only when finite-valued.
Indeed, the most useful bounds require assumptions about the rate of incréasebj
ass tends to zero, as in Ossiander’s fCLT.

THEOREM 2 (Ossiander [12]). Suppos€é;} are independent and identically dis-
tributed random elements, each with marginal distributinSupposeF < L£2(P) has
an envelop& (a measurable function such thigt(x)| < F(x) for all x and all f in F)
for which P F2 < co. Let N,(-) denote the bracketing numbers t&r(under the£?(P)
norm). If [, \/IogN2(x) dx < oo then{v, f: f € F} satisfies a fCLT.

Ossiander derived her theorem from a bound on the tail probabilities fer|sug,
for various sets of function§. Close inspection of her proofs, and of proofs for related
theorems in the literature, reveals that independence is used only through a bound su
as the Bennett inequality for sums of independent random variables [14, Section 11.2
This inequality implies, for a functiog(-) bounded in absolute value by a constgnt
with Pg? < 82, that

1
P{lv.gl =28} <2 exp(—ékzw(n‘l/zﬂx/a)) for 2. >0, (1)

wherey (x) is a specified decreasing, nonnegative function with) = 1.

The presence of the nuisance factp /281 /8), complicates the usual chaining
argument for tail probabilities. I8 andn stay fixed whiler/§ increases, the nuisance
factor begins to dominate the bound. It was for this reason that Bass [3] and Ossiande
[12] needed to add an extra truncation step to the chaining argument. The truncatio
keeps:~Y?B1 /8 close enough to zero that one can ignore the nuisance factor and act a
if v,g has sub-gaussian tails.
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As you will see in the Section 2, under Ossiander’'s assumptions, a similar truncatior
scheme leads to a maximal inequality in the form of a boundPfsup, g S, g| for
variousg. A proof of the fCLT follows easily (see Section 3).

2. Independent summands
Supposé,, ..., &, are independent random variables. Define
1/2
lgl =Y "Ple&)| and gl := (ZPg(s,->2) | 2
i<n i<n

If eaché; has distributionP then||g||, =nP|g| and| g||3 = nPg?.

The argument leading to the maximal inequality makes use of independence onl
through a maximal inequality for finite sets of functions. The method of proof combines
an idea of Pisier [13] with the first step in the derivation of the Bennett inequality.
It depends on the elementary fact [14, Section 11.2] that the function defined by
E(x) :=2(e" — 1 —x)/x? for x #0, and£(0) = 1, is positive and increasing over the
whole real line.

LEMMA 3.-Supposé,, ..., &, are independent and is a finite set of functions, for
each of whicrsup, |g(x)| < g and|g|l2 <. Then

Pmax|8ng| Cos+/log(2#G) if B <§8/+/log(2#G) whereCo~ 1.718

Proof. —Write N for #G, the cardinality ofG. For a fixed functiorg with |g| < 8 and
llgll2 < 8, temporarily writeW; for g(&;) andu; for Pg(§;). For eachr > 0,

/ 1 1
P 2i<n Vi —H(1+t]P’W —HP’Zt W25(tW)) Hexp(zu, —IZPWZS(I,B))

which rearranges to the giveexp(tS,g) < exp(l 282€(tB)). Applying this bound for
+g, for eachg in G, we get

exp(tIP’ mgax|S,,g|) <P exp(t mgax|Sn g|) by Jensen’s inequality

< (PexptS,g) +Pexp(tS,(—g)))

g€g
< 2N exp@tzézé‘(tﬁ)).
Take logarithms then put= ./Iog(2N)/$ to get
1
IP’mgax|Sng| < 8+/log(2N) <1+ 55(,8«I09(2N)/8)>.

The asserted maximal inequality wit := 1+ 2£(1) follows. O
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The main parts of the proof will involve the calculation of boundsFsup. .z |S,7|
for (possibly infinite) setsR, typically consisting of truncated remainder functions
derived from various bracketing approximations & To reduce the calculations to
finite sets of functions, we will bound eachn absolute value by a truncated bracketing
functionb.

LEMMA 4.—Suppose a set of nonnegative functidhdominates a set of functions
R, in the sense that for each € R there is ab € B for which |r| < b. Then
SUp.r |Sur| < sup,cz|Sybl +2sup,.z11bll1-

Proof. —If [r| < bthen|S,r| < X iq, (IrEDI+PIr(E)D < 2, (0D +Pb(E)). O

The successive approximations will be combined in such a way that the bounding
functionsb are not only truncated above but also below, a subtlety that will allow us to
bound£! norms by£? norms.

LEMMA 5. —For each functiorb with finite £2 norm, ||b{|b| = ||bll2/t} 11 < t115]l2.

Proof. =P, ., [b@E) (16| = 16112/} S P X<, b(ED?/(IblI2/1). O

The inequalities from the three lemmas capture everything we have to know about th
{&;} and the norms in order to derive the main approximation result.

THEOREM 6. —Let N(x) denote the bracketing number of a set of functiéhsnder
the £2 norm from(2). For a fixeds > 0, defines; := §/2' and g; := 8;/H (n(5;)), with
n(y) :=N(y)N(y/2) and H(N) := ./log(2N). Define

A= }P’?ugsn(Rg,.(f){Ba,»(f) <Bi})l-
Then

1
Ao< Ay +T71 / H(N(y))dy foreachk.
S42
Remark— Of course a quantity such as gup|S,g| need not be measurabledfis

uncountable. The expectation in the definitiongfshould actually be interpreted as an
outer expectation. In fact, most of the inequalities needed for the proofs involve uppel
bounds depending on only finite subsetsCdt P), for which the measurability problem
disappears.

Proof. —Construct the bracketing approximations for edghfori =0, 1,...,k. To
simplify notation, abbreviate(s;) to n; and definey; := H(n;). Similarly, abbreviate
A (f) to A;, and By (f) to B;, and R, (f) to R;, with the argumentf understood.
Notice that R;| < B;, which implies thaf|R; ||> < || B; ||2 < §;. Write T; for the truncation
region {Bs, (f) < B;} andmg(--) for Psup,.r|S,(---)|. With this notation we have
A; = mx(R;T;). Section 4 will show that the subadditivity property of the functional
mg is really what drives the argument.

The key idea behind the Seattle method is captured by a recursive equality,

RiTi=Ri1Tiv1— RiaTf Ty + (R — Rip)TiTip1 + RiT T, 4,
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which relates the truncated remainder terms for successive bracketing approximation:
Applying m £ to the sets of functions on both sides of this equality, we get

Ai <Aij1+mre(RiaT Tiva) + me((Ri — Ris)TiTig1) + me (R TTS,).  (3)

Together the three Lemmas will provide bounds for the second, third, and fourth term:
on the right-hand side.

Contribution of the third term fron§3). As f ranges over the sef, the truncated
difference function(R; — R;y1)T:T;1 1 = —(A; — A;.1)T; T, ;1 ranges over at most;
distinct functions. Moreover,

H(R Rl+1)TT+lH2 ”R ”2+ ”Rl+l||2 5 +8l+1

and
IR — Ri1|T;Ti 1 < BiT; + Bi11Tiv1 <Bi + Bit1
<8i/vi +0it1/Vivr < (8 +8i41)/H (ny).
Thus the set of function§(R; — R;11)T;T;11: f € F} satisfies the conditions of
Lemma 3, which gives

mz((R; — Riz) Ti Ti1) < Co(8; + 8i41) - (4)

Contribution of the second term fro{8). The set of function$R, 1T T;+1: f € F}is
potentially infinite, but it is dominated by the s&;,17°T;11: f € F}, which contains
at mostn; nonnegative functions, each bounded aboveshy and with £2 norm at
mosts; 1. Moreover, by splitting according to which & or B;, is larger, we get the
inequality

|Bisa T Traa|ly < || Bif Bi > B}l + || Bisa{ Biva > Bi}
<||Bi{B;i > |1Bill2/vi}||; + || Bi+a{Bisr > 2l Bisall2/vi} |4

1
<&y + §5i+l)/i by Lemma 5

From Lemmas 4 and 3 deduce that

1
mz(RipaT Ti1) < Codivayi + 2<5i Yi + §5i+1)/i>- 5)

Contribution of the fourth term fror(8). The argument is almost the same as for the
second term. Each of the dominating functiadhg; T, , is bounded above by;, has(?
norm at moss;, and

||BiT +1H1 ||B {B > lBl-'rl}H]_ + ||Bl+1{Bl+l > IBH—l}Hl l+1yi+l~
Again from Lemmas 4 and 3 deduce that

mz (R T TS ) < Codiyi + 108, 1yi41. (6)



D. POLLARD/ Ann. I. H. Poincaré — PR 38 (2002) 1039-1052 1045
Recursive inequalityFrom inequalities (3), (4), (5), and (6),
Ai < Aip1+ (5+6C0)8i11Yiv1 + 2084 2Vi41-

Subadditivity of the square-root function gives

Yi = \/'09(”(51‘)) < \/lOg(ZN(5i)) + \/'09(2N(5i+1)) < 2H (N(8i41))-
By repeated substitution we are then left with the inequality

k=1

Ao < A+ 2(10+ 12Co)(8i41 — 8i+2) H (N (8i+1)) +40(8;42 — 8i43) H (N (8;42)).
i—0

Monotonicity of the functiony — H (N (y)) lets us bound the summands by multiples
of integrals of the form[{§; 11 < y <38,;}H(N(y))dy, from which the assertion of the
theorem follows because 5912Cy ~ 70.62. O

COROLLARY 7.—-Under the conditions of the theoremyy < 71 [0/* H(N (y)) dy.

Proof. —Note that| R, T} | < Br — 0 ask — oo, implying thatA; — O for fixedn. O

3. Proof of Ossiander’sfunctional CLT

The theorem asserts convergence in distribution, @b a Gaussian proce$sf: f €
F}. To prove her theorem, Ossiander [12] needed to show

(a) finite dimensional convergende;, g: g € G} ~ {vg: g € G} for each finite subset
F;

(b) stochastic equicontinuity: for eagh> 0 ande > 0, there exists & > 0 for which
P{sup ;_gj<s [vaf — vagl > n} < ¢ for all n large enough. (The supremum runs
over all pairs of functions it whoseL?(P) distance is smaller thah)

The assumption of identical distributions for thg} is not crucial for the validity of

a fCLT. It ensures that (a) follows directly from the multivariate central limit theorem,
and it slightly simplifies the notation. Ossiander’s methods also work for more general
triangular arrays.

Square integrability of" ensures that, for each fixed> 0,

P{maxF (&) > e/} <nP(F >e\/n} < P(FY(F > ey/n}) >0 asn— oo.

The same assertion holds witleplaced by am, that tends to zero slowly enough. Thus
there exists a sequence of constamsof order d./n) for which max¢, F (&) < M,
with probability tending to one. Define

H="H,(8):={(f —F <M,}//n: f,ge FandP(f —g)* <8*}.

If we show that lim supPsup, .4, |S,h| — 0 asé — 0 then (b) will follow.
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To avoid confusion between norms, writg (f) and B;(f) for the approximating

functions and bracketing functions fof under the£2(P) norm. The corresponding
bracketing numbers are given by the functidp(.). If 7 = (f — g){F < M, }//n we
may take

Ay(h) = (A5 2(f) = A3 p(@)F < My} /+/n,
By (h) == (B 5(f) + B} ;2()){F < M, }//n.

The bracketing numbeN (y, H) for H under the| - || norm from (2) is then smaller
than N2(y/2)?. For y equal tos we can do much better by redefining (#) = 0 and
Bs(h) =2F{F < M,}//n, which givesN (8, H) = 1. Notice thatBs(h) < 2M,, //n —
0, which implies that{ B;(h) < Bo} is equal to the whole space whens large enough.
That is, we can eventually ignore the trunction factor in the definitioAgfand deduce
via Corollary 7 that

5/2

Psup|S.h| = Ag < 71/ \/10g(2N>(y)2)dy for large enough.
0

h<H

The integral on the right-hand side converges to zero $vith

Remark— We were able to argue directly via Corollary 7 because2bg(y)?)

increases like lo@N,(y)). For the analogous results in the next Section we might

not have the benefit of a logarithm to counter the squaring of the bracketing number
We could however argue directly from Theorem 6 using the method of Ledoux and
Talagrand [10, Theorem 11.6] to avoid the problem caused by working with sets of

differences.

4, Generalization

The three lemmas in Section 2 and the method of proof suggest that the theorem real

depends only on the relationship between a functianaknd the normgg|l; and|g||».

Indeed, the argument extends readily to more general functionals defined for giibsets
of a vector space of functiordg. There are also extensions to functionals with properties
analogous to tail probabilities and to more complicated truncation schemes, as in Birg

and Massart [5]; but, for simplicity of exposition, | describe only one generalization.

The role of the£? norm from Section 2 will be taken over by a general ndrm|
oni. In fact, we do not need all the properties of a norm: it will suffice thaf| is
subadditivethat is,|| g1 + g2Il < llg1ll + |lg2l for all g1, g2 € U. Similarly, the role of the
£* norm will be taken over by a second subadditive mapom ¢/ into R*. In place of
mz, consider a functionah that assigns a nonnegative numbeiG) to each subsef
of U. Assume that the following properties hold.

(i) if g1, g2eU andc e Rthengi{g> < c} el andgi{go > clel
(i) if |g1] < g2l pointwise then| gl < [lg2ll andp(g1) < p(g2)
(iii) if subsetsg, G’, G” of U are such that eaghin G can be written as a sugi+ g”,
with ¢’ € G andg” € G”, thenm(G) < m(G") + m(G")



D. POLLARD/ Ann. I. H. Poincaré — PR 38 (2002) 1039-1052 1047

(iv) there exist nonnegative, increasing functi@n@V) and H (N) for which: if G is
a finite subset of functions frod for each of whichi|g|| < § and sup |g(x)| <
B <3/G#HG) thenm(G) < §H (#9)
(v) if H dominateg7, in the sense that for eaghin G there is am in H for which
lgl < h, thenm(G) < m(H) + sup,cy o (h)
(vi) there is an increasing, nonnegative functibnfor which p(g{|g| > ligll/t}) <
llgllD(¢) for eachr > 0 andg € U.
Assumption (iii) is the subadditivity property that will allow us to develop a recursive
inequality analogous to (3). For example, any functional defined by takingyarorm
of sup,.;1S,¢l is subadditive in the sense of (iii). Assumption (iv) corresponds to
Lemma 3, but with the dual role of the functiqiilog(2N) split between two separate
functions,G and H. The extra generality is not needed for the examples discussed in
the present paper, but it does serve to clarify the two roles played¢/Ibg(2N) in
Theorem 6. Assumption (v) corresponds to Lemma 4, with a slight tidying of constants.
Assumption (vi) extends Lemma 5 by allowing a more subtle dependencg an
generalization motivated by the results of Doukhan, Massart, and Rio [7], as describe
in the next section. It implies that, for all nonnegatgseandg, in U,

p(g1{g2 > c}) < llgallD(llgll/c) + lig2ll D(lig2ll /), (7

an inequality derived via the subadditivity pfby splitting according to which of; or
g» is larger, as in the argument for the second term from (3) in Section 2.

THEOREM 8. —Let N(x) denote the bracketing number of a set of functighs U/
under the nornj - ||. Assume tha(i) through(vi) hold. For a fixeds > 0, defines; := §/2'
andB; :=38;/G(n(s;)), withn(y) := N(y)N(y/2). Define

Aii=m{Rs (/) {Bs,(f)<Bi}: feF}.

Then for some universal constafit

81
Ao< A+ C / H(n(y)) + D(2G(n(y)))dy for eachk.

S42

Outline of proof. -Define A;, B;, n;, R;, andT; as in the proof of Theorem 3. From
the recursive equality for the truncated remainger;, argue via (iii) that

A <A+ m{—Ri 1T Tyt feF}
+m{(R; — Riy)T;Ti1: f€F} +m{(RiTiT,€rl: feF}.
For the second term on the right-hand side, invoke (v) for the dominating set of functions
{Bi 11T T;11: f € F} then appeal to (7) to derive the bound
SivaH (n(8;)) + 811D (G (n(8i11)/2)) + 8: D (G (n(8))).

And so on, along the same lines as the proof of Theorents.
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5. Absoluteregularity

Doukhan, Massart, and Rio [7] — henceforth DMR - established a functional
central limit theorem for stationary, absolutely regular sequer{égs of random
elements of a Polish spack¥, each with distributionP. Their method fits into the
framework of Theorem 8 wittm(F) = Psup,.z|v, f| and p(g) := 2/nP|g|. With
small modifications, their Lemma 3 gives a maximal inequality as in (iv) and their
Lemma 4 gives (vi) for an unusud). This Section outlines the argument.

The definition of absolute regularity involves a decreasing sequence of mixing
coeficients{r,: ¢ =0,1,2,...}. We may assume that, = r(q), wherer(.) is a
continuous, decreasing function @& with »(0) = 1 andr(x) — 0 asx — oo. The
functionr has a right-continuous, decreasing “inverse” function, definedByu) :=
inf{x: r(x) <u}for 0 <u < 1. Similarly, the tail quantile functiow) , for a measurable
real functionf on X is defined by

Q) :=inf{x: P{|fI>x}<u} forO<u<Ll

If U is distributed Uniforng0, 1) then Q ;(U) has the same distribution &g| under

P, a representation that will be needed in Lemma 9. Following [16], DMR defined
I £1I1% := Jor~*(u)Q ;(u)?du for real measurable functions oti. The set/ of all f

for which || /|| < oo is a vector space for which assumptions (i) and (ii) hold.

As noted by DMR, the precise definition of absolute regularity of the sequence is
unimportant. It matters only that there exists a coupling with a process constructec
from independent random vectors, as follows. For any positive intgegéreak {&;}
into a sequence af-vectorsYy, Y, .... That is,Y; has components; for j € N; :=
{1+ (i —1)gq,....iq}. Then there exists a sequencege¥ectorsY;* for which: (a) Y,
has the same distribution &s for eachi; (b) P{Y; # Y} <rg;and (c)Y5:i=1,2,...}
are independentand so d&;_,: i =1,2,...}.

If the integerg lies in the range X ¢ < n, properties (a), (b) and (c) let us couple
the empirical process, with a sum of two processeg + v;*, with v constructed from
the &7 variables from the\>; blocks andv** constructed from the remaining variables,
leading to the inequality

Pmax|v,g| < Pmax|vig| + Pmax|vi*g| 4+ 28r,+/n if max|g| < B.
geg geg geg geg

If G is a set of at mosiV functions fromi/, each bounded in absolute value by a
constantg and with norm less thad, we may apply the method of Lemma 3 with
W; equal to a sumd_; (87 — Pg(éj))/ﬁ, first for even then for odd values of
i, in order to bound botfPexp(zv}g) and Pexp(rv;*g) by expressions of the form
exp(ct?||gl?E(c'qBt//n)), for constants: andc’. We then deduce that

cmﬁh) N ﬁr(q)\/ﬁ>
5/ 5 qly

wherecy andc; are constants andly = £(N) := /1+logN. (We could take/, as
J10g(2N), but the slightly larger value ensurég > 1 for all N > 1.) With a slight

Pmax|v,g| <605fN<1+8( (8)
g€y
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increase in the constants, inequality (8) also holds foah the continuous range
[1, n]. With an appropriate choice fat, the inequality will become the desired maximal
inequality (iv).

DMR established a functional central limit theorem for subsgtef ¢/ for which
folwmdx < oo, for the covering numbers under their new norm, and with
envelope £ for which ||F|| < co. They assumed that_, r, < oo, which implies
Jor~Xu)du < oo, thereby ensuring that the functioR(x) := 7™ r~1(u)du is
continuous and decreases to zeraxa®nds to infinity. With these functions, we can
define a suitablé for assumption (vi).

LEMMA 9. —For eachf in/ and eachx > 0 define|| £1|? := f3 r~(u) Q s )?du.
ThenP|fI{IfI> 1 flle/vVR@)} < fll/T(x)/x.

Proof. —First note that| f||? > R(x)Qf(r(x))Z, because) s is a decreasing function.
Thus the quantity on the left-hand side of the asserted inequality is less than

1 1
/Qf(u>{Qf(u>> Qf(r<x>)}du</Qf(u>{u<r<x>}du
0 0

1
g/\/r—l(u)/fo(u){u<r(x)}du,
0

the second inequality following from the fact that'(u) > x whenu < r(x). The
Cauchy—Schwarz inequality completes the proafi

If we replace] f || in the lemma by the larggff ||, we get a weaker inequality that
suggests we should defidzindirectly by putting

D(t) :=2v/nr(x)/x whent=+/R(x). 9)

The definition makes sense for alin the range X ¢ < /R (0). It will turn out that
we only need to consider such values ondeed, the largestneeded for the proofs is
2G (n;). We keep this value within the required range by definingV) := %«/R(qN)
for avaluegy that will be determined by the requirements of the maximal inequality (iv).
These choices giv® (2G(N)) = 2/nr(gn) /gy and Y G(N) < 2//qnr(gy), because
R(x) = xr(x) forall x > 0.

How should we choosg = gy to balance the requirements of assumptions (iv) and
(vi)? At best we can make the right-hand side of (8) smaller than a multiph# of
by keepingB/s smaller than a multiple of miy/n/(g€x), £n/(/nr,)). One term in the
minimum decreases ggets larger, the other increases. We get the largest ranggdor
by balancing the terms: choogesqual to the valugy for whichr(gy)/qny = €3 /n, an
equality that defines a unique value in the range:] when ¢2, < nr(1). (The upper
bound ongy comes from the fact tha&, /n > 1/n > r(n)/n.) ProvidedB/s is smaller
than YG(N) :=2/+/R(gn) < 2//qnr(gn), We then bound the right-hand side of (8)
for ¢ = gy by codly (1 + £(2c1) + 2). That is, assumption (iv) holds with/ (N) a
constant multiple of y andG(N) = %«/R(qN), provided we consider only values df
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for which ¢3, < nr(1). We also haveD (2G(N)) = 2¢,. An appeal to Theorem 8 then
gives the bound

§
Ao:=m(Ro(f){Bo(f) < Bo}) < Ax+C'J(8) whereJ(5) := /E(n(x)) dx.
0

The assumed finitenessﬁ«/log N(x, F)dx ensures thaf (§) converges to zero as
8 tends to zero. We have only to chodsso thatA, is suitably small and(n;)? < nr(1).
The largestk for which /né;, < J(8) will suffice if § is small enough. With that
choice we haveS; £(n;) < J(8) = o(1) = o(,/né), and, by (iv) and (vi) applied to
{(f — Ad)Bu(f) < B feF),

Ay <mg(Bi{By < Bi}) + Zﬁm}{:lXP (Bi{Bi < Bi}) < 8 H (Ny) + 24/néy,

which is smaller than some constant multiple/a8).

As in Section 3, we can eliminate the effect of the indicdiBs < o} from Aq by
means of an initial truncation based on the finitenesy fof. For each fixedC, the
sequenceV, = || F|,,/~/R(x,), wherex, is defined by the equalitiesx,)/x, = C/n,
has the property

PF{F > M,} <||F|l;,/7(x,)/x, =0(n" %) by Lemma9

If we let C tend to infinity slowly enough withe, we get sequencds,,} and{M,} for
whichnr(x,)/x, — oo and

P sup|v, (f{F > M,})| < 2¢/nPF{F > M,} — 0.
feF

Eventually M, will be smaller than the truncation levgp := 25/,/R(qx.(s)), N0 matter
how small we choosé. Indeed, g, is defined by the equality (gus))/qnis) =
£(n(8))/n = o(r(x,)/x,). Eventually we must have,s, > x, and henceR(g,:s)) <
R(x,). When we also havgF|,, < 26 then it follows thatM,, < Bo.

The rest of the argument leading to the functional central limit theorem follows the
method outlined in Section 3.

6. Some history

Bracketing arguments have long been used to prove fCLTs: for example, the origina
paper of Donsker [6, near his Eq. 2.11] applied a version of the method.

Dudley [8] used the concept of metric entropy with bracketing for general classes
of sets in order to prove a fCLT for empirical processes indexed by classes of sets. H
later [9] extended the result to classes of functions with an envelope having gfinite
moment, for somep > 2. His method involved an initial truncation at a level much
smaller than,/n and it required an assumption on the bracketing numbers stronger thar
Ossiander’s condition.
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Pyke [15] used a similar truncation to prove a CLT for processes indexed by sets. Thi
result was refined first by Bass and Pyke [4], and then by Alexander and Pyke [1]. The
second paper added the refinement of multiple levels of truncation (the stratificatior
argument on page 589), to partition a partial-sum process into a sum of bounde
processes, thereby obtaining the fCLT under the natural second moment and bracketir
conditions. They cited the preprint form of Bass [3], who also applied stratification to
prove a functional LIL for set-indexed processes. Ossiander [12, pp. 899, 903] stated the
her chaining argument was adapted from the Bass paper. In a private communicatior
Ron Pyke explained to me that the history is more complicated than suggested by th
publication dates:

Ken Alexander saw the paper of Pyke [15], and realized how to improve the truncation
technique used there. He applied the improvement in a 1984 paper. With Pyke h
wrote another paper [1] — see the remarks at the end of the paper. Bass [3] applie
the truncation to set-indexed partial-sum processes (the paper was not written u
before December 1984). Bass and Pyke [4] (in a paper written around 1983, Pyke
believes) recognized the truncation problem; but they didn't use the best form of
truncation. Mina Ossiander worked on her dissertation during the spring and summe
of 1984, producing her thesis — later published as Ossiander [12] — and a technice
report in November—December of that year. Starting from the preprint form of [1],
she developed a more general form of the truncation argument. There were man
discussions between Ossiander and Bass. The final publication dates are not indicati
of the true order in which work was carried out, because of delays in refereeing.

In view of this information, | think it is fair to spread the credit for the truncation
method between all the members of the Seattle group.

My involvement with the method began in early 1985, with a study of [3] and
Ossiander’s thesis. By mid 1987, | realized that the argument could be thought of as
recursive procedure, an idea that | circulated in unpublished preprints. The generalizatio
to dependent variables by Doukhan, Massart, and Rio [7] later suggested to me th
possibility of the abstract version of the method, as presented in Section 4. The metho
has also been extended by Andersen et al. [2], replacing the concept of a bracketin
number by the concept of a majorizing measure.
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