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ABSTRACT. – We develop a Hungarian construction for the partial sum process of independent
non-identically distributed random variables. The process is indexed by functionsf from a class
H, but the supremum overf ∈ H is taken outside the probability. This form is a prerequisite
for the Komlós–Major–Tusnády inequality in the space of bounded functionalsl∞(H), but
contrary to the latter it essentially preserves the classicaln−1/2 logn approximation rate over
large functional classesH such as the Hölder ball of smoothness 1/2. This specific form of a
strong approximation is useful for proving asymptotic equivalence of statistical experiments.
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RÉSUMÉ. – Nous développons une construction hongroise pour des sommes partielles de
variables aléatoires indépendantes non identiquement distribuées. Le processus est indexé par les
fonctionsf d’une classeH mais le suprémum enf ∈ H est pris à l’extérieur de la probabilité.
Cette forme est un prérequis pour l’inégalité de Komlós–Major–Tusnády dans l’espace des
fonctionnelles bornéesl∞(H), mais contrairement à cette dernière, elle préserve pour l’essentiel
la vitesse d’approximation classique enn−1/2 logn pour une large classe d’espaceH, y compris
la boule hölderienne d’indice 1/2. Cette forme spécifique d’approximation est utile pour
démontrer l’équivalence asymptotique des expériences statistiques.
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1. Introduction

LetXi , i = 1, . . . , n, be a sequence of independent random variables with zero means
and finite variances. LetH be a class of real valued functions on the unit interval[0,1]
andti = i/n, i = 1, . . . , n. Thepartial sum process indexed by functionsis the process

Xn(f )= n−1/2
n∑
i=1

f (ti)Xi, f ∈H.

Supposef ∈ H are uniformly bounded; thenXn = {Xn(f ), f ∈ H} may be regarded
as a random element with values inl∞(H)- the space of real valued functionals onH.
The classH is Donsker ifXn converges weakly inl∞(H) to a Gaussian process. We
are interested in associated coupling results, i.e. in finding versions ofXn and of this
Gaussian process on a common probability space which are close as random variables.
The standard coupling results of the type “nearby variables with nearby laws” (cf.
Dudley [3], Section 11.6) naturally refer to the sup-metric inl∞(H): for an appropriate
version ofXn (X̃n = {X̃n(f ), f ∈ H}, say) and of a Gaussian processÑn = {Ñn(f ),
f ∈H}, we have

P ∗(sup
f∈H

∣∣X̃n(f )− Ñn(f )
∣∣> x)→ 0, x > 0, (1.1)

whereP ∗ is the outer probability on the common probability space (cf. van der Vaart
and Wellner [20], 1.9.3, 1.10.4). Here we shall consider a different type of coupling. We
are looking for versions̃Xn, Ñn such that

sup
f∈H

P
(∣∣X̃n(f )− Ñn(f )

∣∣> x)→ 0, x > 0, (1.2)

and such that additional exponential bounds of the Komlós–Major–Tusnády type are
valid. Note that (1.2) is weaker than (1.1) since the supremum is taken outside the
probability. More specifically we are interested in a construction involving also a rate
sequencern → 0 such that

sup
f∈H

P
(
r−1
n

∣∣X̃n(f )− Ñn(f )
∣∣> x)� c0 exp{−c1x}, x > 0. (1.3)

Herec0, c1 are constants depending on the classH.
The classical results of Komlós, Major and Tusnády ([9] and [10]) refer to a sup

inside the probability forH = H0, whereH0 is the class of indicatorsf (t)= 1(t � s),
s ∈ [0,1]. The following bound was established: forrn = n−1/2

P
(
r−1
n sup

f∈H0

∣∣X̃n
(
f
)− Ñn(f )

∣∣> x)� c0 exp{−c1x}, x � c2 logn, (1.4)

providedX1, . . . ,Xn is a sequence of i.i.d. r.v.’s fulfilling Cramér’s condition

E exp{tXi}<∞, |t| � t0, i = 1, . . . , n, (1.5)
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wherec0, c1, c2 are constants depending on the common distribution of theXi . Note
that rn in (1.4) can be interpreted as a rate of convergence in the CLT overl∞(H0).
The main reason for a construction with the supremum outside the probability is that an
extension of(1.4) to larger functional classesH in general implies a substantial loss of
approximation ratern (cp. Koltchinskii ([8], Theorem 11.1). Our goal is a construction
where the almostn−1/2-rate of the original KMT result is preserved despite the passage
to large functional classesH like Lipschitz classes.

Couplings of the type (1.3) have first been obtained by Koltchinskii ([8], Theorem 3.5)
and Rio [18] for the empirical process of i.i.d. random variables, as intermediate results.
They can be extended to a full functional KMT result, i.e. to a coupling inl∞(H) with
exponential bounds, but an additional control of the size of the functional classH is
required, usually in terms of entropy conditions. A reduced approximation ratern may
occur as a result.

We carry over the functional strong approximation result from the empirical process to
the partial sum process under very general conditions: the distributions ofXi are allowed
to be nonidenticaland nonsmooth. That setting substantially complicates the task of
a Hungarian construction. We can rely on the powerful methodology of Sakhanenko
[19], who established the classical coupling (1.4) for nonidentical and nonsmooth
summands. We stress however that for the functional version (1.3) we need to perform
the construction entirely anew. Our results relate to Sakhanenko’s [19] as Koltchinskii’s
Theorem 3.5 relates to Komlós, Major and Tusnády ([9] and [10]).

Further motivational discussion can be grouped under headings (A)–(C) below.
(A) Statistical applications. The Komlós–Major–Tusnády approximation has recently

found an application in the asymptotic theory of statistical experiments. In [14] the
classical KMT inequality for the empirical process was used to establish that a
nonparametric experiment of i.i.d. observation on an interval can be approximated, in
the sense of Le Cam’s deficiency distance, by a sequence of signal estimation problems
in Gaussian white noise. The two sequences of experiments are then asymptotically
equivalent for all purposes of statistical decision with bounded loss. This appears as
a generalization of Le Cam’s theory of local asymptotic normality, applicable to ill-
posed problems like density estimation. In particular it implies a nonparametric version
of the Hàjek–Le Cam asymptotic minimax theorem. The control of the Le Cam distance
is given by a relation to likelihood processes (see Le Cam and Yang [12]). Assume
that there is an elementf0 ∈� such that the measures in the experimentsEn andGn are
absolutely continuous w.r.t.Pn

f0
andQn

f0
respectively. If there are versionsdP̃ n

f /dP̃
n
f0

and

dQ̃n
f /dQ̃

n
f0

of the likelihood ratiosdP n
f /dP

n
f0

anddQn
f /dQ

n
f0

on a common probability
space(�n,Fn,P n), then

�
(
En,Gn

)
�

√
2 sup
f∈�

EnP

(√
dP̃ n

f /dP̃
n
f0

−
√
dQ̃n

f /dQ̃
n
f0

)2

(here the expected value on the right side coincides with the Hellinger distance between
P̃ n
f andQ̃n

f ). Thus asymptotic equivalence of experimentsEn andGn requires a “good”
coupling of the corresponding likelihood ratiosdP n

f /dP
n
f0

anddQn
f /dQ

n
f0

on a common
probability space. This is achieved by constructing the linear terms (inf − f0) in the
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expansions of the log-likelihoods such that they are close as random variables; hence the
demand for an inequality (1.3) with the supremum outside the probability.

The Hungarian construction had been applied in statistics before, mostly for results
on strong approximation of particular density and regression estimators (cf. Csörgő and
Révész [2]). It is typical for these results that the “supremum inside the probability”
is needed; for such an application of the functional KMT cf. Rio [18]. However for
asymptotic equivalence of experiments, it turned out that it is sufficient, and indeed
preferable, to have a coupling like (1.3) with the “supremum outside the probability”.
Applying theorem 3.5 of Koltchinskii [8], it became possible in [15] to extend the
scope of asymptotic equivalence, for the density estimation problem, down to the
limit of smoothness 1/2. Analogously the present result is essential for establishing
asymptotic equivalence of smooth nongaussian regression models to a sequence of
Gaussian experiments, cf. Grama and Nussbaum [6]. The original result of Komlós,
Major and Tusnády on the partial sum process [9] can be used for asymptotic equivalence
in regression models, but presumably with a non-optimal smoothness limit as in [14].

(B) Nonidentical and nonsmooth distributions. The assumption of identically distrib-
uted r.v.’s substantially restricts the scope of application of the classical KMT inequality
for partial sums. However this assumption happens to be an essential point in the origi-
nal proof by Komlós, Major and Tusnády and also in much of the subsequent work. The
original bound was extended and improved by many authors. Multidimensional versions
were proved by Einmahl [4] and Zaitsev [22], [23] with a supremum over the class of
indicatorsH0. A transparent proof of the original result was given by Bretagnolle and
Massart [1]. We would like to mention the series of papers by Massart [13] and Rio
[16], [17]. They treat the case ofRk-valued r.v.’sXi , indexed inZ

d+ with a supremum
taken over classesH of indicator functionsf = 1S of Borel setsS satisfying some reg-
ularity conditions. Condition (1.5) is also relaxed to moment assumptions, but identical
distributions are still assumed.

Although there are no formal restrictions on the distributions ofXi when performing
a Hungarian construction, it is not possible to get the required closeness between the

constructed r.v.’sX̃i
d= Xi and their normal counterpartsNi if the r.v.’s Xi are non-

identically and non-smoothly distributed (see Section 4). This can be argued in the
following way (see Sakhanenko [19]). Let us consider the sumS = X1 + · · · + Xn,
whereXi takes values±(1+ 2−i ). Then we can identify each realizationXi by knowing
only S. In the dyadic Hungarian scheme, the conditional distribution ofX1 +· · ·+X[n/2]
givenS is considered and used for coupling with a Gaussian random variable. However
this distribution is now degenerate and hence not useful for coupling. This problem does
not appear in the i.i.d. case, due to the exchangeability of theXi .

We adopt a method to overcome this difficulty proposed by Sakhanenko [19]. In his
original paper Sakhanenko treats the case of independent non-identically distributed
r.v.’s for a class of indicators of intervalsH = H0. Here we consider the problem in
another setting:H = H(1/2,L) whereH(1/2,L) is a Hölder ball with exponent 1/2
and the sup is outside the probability, i.e. we give an exponential bound for the quantity
(1.3) uniformly in f over the set of functionsH(1/2,L). One complication which

then appears is that the pairs(X̃i , W̃i), i = 1, . . . , n, of r.v.’s X̃i
d= Xi and W̃i

d= Wi ,
i = 1, . . . , n, constructed on the same probability space by the KMT method are no
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longer independent, even though̃Xi , i = 1, . . . , n, andW̃i , i = 1, . . . , n, are sequences
of independent r.v.’s. To deal with this we have to develop additional properties of the
Hungarian construction which are not used in the classical setting (see Lemma 5.5 for
details).

(C) Coupling from marginals. A weaker coupling ofX̃n and Ñn can be obtained
as follows. Assume for a moment that the r.v.’sXi are uniformly bounded:|Xi| � L,
i = 1, . . . , n, and also that‖f ‖∞ � L, f ∈ H. Take a finite collection of functions
H00 = (fj)j=1,...,d ⊂ H and considerZi = (f (ti)Xi)f∈H00 as random vectors inRd .
Reasoning as in Fact 2.2 of Einmahl and Mason [5] (using the result of Zaitsev [21]
on the Prokhorov distance between the law of

∑n
i=1Zi and a Gaussian law) we infer that

for all suchH00 there are versions̃Xn(f ), Ñn(f ), f ∈H00 (depending onx) such that

P
(
n1/2 max

f∈H00

∣∣X̃n(f )− Ñn(f )
∣∣� x

)
� c0 exp

(−c1xL
−2), x � 0. (1.6)

This yields (1.3) with ratern = n−1/2 for every finite classH00 ⊂ H of sized, but with
constantsc0, c1 depending ond. Hence any attempt to constructX̃n(f ) andÑn(f ), on
the full classH from (1.6) is bound to entail a substantial loss in ratern; but laws of
the iterated logarithm can be established in this way (cf. Einmahl and Mason [5]). Thus,
to obtain (1.3) forrn = n−1/2 log2n and a full Hölder classH(1/2,L), the shortcut via
(1.6) appears not feasible, and we revert to a direct KMT-type construction.

In order to keep the proof somewhat transparent we do not look for optimal
logarithmic terms, but we believe that the optimal rate can be obtained by using the
very delicate technique of the paper [19]. The main idea is, roughly speaking, to
consider somesmoothedsequences of r.v.’s instead of the initialunsmoothedsequence
X1, . . . ,Xn, and to apply the KMT construction for the smoothed sequences. This we
perform by substituting normal r.v.’sNi for the original r.v.’sXi , for even indicesi = 2k
in the initial sequence. Thus we are able to construct one half of our sequence and
combine it with a Haar expansion of the functionf. For the other half we apply the same
argument which leads to a recursive procedure. It turns out that this kind of smoothing
is enough to obtain “good” quantile inequalities although it gives rise to an additional
logn term. On the other hand the usual smoothing technique (of each r.v.Xi individually)
fails. Unfortunately even the above smoothing procedure applied with normal r.v.’s is not
sufficient to obtain the best power for the logn in the KMT inequality for non-identically
distributed r.v.’s. An optimal approach is developed in the paper of Sakhanenko [19] and
uses r.v.’s constructed in a special way instead of the normal r.v.’s. Roughly speaking it
corresponds to taking into consideration the higher terms in an asymptotic expansion for
the probabilities of large deviations, which dramatically complicates the problem. For
more details we refer the reader to this beautiful paper.

Nevertheless we would like to point out that the additional logn term which appears
in our KMT result does not affect the eventual applications that we have in mind, i.e.
asymptotic equivalence of sequences of nonparametric statistical experiments. We also
believe that a stronger version of this result (with a supremum inside the probability)
might be of use for constructing efficient kernel estimators in nonparametric models.
But such an extension is beyond of the scope of the paper.
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2. Notation and main results

Let n ∈ {1,2, . . .}. Suppose that on the probability space(�′,F ′,P ′) we are given a
sequence of independent r.v.’sX1, . . . ,Xn such that

E′Xi = 0, Cmin �E′X2
i � Cmax, i = 1, . . . , n,

whereCmin<Cmax are some positive absolute constants. HereafterE′ is the expectation
under the measureP ′. Assume also that the following extension of a condition due to
Sakhanenko [19] holds true:

λnE
′|Xi|3 exp

{
λn|Xi |}�E′X2

i , i = 1, . . . , n, (2.1)

whereλn is a sequence of real numbers satisfying 0< λn < λ, n� 1, for some positive
absolute constantλ. Along with this, assume that on another probability space(�,F,P )
we are given a sequence of independent normal r.v.’sN1, . . . ,Nn such that

ENi = 0, EN2
i =E′X2

i ,

for all i = 1, . . . , n. HereafterE is the expectation under the measureP .
Let H(1/2,L) be the Hölder ball with exponent 1/2, i.e. the set of real valued

functionsf defined on the unit interval[0,1] and satisfying the following conditions∣∣f (x)− f (y)
∣∣� L|x − y|1/2, ‖f ‖∞ �L/2,

whereL is a positive absolute constant.
Let ti = i/n, i = 1, . . . , n, be a uniform grid in the unit interval[0,1]. The notation

Y
d=X for random variables means equality in distribution. The symbolc (with possible

indices) denotes a generic positive absolute constant (more precisely this means that it
is a function only of the absolute constants introduced before).

The main result of the paper is the following.

THEOREM 2.1. – Let n � 2. A sequence of independent r.v.’s̃X1, . . . , X̃n can be

constructed on the probability space(�,F,P ) such thatX̃i
d=Xi , i = 1, . . . , n, and

sup
f∈H(1/2,L)

P

(∣∣∣∣∣
n∑
i=1

f (ti)(X̃i −Ni)

∣∣∣∣∣> x log2n

λn

)
� c1 exp{−c2x}, x � 0.

Remark2.1. – In the above theoremXi , i = 1, . . . , n, are not supposed to be
identically distributed nor to have smooth distributions, although the result is new even
in the case of i.i.d. r.v.’s. The r.v.’s̃X1, . . . , X̃n constructed are functions of the r.v.’s
N1, . . . ,Nn only, so that no assumptions on the probability space(�,F,P ) are required
other than existence ofN1, . . . ,Nn.

Remark2.2. – The use of condition (2.1) instead of a more familiar Cramér type
condition is motivated by the desire to cover also the case of non-identically distributed
r.v.’s with subexponential moments, which corresponds toλn → 0. This case cannot be
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treated under Cramér’s condition, but it is important since it essentially includes the case
of non-identically distributed r.v.’s with finite moments.

Theorem 2.1 can be formulated in the following equivalent form.

THEOREM 2.2. – Let n � 2. A sequence of independent r.v.’s̃X1, . . . , X̃n can be

constructed on the probability space(�,F,P ) such thatX̃i
d= Xi , i = 1, . . . , n, and

for any t satisfying|t| � c1

sup
f∈H(1/2,L)

E exp

{
t
λn

log2n

n∑
i=1

f (ti)(X̃i −Ni)

}
� exp

{
c2t

2}.
Let us formulate yet another equivalent version of Theorem 2.1. Assume that on the

probability space(�′,F ′,P ′) we are given a sequence of independent r.v.’sX1, . . . ,Xn
such that for alli = 1, . . . , n

E′Xi = 0, λ2
nCmin �E′X2

i �Cmaxλ
2
n, (2.2)

whereCmin<Cmax are positive absolute constants andλn is a sequence of real numbers
0< λn � 1, n � 1. Assume also that the following condition due to Sakhanenko [19]
holds true:

λE′|Xi|3 exp
{
λ|Xi|}�E′X2

i , i = 1, . . . , n, (2.3)

where λ is a positive absolute constant. Suppose that on another probability space
(�,F,P ) we are given a sequence of independent normal r.v.’sN1, . . . ,Nn such that
for i = 1, . . . , n

ENi = 0, EN2
i =E′X2

i . (2.4)

THEOREM 2.3. – Let n � 2. A sequence of independent r.v.’s̃X1, . . . , X̃n can be

constructed on the probability space(�,F,P ) such thatX̃i
d= Xi , i = 1, . . . , n, and

for any t satisfying|t| � c1

sup
f∈H(1/2,L)

E exp

{
t

log2n

n∑
i=1

f (ti)(X̃i −Ni)

}
� exp

{
c2t

2}.
We shall give a proof of Theorem 2.3 in Section 6.
Now we turn to a particular case of the above results. Assume that the sequence of

independent r.v.’sX1, . . . ,Xn is such that

E′Xi = 0, Cmin �E′X2
i � Cmax, i = 1, . . . , n, (2.5)

for some positive absolute constantsCmin < Cmax. Assume also that the following
Cramér type condition holds true:

E′ exp
{
C1|Xi |}� C2, i = 1, . . . , n, (2.6)

whereC1 andC2 are positive absolute constants.
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THEOREM 2.4. –Let n � 2. A sequence of independent r.v.’s̃X1, . . . , X̃n can be

constructed on the probability space(�,F,P ) such thatX̃i
d=Xi , i = 1, . . . , n, and

sup
f∈H(1/2,L)

P

(∣∣∣∣∣
n∑
i=1

f (ti)(X̃i −Ni)

∣∣∣∣∣> x log2n

)
� c1 exp{−c2x}, x � 0.

To deduce this result from Theorem 2.1, it suffices to note that Sakhanenko’s condition
(2.3) holds true withλn = const depending onCmin, C1 andC2, under (2.5) and (2.6).

Remark2.3. – It should be mentioned that Sakhanenko’s condition (2.3) holds true
for the normal r.v.’sN1, . . . ,Nn only if the constantλ is small enough, namely if
λ � c

(
EN2

i

)−1/2
. Since the functionα|x|3 exp(α|x|) is increasing inα, the condition

(2.3) holds true for anyλ� λ′ if it holds true with someλ= λ′. Therefore without loss
of generality it can be assumed that the constantλ fulfills λ � c/Cmax � c

(
E′X2

i

)−1/2
,

i = 1, . . . , n, thus ensuring that (2.3) holds true also forN1, . . . ,Nn.

3. Elementary properties of Haar expansions

For the following basic facts we refer to Kashin and Saakyan [7]). The Fourier–
Haar basis on the interval[0,1] is introduced as follows. Consider the dyadic system
of partitions by setting

sk,j = j2−k,

for j = 1, . . . ,2k , and

�k,1 = [0, sk,1], �k,j = (sk,j−1, sk,j ], (3.1)

for j = 2, . . . ,2k , wherek � 0. Define Haar functions via indicators 1(�k,j )

h0 = 1(�0,1), hk,j = 2k/2
(
1(�k+1,2j−1)− 1(�k+1,2j )

)
, (3.2)

for j = 1, . . . ,2k andk � 0.
If f is a function fromL2([0,1]) then the following Haar expansion

f = c0(f )h0 +
∞∑
k=0

2k∑
j=1

ck,j (f )hk,j ,

holds true with Fourier–Haar coefficients

c0(f )=
1∫

0

f (u)h0(u) du, ck,j (f )=
1∫

0

f (u)hk,j (u) du, (3.3)
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for j = 1, . . . ,2k andk � 0. Along with this, consider the truncated Haar expansion

f
m

= c0(f )h0 +
m−1∑
k=0

2k∑
j=1

ck,j (f )hk,j , (3.4)

for somem� 1.

PROPOSITION 3.1. – For f ∈H(1/2,L) we have∣∣c0(f )
∣∣� L/2,

∣∣ck,j (f )∣∣� 2−3/2L2−k,

for k = 0,1, . . . andj = 1, . . . ,2k .

Proof. –It is easy to see that

ck,j (f )= 2k/2
( ∫
�k+1,2j−1

f (u) du−
∫

�k+1,2j

f (u) du

)
,

= 2k/2
∫

�k+1,2j−1

(
f (u)− f

(
u+ 2−(k+1)))du.

Sincef is in the Hölder ballH(1
2,L) we get∣∣ck,j (f )∣∣� 2k/2 sup

u∈�k+1,2j−1

∣∣f (u)− f
(
u+ 2−(k+1))∣∣ ∫

�k+1,2j−1

du

� 2k/2L2−(k+1)/22−(k+1) � 2−3/2L2−k. ✷
Next we give an estimate for the uniform distance betweenf andfm.

PROPOSITION 3.2. –For f ∈H(1/2,L) we have

sup
0�t�1

∣∣f (t)− fm(t)
∣∣� L2−m/2.

Proof. –It is easy to check (see for instance Kashin and Saakyan [7], p. 81) that,
whenevert ∈�m,j ,

fm(t)= 2m
∫

�m,j

f (s) ds,

for j = 1, . . . ,2m, which gives usfm(t)= f (t̃m,j ), with somẽtm,j ∈�m,j . Sincef (t) is
in the Hölder ballH(1

2,L), we obtain for anyj = 1, . . . ,2m andt ∈�m,j∣∣f (t)− fm(t)
∣∣= ∣∣f (t)− fm(t̃m,j )

∣∣� L|t − t̃m,j |1/2 �L2−m/2. �

4. Background on quantile transforms

Let (�′,F ′,P ′) be a probability space. Letλ be a real number such that 0< λ<∞.
Denote byD(λ) the set of all r.v.’sS on the probability space(�′,F ′,P ′) which can be
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represented as a sumS = X1 + · · · +Xn of some independent r.v.’s on(�′,F ′,P ′) for
somen� 1, satisfying relations (4.1), (4.2) below:

• The r.v.’sX1, . . . ,Xn have zero means and finite variances:

E′Xi = 0, 0<E′X2
i <∞ (4.1)

for any i = 1, . . . , n.
• Sakhanenko’s condition

λE′|Xi |3 exp
{
λ|Xi |}<E′X2

i , (4.2)

is satisfied for alli = 1, . . . , n.
Let µ be a real number satisfying 0< µ <∞. By D0(λ,µ) we denote the subset of

all r.v.’s S ∈ D(λ) which additionally satisfy the following smoothness condition (4.3):
• For any 0< ε < 1, we have

sup
|h|�ε

∫
|t |>ε

∣∣∣∣E′ exp{(it + h)S}
E′ exp{hS}

∣∣∣∣dt � µ

εE′S2
, (4.3)

where i= √−1.

Remark4.1. – In the sequel we shall assume thatµ is a positive absolute constant,
and therefore, we shall drop the dependence onµ in the notation forD0(λ,µ), i.e. we
write for shortD0(λ)= D0(λ,µ).

We now introduce thequantile transformationand the associated basic inequality (see
Lemma 4.1). Assume that on probability space(�′,F ′,P ′) we are given an arbitrary r.v.
X of mean zero and finite variance:E′X = 0 andE′X2 <∞. Assume that on another
probability space(�,F,P ) we are given a normal r.v.N with the same mean and
variance:EN = 0 andEN2 =E′X2. LetFX(x) and+N(x) be the distribution functions
ofX andN respectively. Note that the r.v.U =+N(N) is distributed uniformly on[0,1].
Define the r.v.X̃ to be the solution of the equation

FX(X̃)=+N(N)=U.

The r.v.X̃ is called a quantile transformation ofN . It is easy to see that a solutioñX
always exists and has distribution functionF , although it need not be unique. In the case
of non-uniqueness, we choose one of the possible solutions.

The following assertion follows from the results in Sakhanenko [19] (see Theorem 4,
p. 10).

LEMMA 4.1. – SetB2 = E′X2 = EN2. In addition to the above suppose thatX ∈
D0(λ). Then

|X̃−N | � c1

λ

{
1+ X̃2

B2

}
,

provided|X̃| � c2λB
2 andλB � c3, wherec1, c2 andc3 are positive absolute constants.



I. GRAMA, M. NUSSBAUM / Ann. I. H. Poincaré – PR 38 (2002) 923–957 933

Let us now introduce theconditional quantile transformationand the associated basic
inequality (Lemma 4.3 below).

Assume that on the probability space(�′,F ′,P ′) we are given two independent r.v.’s
X1, X2 of means zero and finite variances:E′Xi = 0 andE′X2

i < ∞, for i = 1,2.
Assume further that on another probability space(�,F,P ) we are given two normal
r.v.’sN1,N2 with the same means and variances:ENi = 0 andEN2

i =E′X2
i , for i = 1,2.

SetX0 = X1 + X2 andN0 = N1 + N2. DenoteBi = E′X2
i , α1 = B1/B2, α2 = B2/B1.

Suppose that we have constructed aX̃0 having the same distribution asX0, and which
depends only onN0 and on some random vectorW . Suppose thatN1 andN2 do not
depend onW . We wish to constructX1 andX2. Let FT0|X0(x|y) be the conditional
distribution function ofT0 = α2X1 − α1X2 givenX0 = y and+V0(x) be the distribution
function of the normal r.v.V0 = α2N1−α1N2. DefineT̃0 to be the solution of the equation

FT0|X0(T̃0|X̃0)=+V0(V0)=U.

The r.v.T̃0 is called a conditional quantile transformation ofV0 givenX̃0.

PROPOSITION 4.2. – SetX̃1 = α−1
0 (T0 +α1X̃0) andX̃2 = α−1

0 (T0 − α2X̃0). ThenX̃1

and X̃2 are independent and such that̃X1
d= X1, X̃2

d= X2. MoreoverX̃1 and X̃2 are
functions of the r.v.’s̃X0, N1 andN2 only.

Proof. –ConsiderU =+(V0). It is clear that the distribution ofU is uniform on[0,1].
SinceV0 = α2N1 − α1N2 andN0 = N1 + N2 are normal and uncorrelated,U andN0

are independent. Since(N1,N2) does not depend onW , we conclude thatU does not
depend onN0 andW . But X̃0 is a function ofN0 andW only. HenceU andX̃0 are also
independent.

Next, since the uniform r.v.U does not depend oñX0, we easily check that the
distribution ofT̃0 givenX̃0 = y, for any realy, is exactlyFT0|X0(·|y). Taking into account

that X̃0
d= X0, we conclude that the two-dimensional distributions of the pairs(T̃0, X̃0)

and(T0,X0) coincide. From this we obtain in particular thatX̃1 andX̃2 are independent

and thatX̃1
d= X1, X̃2

d= X2. Moreover it is obvious from the construction thatX̃1 and
X̃2 are functions of̃X0, N1 andN2 only. ✷

The following assertion follows from the results in Sakhanenko [19] (see Theorem 6,
p. 20).

LEMMA 4.3. –SetB = B1B2/B0. In addition to the above suppose thatX1,X2 ∈
D0(λ). Then

|T̃0 − V0| � c1

λ

B0

B

{
1+ T̃ 2

0

B2
+ X̃2

0

B2

}
,

provided |T̃0| � c2λB
2, |X̃0| � c2λB

2 and λB � c3, wherec1, c2 and c3 are absolute
constants.
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5. A construction for non-identically distributed r.v.’s

In this section we assume that we are given a sequence of independent r.v.’sXi ,
i = 1, . . . , n, satisfying (2.2) and (2.3). We shall construct a version of this sequence
and an appropriate sequence of independent normal r.v.’sNi , i = 1, . . . , n, on the same
probability space such that these are as close as possible. More precisely, the construction
is performed so that the quantile inequalities in Section 4 are applicable. Of course
the sequences which we obtain are dependent. To assure that this dependence remains
under control, we partition the initial sequence into dyadic blocks with similar size of
variances. Some prerequisites for this are given in the next section. The construction
itself is performed in Section 5.2.

5.1. A dyadic blocking procedure

In this section we exhibit a special partition of the initial sequence into dyadic blocks
so that the sums of theXi inside the blocks at any dyadic level have approximately the
same variances. This will be used for proving quantile inequalities in Section 5.4 and
some exponential bounds in Section 6 (see Lemma 6.4 and Proposition 6.7).

Assume thatn > nmin � 1, wherenmin is an absolute constant whose precise value
will be indicated below. SetM = [log2(n/nmin)]. It is clear thatM � 0 andnmin2M �
n < nmin2M+1. Let JM = {1, . . . , n} and define consecutivelyJm = {i: 2i ∈ Jm+1}, for
m = 0, . . . ,M − 1. Alternatively, for anym = 0, . . . ,M the set of indicesJm can be
defined as follows:

Jm = {i: 1� i2M−m � n
}
.

Let nm denote the last element inJm i.e. nm = #Jm. It is not difficult to see that
nmin � n0 � 2nmin.

Recall that each r.v.Xi is attached to a design pointti = i/n, i = 1, . . . , n. Set

tmi = ti2M−m, Xm
i =Xi2M−m, m= 0, . . . ,M, i ∈ Jm. (5.1)

Our next task is to split each sequenceXm
i , i ∈ Jm into dyadic blocks so that the sums

of Xm
i over blocks at a given resolution levelm have approximately the same variances.

To ensure this we shall introduce the strictly increasing functionbm(t) : [0,1] → [0,1],
which is related to the variances ofXm

i as follows:

bm(t)=
t∫

0

βm(s) ds

/ 1∫
0

βm(s) ds, t ∈ (0,1], bm(0)= 0,

where

βm(s)=
{
E′(Xm

i )
2, if s ∈ (tmi−1, t

m
i ], i ∈ Jm,

E′(Xm
nm
)2, if s ∈ (tnnm,1].

Let am(t) be the inverse ofbm(t), i.e.

am(t)= inf
{
s ∈ [0,1]: bm(s) > t}. (5.2)
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It is easy to see that condition (2.2) implies that bothbm(t) and am(t) are Lipschitz
functions: for anyt1, t2 ∈ [0,1], we have

|bm(t2)− bm(t1)| �Lmax|t2 − t1|, |am(t2)− am(t1)| � Lmax|t2 − t1|, (5.3)

whereLmax = Cmax/Cmin. Consider the dyadic scheme of partitions

�k,j , j = 1, . . . ,2k, k = 0, . . . ,M,

of the interval[0,1] as defined by (3.1). For anym= 0, . . . ,M , denote byImk,j the set of
those indicesi ∈ Jm for whichbm(tmi ) falls into�k,j , i.e.

Imk,j = {
i ∈ Jm: bm(t

m
i ) ∈�k,j

}
, j = 1, . . . ,2k, k = 0, . . . ,m.

Since�k,j = �k+1,2j−1 + �k+1,2j , it is clear thatImk,j = Imk+1,2j−1 + Imk+1,2j−1, for
j = 1, . . . ,2k . In particularJM = IM0,1 = {1, . . . , n}. We leave to the reader to show that
each setImk,j contains at least two elements, if the constantnmin is large enough.

PROPOSITION 5.1. –Assume thatnmin> 2Cmax/Cmin � 2. Then for anyj = 1, . . . ,2k ,
k = 0, . . . ,m,m= 0, . . . ,M , we have#Imk,j � 2.

In the sequel we shall assume thatn > nmin � 2Cmax/Cmin � 2. Now the sequence
Xm
i , i ∈ Jm can be split into dyadic blocks corresponding to the sets of indicesImk,j as

follows:

{
Xm
i : i ∈ Jm}=

2k∑
j=1

{
Xi: i ∈ Imk,j

}
, k = 0, . . . ,m.

Set

Xm
k,j = ∑

i∈Im
k.j

Xm
i , Bmk,j =E′(Xm

k,j

)2 = ∑
i∈Im

k.j

E′(Xm
i

)2
. (5.4)

The following assertions are crucial in the proof of our results, as shall be seen later. The
proofs being elementary are left to the reader.

PROPOSITION 5.2. –For anyk = 0, . . . ,M − 1 andj = 1, . . . ,2k we have∣∣Bmk+1,2j−1 −Bmk+1,2j

∣∣� cλ2
n. (5.5)

PROPOSITION 5.3. –For anyk = 0, . . . ,M − 1 andj = 1, . . . ,2k we have

c−1 � Bmk+1,2j−1/B
m
k+1,2j � c.

5.2. The construction

Recall that at this moment we are given just two sequences of independent r.v.’s:
Xi , i = 1, . . . , n, on the probability space(�′,F ′,P ′) andNi , i = 1, . . . , n, on the
probability space(�,F,P ). We would like to construct a sequence of independent
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r.v.’s X̃i , i = 1, . . . , n on the probability space(�,F,P ) such that each̃Xi has the
same distribution asXi and the two sequences̃Xi , i = 1, . . . , n, andNi , i = 1, . . . , n,
are as close as possible. Before proceeding with the construction we shall describe two
necessary ingredients: the dyadic scheme of Komlós, Major and Tusnády [9] and an
auxiliary construction.

5.2.1. The Komlós–Major–Tusnády dyadic scheme
In this section we shall describe a version of the construction appropriate for our

purposes.
Let ξm,j , j = 1, . . . ,2m, be a sequence of r.v.’s of zero means and finite variances given

on a probability space(�′,F ′,P ′), and letηm,j , j = 1, . . . ,2m, be a sequence of normal
r.v.’s with the same means and variances given on a probability space(�,F,P ). At this
moment it is not necessary to assume that these are sequences of independent r.v.’s. The
goal is to construct a version ofξm,j , j = 1, . . . ,2m, on the probability space(�,F,P ).
The new sequence will be denotedξ̃m,j , j = 1, . . . ,2m.

Set ξk,j = ξk+1,2j−1 + ξk+1,2j and ηk,j = ηk+1,2j−1 + ηk+1,2j , for j = 1, . . . ,2k and
k = 0, . . . ,m− 1. First definẽξ0,1 to be the quantile transformation ofη0,1, i.e. define
ξ̃0,1 to be the solution of the equation

Fξ0,1(ξ̃0,1)=+η0,1
(η0,1)

where Fξ0,1(x) is the distribution function ofξ0,1, and +η0,1(x) is the distribution
function of η0,1 (see Section 4). Suppose that for somek = 0, . . . ,m − 1 the r.v.’s
ξ̃k,j , j = 1, . . . ,2k , have already been constructed, and the goal is to constructξ̃k+1,j ,
j = 1, . . . ,2k+1. To this end set forj = 1, . . . ,2k

Vk,j = αk+1,2jηk+1,2j−1 − αk+1,2j−1ηk+1,2j , (5.6)

where

αk+1,2j−1 =
(
Bk+1,2j−1

Bk+1,2j

)1/2

, αk+1,2j =
(
Bk+1,2j

Bk+1,2j−1

)1/2

and

Bk+1,2j−1 =Eξ2
k+1,2j−1, Bk+1,2j =Eξ2

k+1,2j .

Define T̃k,j to be the conditional quantile transformation ofVk,j given ξ̃k,j , i.e. for
j = 1, . . . ,2k defineT̃k,j as the solution of the equation

FTk,j |ξk,j (T̃k,j |ξ̃k,j )=+Vk,j

(
Vk,j

)
(5.7)

whereFTk,j |ξk,j
(
x|y) is the conditional distribution function ofTk,j given ξk,j = y, and

+Vk,j (x) is the distribution function ofVk,j (see Section 4). For anyj = 1, . . . ,2k , the

desired r.v.’s̃ξk+1,2j−1 andξ̃k+1,2j are defined as the solution the linear system{
T̃k,j = αk+1,2j ξ̃k+1,2j−1 − αk+1,2j−1ξ̃k+1,2j ,

ξ̃k,j = ξ̃k+1,2j−1 + ξ̃k+1,2j ,
(5.8)
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the determinant of which is obviously strictly positive. This completes description of the
dyadic procedure.

The following result concerns basic properties of the resulting sequenceξ̃m,j , j =
1, . . . ,2m.

LEMMA 5.4. –Assume thatξm,j , j = 1, . . . ,2m, and ηm,j , j = 1, . . . ,2m, are
sequences of independent r.v.’s. Then for anyk = 0, . . . ,m, the r.v.’sξ̃k,j , j = 1, . . . ,2k ,

are independent and such thatξ̃k,j
d= ξk,j , j = 1, . . . ,2k . Moreoverξ̃k,j , j = 1, . . . ,2k ,

are functions of the sequenceηk,j , j = 1, . . . ,2k , only.

Proof. –The proof is similar to statements in Komlós, Major and Tusnády [9] (see also
Sakhanenko [19], Einmahl [4], Zaitsev [24]) and therefore will not be detailed here.✷

It turns out that the properties of the Komlós–Major–Tusnády dyadic construction
established in Lemma 5.4 are sufficient for proving a strong approximation result if the
index functions of the process belong to the class of indicators. However for proving our
functional version we need one more property of this construction, which we formulate
below. Recall thatVk,j andT̃k,j are defined by(5.6) and (5.8).

LEMMA 5.5. –If ξm,j , j = 1, . . . ,2m, and ηm,j , j = 1, . . . ,2m, are sequences of
independent r.v.’s, then, for anyk = 0, . . . ,m, the r.v.’s T̃k,j − Vk,j , j = 1, . . . ,2k , are
independent.

Proof. –For the proof of this statement it suffces to note that for anyk = 0, . . . ,m,{
ξ̃k,j , Vk,j : j = 1, . . . ,2k

}
is a collection of of jointly independent random variables.✷
5.2.2. An auxiliary construction

In the sequel we shall need also an auxiliary procedure which is not as powerful as the
KMT construction, but which permits us to construct somehow the components inside
an already constructed arbitrary sum of independent r.v.’s. Below we present one of the
possible methods.

We start from an arbitrary sequence of r.v.’sξ1, . . . , ξn (not necessarily independent)
given on(�′,F ′,P ′). SetSk = ξ1 + · · · + ξk, k = 1, . . . , n. Suppose that on another

probability space(�,F,P ) we have constructed only the r.v.S̃n
d= Sn, which corre-

sponds to the sumSn and we wish to construct its components, i.e.ξ̃1, . . . , ξ̃n such that

ξ̃1
d= ξ1, . . . , ξ̃n

d= ξn and S̃n = ξ̃1 + · · · + ξ̃n. As a prerequisite we assume that on the
probability space(�,F,P ) we are given a sequence of nondegenerate normal r.v.’s
η1, . . . , ηn (not necessarily independent). First we defineξ̃n to be the conditional quan-
tile transformation ofηn given S̃n, i.e. we definẽξn to be the solution of the equation

Fξn|Sn(ξ̃n|S̃n)=+ηn(ηn)

whereFξn|Sn(x|y) is the conditional distribution ofξn given Sn = y, and+ηn(x) is the
distribution function ofηn. Set S̃n−1 = S̃n − ξ̃n. If for some 2� k � n − 1 the r.v.’s
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ξ̃n, . . . , ξ̃k+1 andS̃k are already constructed, we defineξ̃k to be the conditional quantile
transformation ofηk given S̃k, i.e. we defineξ̃k to be the solution of the equation

Fξk |Sk (ξ̃k|S̃k)=+ηk (ηk)

whereFξk |Sk (x|y) is the conditional distribution ofξk given Sk = y, and+ηk(x) is the
distribution function ofηk . SetS̃k−1 = S̃k − ξ̃k . Finally, fork = 1, we definẽξ1 = S̃1, this
completing our procedure.

The easy proof of the following assertion is left to the reader.

LEMMA 5.6. –Assume thatξ1, . . . , ξn and η1, . . . , ηn are sequences of independent

r.v.’s. Thenξ̃1, . . . , ξ̃n are independent,̃ξi
d= ξi , i = 1, . . . , n, and ξ̃1 + · · · + ξ̃n = S̃n.

Moreoverξ̃1, . . . , ξ̃n are functions ofη1, . . . , ηn and S̃n only.

5.2.3. The main construction
Our next step is to describe a construction which will result in the desired sequence

X̃i , i = 1, . . . , n. It should be noted that although both the dyadic procedure and the
auxiliary construction described above work with arbitrary distributions, in order to use
the quantile inequalities stated in Section 4 (which actually will provide the desired
closeness of̃Xi , i = 1, . . . , n, andNi , i = 1, . . . , n), one has to assume the r.v.’sXi ,
i = 1, . . . , n, to be in the classD0(r), for somer > 0, or to be identically distributed (as
in Komlós, Major and Tusnády [9], [10]). In order to avoid such assumptions we shall
employ an inductive procedure which goes back to the paper of Sakhanenko [19]. The
idea is first to substitute the initial sequence with some smoothed sequences, and then to
apply the dyadic procedure described in Section 5.2.1 to the smoothed sequences. Below
we formally describe this construction.

Consider the product probability space(�′′,F ′′,P ′′) = (�′,F ′,P ′) × (�,F,P ),
whereP ′′ = P ′ × P . It is obvious that the sequencesXi , i = 1, . . . , n, andNi , i =
1, . . . , n, are independent on the probability space(�′′,F ′′,P ′′).

Recall that above we introduced the sets of indicesJm = {i: 1 � i2M−m � n}. For
eachm=M, . . . ,0, the setJm can be decomposed asJm = J 1

m + J 2
m, where

J 1
m = {i-odd: i ∈ Jm}, J 2

m = {i-even: i ∈ Jm}, m=M, . . . ,1,

andJ 1
0 = J0, J 2

0 = ∅. It is clear that

Jm−1 = {i: 2i ∈ Jm}, m= 1, . . . ,M.

To start our iterative construction, for anyi ∈ JM = {1, . . . , n}, define the following r.v.’s:

XM+1
2i =Xi, Ỹ M+1

2i =Ni. (5.9)

We proceed to describe them-th step of our construction which is performed consecu-
tively for all m=M, . . . ,0.

• mth step. For anyi ∈ Jm, define the following r.v.’s:

Xm
i =Xm+1

2i , Wm
i = Ỹ m+1

2i , (5.10)
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and

Ymi =
{
Xm
i , if i ∈ J 1

m,
Wm
i , if i ∈ J 2

m.
(5.11)

Note that the r.v.’sWm
i , i ∈ Jm, are defined on the probability space(�,F,P ), while the

r.v.’s Ymi , i ∈ Jm, are defined on the probability space(�′′,F ′′,P ′′). HereXm
i , i ∈ Jm,

is the part of the initial sequenceXi , i ∈ JM = {1, . . . , n}, given on the probability
space(�′,F ′,P ′), which is not yet constructed on the probability space(�,F,P );
Wm
i , i ∈ Jm, is the corresponding sequence of normal r.v.’s andYmi , i ∈ Jm is the

smoothed sequence which is constructed at this step. Consider the following sums: for
j = 1, . . . ,2k andk = 0, . . . ,m set

Ymk,j = ∑
i∈Im

k,j

Y mi , Wm
k,j = ∑

i∈Im
k,j

Wm
i . (5.12)

Then obviously forj = 1, . . . ,2k andk = 0, . . . ,m− 1

Ymk,j = Ymk+1,2j−1 + Ymk+1,2j , Wm
k,j =Wm

k+1,2j−1 +Wm
k+1,2j . (5.13)

We will apply the dyadic procedure described in Section 5.2.1, withξm,j = Ymm,j and

ηm,j =Wm
m,j , j = 1, . . . ,2m, to construct a doubly indexed sequenceỸ mkj , j = 1, . . . ,2m,

k = 0, . . . ,m. Let Ỹ m0,1 be the quantile transformation ofWm
0,1, i.e. letỸ m0,1 be the solution

of the equation

FYm0,1

(
Ỹ m0,1

)=+Wm
0,1

(
Wm

0,1

)
, (5.14)

whereFYm0,1(x) is the distribution function ofYm0,1 and+Wm
0,1
(x) is the distribution function

of Wm
0,1. The solution exists sinceWm

0,1 is a nondegenerate normal r.v. Assume that

we have already constructed̃Ymk,j , j = 1, . . . ,2k , for somek = 0, . . . ,m− 1. We shall
construct such an array withk + 1 replacingk. To this end set, forj = 1, . . . ,2k ,

V m
k,j = αmk+1,2jW

m
k+1,2j−1 − αmk+1,2j−1W

m
k+1,2j , (5.15)

where

αmk+1,2j−1 =
(
Bmk+1,2j−1

Bmk+1,2j

)1/2

, αmk+1,2j =
(
Bmk+1,2j

Bmk+1,2j−1

)1/2

and

Bmk+1,2j−1 =E
(
Ỹ mk+1,2j−1

)2
, Bmk+1,2j =E

(
Ỹ mk+1,2j

)2
. (5.16)

Let T̃ mk,j be the conditional quantile transformation ofV m
k,j , givenỸ mk,j , for j = 1, . . . ,2k ,

i.e. let T̃ mk,j be the solution of the equation

FT m
k,j

|Ym
k,j

(
T̃ mk,j |Ỹ mk,j

)=+Vm
k,j

(
V m
k,j

)
, (5.17)

whereFTm
k,j

|Ym
k,j

(
x|y) is the conditional distribution function ofT mk,j , given Ymk,j , and

+Wm
k,j
(x) is the distribution function ofWm

k,j . The solution exists, sinceVM
k,j is a
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nondegenerate normal r.v. For anyj = 1, . . . ,2k we define the desired r.v.’s̃Ymk+1,2j−1

andỸ mk+1,2j as the solution of the linear system

{
T̃ mk,j = αmk+1,2j Ỹ

m
k+1,2j−1 − αmk+1,2j−1Ỹ

m
k+1,2j ,

Ỹ mk,j = Ỹ mk+1,2j−1 + Ỹ mk+1,2j .
(5.18)

Thus the r.v.’sỸ mk,j , j = 1, . . . ,2k , are constructed for allk = 0, . . . ,m on the probability

space(�,F,P ). It remains to construct the components inside each sumỸ mm,j , j =
1, . . . ,2m. For this we make use of the auxiliary construction described in Section 5.2.2,
with ξi ≡ Ymi andηi ≡Wm

i , i ∈ Imm,j . For each fixedj andm it provides a sequence of

r.v.’s Ỹ mi ≡ ξ̃i , i ∈ Imm,j , such that

Ỹ mm,j = ∑
i∈Im

m,j

Ỹ mi . (5.19)

This completes themth step of our construction.
Let us recall briefly some notation associated with the construction, which will also

be used in the sequel. For anym =M, . . . ,0 we have defined the r.v.’sYmi , Wm
i , Ỹ mi ,

i ∈ Jm, andYmk,j ,W
m
k,j , Ỹ

m
k,j , j = 1, . . . ,2k , k = 0, . . . ,m, such that, by (5.12) and (5.19)

(cp. with (5.4)),

Ymk,j = ∑
i∈Im

k,j

Y mi , Wm
k,j = ∑

i∈Im
k,j

Wm
i , Ỹ mk,j = ∑

i∈Im
k,j

Ỹ mi , (5.20)

for k = 0, . . . ,m, j = 1, . . . ,2k ,m= 0, . . . ,M .

5.3. Correctness and some useful properties

In fact implicitly the construction of the desired sequenceX̃i , i = 1, . . . , n, has already
been carried out; it remains to select the appropriate components from the sequences
{Ỹ mi : i ∈ Jm} found above. But before this step we need to show that the construction is
performed correctly, and we shall also discuss some properties of the r.v.’sỸ mi andWm

i

introduced. The proofs of the following assertions are left to the reader.
In analogy toXm

i (see (5.1)), setNm
i =Ni2M−m , wherem= 0, . . . ,M , i ∈ Jm.

LEMMA 5.7. – For anym= 0, . . . ,M the following statements hold true:

(a)The r.v.’sWm
i , i ∈ Jm, are independent and satisfyWm

i

d=Nm
i =Ni2M−m , i ∈ Jm.

(b) The r.v.’s Ỹ mi , i ∈ Jm, are independent, are functions ofWm
i , i ∈ Jm, only and

satisfy, fori ∈ Jm,

Ỹ mi
d= Ymi

d=
{
Xm
i if i ∈ J 1

m,
Nm
i if i ∈ J 2

m.

Remark5.1. – Since by Proposition 5.1 #Imk,j � 2, from Lemma 5.7 and from (5.20)
it follows thatWm

k,j , j = 1, . . . ,2k, k = 0, . . . ,m, are nondegenerate normal r.v.’s which
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ensures that the solutions of Eqs. (5.14), (5.17) exist. This proves the correctness of the
main construction.

PROPOSITION 5.8. –The vectors{Ỹ mi : i ∈ J 1
m},m=M, . . . ,0, are independent.

Now finally we are able to present the sequenceX̃i , i = 1, . . . , n. It is defined on the
probability space(�,F,P ) in the following way:

X̃i2M−m = Ỹ mi , wherei ∈ J 1
m, 0�m�M. (5.21)

PROPOSITION 5.9. – X̃i , i = 1, . . . , n, are independent and such that̃Xi
d= Xi ,

i = 1, . . . , n.

Proof. –The required assertion follows from Lemma 5.7 and Proposition 5.8.✷
In the proof of our main result Theorem 2.3, the following elementary representation

is essential. Recall thattmi = tν = ν/n whereν = i2M−m, i ∈ Jm, m = 0, . . . ,M (see
Section 5.1).

PROPOSITION 5.10. –For any real valued functionf (t) on the interval[0,1], we
have

n∑
i=1

f (ti)(X̃i −Ni)=
M∑
m=0

∑
j∈Jm

f
(
tmj
)(
Ỹ mj −Wm

j

)
.

5.4. Quantile inequalities

In this section we shall establish so-called quantile inequalities (see Lemma 5.12 and
Lemma 5.13), which will ensure the required closeness of the r.v.’sX̃i , i = 1, . . . , n, and
Ni , i = 1, . . . , n.

The following lemma shows that the r.v.’sYmk,j , j = 1, . . . ,2k , are smooth enough to
allow application of the quantile inequalities stated in Section 4.

LEMMA 5.11. –For m= 0, . . . ,M , k = 0, . . . ,m, j = 1, . . . ,2k the r.v.Ymk,j is in the
classD(r), for some positive absolute constantr .

Proof. –We shall check conditions (4.1), (4.2) and (4.3) in Section 4. Toward this end
fix m, k, j as in the condition of the lemma and note that

ζ0 ≡ Ymk,j = ∑
i∈Im

k,j

Y mi =∑
i∈I1

Ymi +∑
i∈I2

Ymi ≡ ζ1 + ζ2,

whereI1 andI2 are the sets of all odd and even indices inImk,j respectively. By Lemma

5.7, we haveYmi
d=Ni , for any i ∈ I2. Thusζ2 is actually a sum of independent normal

r.v.’s. Sincenmin is large enough, the setImk,j has at least two elements (see Proposition
5.1), from which we conclude thatI2 has at least one element. Next, taking into account
(2.2) and the obvious inequality #I2 � 1

3#Imk,j , we get

Eζ 2
2 � Cminλn#I2 � Cmin

3
λn#I

m
k,j � cEζ 2

0 .
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For |h| � λ andt ∈R, let

fζi (t, h)=E exp
{
(it + h)ζi

}
/E exp{hζi}

be the conjugate characteristic function of the r.v.ζi , i = 0,1,2. Sinceζ1 and ζ2 are
independent andζ2 is normal,∣∣fζ0(t, h)∣∣= ∣∣fζ1(t, h)fζ2(t, h)∣∣� ∣∣fζ2(t, h)∣∣

� exp
{

− t
2

2
Eζ 2

2

}
� exp

{
− t

2

2
cEζ 2

0

}
,

for |h| � λ, t ∈ R1. With this bound we have

∫
|t |>ε

∣∣fζ0,h(t)∣∣dt � ∫
|t |>ε

exp
{

− t
2

2
cEζ 2

0

}
dt � µ

εEζ 2
0
,

whereµ is some absolute constant, which proves thatζ0 = Ymk,j satisfies condition (4.3).
It remains only to show that conditions (4.1) and (4.2) are satisfied. The first condition

follows from (2.2) as soon asYmi
d= Xi or Ymi

d= Ni for any i ∈ Imk,j ⊆ Jm, by Lemma
5.7. For the second we make use of (2.3) and of the elementary fact that Sakhanenko’s
condition (4.2) holds true for any normal r.v.N if λ is small enough:λ� c(VarN)−1/2

(see Remark 2.3). ✷
Recall that for anym= 0, . . . ,M , k = 1, . . . ,m andj = 1, . . . ,2k , by (5.18),

T̃ mk,j = αmk,2j Ỹ
m
k,2j−1 − αmk,2j−1Ỹ

m
k,2j , (5.22)

and by (5.15),

Vm
k,j = αmk,2jW

m
k,2j−1 − αmk,2j−1W

m
k,2j . (5.23)

Recall also thatBmk,j =E′(Xm
k,j )

2 (see (5.4)).

The following quantile inequalities show that the r.v.’sT̃ mk,j andWm
k,j are close enough.

These statements are crucial for our results.

LEMMA 5.12. –For anym= 0, . . . ,M , we have

∣∣Ỹ m0,1 −Wm
0,1

∣∣� c1

{
1+ (Ỹ m0,1)

2

Bm0,1

}
,

provided |Ỹ m0,1| � c2B
m
0,1 and Bm0,1 � c3, where c1, c2 and c3 are positive absolute

constants.

Proof. –According to the construction,̃Ym0,1 is the quantile transformation ofWm
0,1 (see

(5.14)). Then it suffices to note that, by Lemma 5.11, the r.v.Ỹ m0,1 is in the classD(λ0)

and to apply Lemma 4.1 withX = Ym0,1, N =Wm
0,1 andX̃ = Ỹ m0,1. ✷
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LEMMA 5.13. –Letm= 0, . . . ,M , k = 0, . . . ,m− 1, j = 1, . . . ,2k . Then

∣∣T̃ mk,j − V m
k,j

∣∣� c1

{
1+ (Ỹ mk+1,2j−1)

2

Bmk+1,2j−1
+ (Ỹ mk+1,2j )

2

Bmk+1,2j

}
,

provided|Ỹ mk+1,2j−1| � c2B
m
k+1,2j−1, |Ỹ mk+1,2j | � c2B

m
k+1,2j andBmk+1,2j−1 � c3, Bmk+1,2j �

c3, wherec1, c2 andc3 are positive absolute constants.

Proof. –Fix m, k, andj as in the condition of the lemma. We are going to make use
of Lemma 4.3 with

X̃1 = Ỹ mk+1,2j−1, X̃2 = Ỹ mk+1,2j , X̃0 = X̃1 + X̃2 = Ỹ mk,j , (5.24)

and

N1 =Wm
k+1,2j−1, N2 =Wm

k+1,2j , N0 =N1 +N2 =Wm
k,j . (5.25)

Note that, by Lemma 5.11, the r.v.’s̃X0, X̃1 and X̃2 are in the classD(r) for
some absolute constantr > 0. Since by constructioñT mk,j is the conditional quantile
transformation ofV m

k,j (see (5.17)), Lemma 4.3 implies

∣∣T̃ mk,j − V m
k,j

∣∣� c1
B0

B

{
1+ 1

B2

(
X̃2

1 + X̃2
2

)}
, (5.26)

provided ∣∣T̃ mk,j ∣∣� c2B
2,

∣∣Ỹ mk,j ∣∣� c2B
2, (5.27)

andB � c3, where

B2
1 = Bmk+1,2j−1, B2

2 = Bmk+1,2j , B2
0 = B2

1 +B2
2, B2 = B1B2

B0
.

By Proposition 5.3, we have

c−1
4 �B2

1/B
2
2 � c4. (5.28)

Now we check that (5.27) holds true if|X̃1| � c5B
2
1 and |X̃2| � c5B

2
2, wherec5 is a

sufficiently small constant. Indeed

∣∣T̃ mk,j ∣∣� B2

B1
|X̃1| + B1

B2
|X̃2| � 2c5B1B2.

By (5.28), we get|T̃ mk,j | � c5c6B
2. Choosing the constantc6 such thatc5c6 � c2, we see

that (5.27) is satisfied. Exactly in the same way we show that the second inequality in
(5.27) holds true. ConditionB � c3 follows easily from (5.28). ✷
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6. Proof of the main results

6.1. An auxiliary exponential bound

We keep the same notation as in the previous section. In addition set for brevity

S̃m0 = Ỹ m0,1 −Wm
0,1, S̃mk,j = T̃ mk,j − V m

k,j , j = 1, . . . ,2k, k = 0, . . . ,m, (6.1)

whereT̃ mk,j andV m
k,j are defined by (5.22) and (5.23). The main result of this section is

Lemma 6.1 which establishes an exponential type bound for the differencesS̃mk,j andS̃m0 .

Because of the special construction ofT̃ mk,j andV m
k,j on the same probability space, this

bound is much better that the usual exponential bounds (cf. Lemma 6.3 below). This
statement plays a crucial role in establishing our functional version of the Hungarian
construction. It is the only place where the quantile inequalities are used.

LEMMA 6.1. – For anym= 0, . . . ,M , k = 0, . . . ,m− 1, j = 1, . . . ,2k ,

E exp
{
t S̃m0

}
� exp

{
c1t

2}, E exp
{
t S̃mk,j

}
� exp

{
c1t

2}, |t| � c0.

We postpone the proof of the lemma to the end of this section; it will be based on
some estimates stated and proved below.

LEMMA 6.2. –For anyε > 0 there is a constantc(ε) depending only onε, such that
for anym= 0, . . . ,M , k = 0, . . . ,m andj ∈ Jk ,

P
(∣∣Ỹ mk,j ∣∣> εBmk,j)� 2exp

{−c(ε)Bmk,j}.
Proof. –By Chebyshev’s inequality, we have fort > 0

P
(
Ỹ mk,j > εB

m
k,j

)
� exp

{−tεBmk,j}E exp
{
tY mk,j

}
. (6.2)

Note that by (5.20) and by Lemma 5.7, the r.v.Ỹ mk,j is the sum of independent r.v.’s

Ỹ mi , i ∈ Imk,j . Then by (2.3) and Lemma A.1, we obtain for|t| � λ/3,

E exp
{
t Ỹ mk,j

}= ∏
i∈Im

k,j

E exp
{
t Ỹ mi

}
� exp

{
t2Bmk,j

}
.

Inserting this bound into (6.2), with an appropriate choice oft (depending onε), we get

E
(
Ỹ mk,j > εB

m
k,j

)
� exp

{−c(ε)Bmk,j}.
In the same way one can show that

E
(
Ỹ mk,j <−εBmk,j

)
� exp

{−c(ε)Bmk,j},
which in conjunction with the previous bound proves the lemma.✷
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LEMMA 6.3. –Let m = 0, . . . ,M , k = 0, . . . ,m − 1, j = 1, . . . ,2k . Then for any
0� t � c1 we have

E exp
{
t
∣∣S̃mk,j ∣∣}� c2 exp

{
t2Bmk,j

}
.

Proof. –Fix m, k and j as in the condition of the lemma. From (6.1) and from the
Hölder inequality one gets, for 0� t � λ,

E exp
{
t
∣∣S̃mk,j ∣∣}�

(
E exp

{
t
∣∣T̃ mk,j ∣∣}E exp

{
t
∣∣V m
k,j

∣∣})1/2. (6.3)

The r.v.Ỹ mk+1,2j−1 andỸ mk+1,2j are independent, hence by (5.22)

E exp
{
t
∣∣T̃ mk,j ∣∣}�E exp

{
tαmk+1,2j

∣∣Ỹ mk+1,2j−1

∣∣}E exp
{
tαmk+1,2j−1

∣∣Ỹ mk+1,2j

∣∣}. (6.4)

Since by (5.20) and by Lemma 5.7,Ỹ mk+1,2j−1 is exactly the sum of independent r.v.’sỸ mi ,
i ∈ Imk+1,2j−1, one has

E exp
{±tαmk+1,2j Ỹ

m
k+1,2j−1

}= ∏
i∈Im

k+1,2j−1

E exp
{±tαmk+1,2j Ỹ

m
i

}
.

Taking into account (2.3) and choosingt small enough (t � λ/3), by Lemma A.1 one
obtains

E exp
{±tαmk+1,2j Ỹ

m
k+1,2j−1

}
�

∏
i∈Jm

k+1,2j−1

E exp
{
t2
(
αmk+1,2j

)2
E
(
Xm
i

)2}
� exp

{
t2
(
αmk+1,2j

)2
Bmk+1,2j−1

}
.

Since(αmk+1,2j )
2 = Bmk+1,2j/B

m
k+1,2j−1,

E exp
{
tαmk+1,2j

∣∣Ỹ mk+1,2j−1

∣∣}� 2exp
{
t2Bmk+1,2j

}
.

For the second expectation on the right hand side of (6.4) one gets an analogous bound.
Then

E exp
{
t
∣∣T̃ mk,j ∣∣}� 4exp

{
t2Bmk+1,2j + t2Bmk+1,2j−1

}= 4exp
{
t2Bmk,j

}
. (6.5)

A similar bound holds for the second expectation on the right-hand side of (6.3), i.e.

E exp
{
t
∣∣V m
k,j

∣∣}� 4exp
{
t2Bmk,j

}
. (6.6)

Now the lemma follows from (6.5), (6.6) and (6.3).✷
Now we are prepared to show thatS̃mk,j has a bounded exponential moment uniformly

in m, k andj .

LEMMA 6.4. –For anym= 0, . . . ,M , k = 0, . . . ,m− 1, j = 1, . . . ,2k

E exp
{
c1
∣∣S̃mk,j ∣∣}� c2.
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Proof. –Fix m, k and j as in the condition of the lemma. It is enough to consider
the case whereBmk+1,2j−1 andBmk+1,2j are greater thanc′ only, wherec′ is the absolute
constantc3 in Lemma 5.13; otherwise, by Proposition 5.3, we haveBmk+1,2j−1,B

m
k+1,2j �

c1 (thusBmk,j = Bmk+1,2j−1 +Bmk+1,2j � 2c1) and the claim follows from Lemma 6.3.
Set for brevity

Gm
k+1,l =

{∣∣Ỹ mk+1,l

∣∣� c′′Bmk+1,l

}
, l = 2j − 1,2j, (6.7)

wherec′′ = min{1, c2} andc2 is the absolute constant in Lemma 5.13. Denote byG
m,c
k+1,l

the complement of the setGm
k+1,l . It is easy to see that, for 0� t � λ,

E exp
{
t
∣∣S̃mk,j ∣∣}=Q1 +Q2, (6.8)

where

Q1 =E exp
{
t
∣∣S̃mk,j ∣∣}1

(
G
m,c
k+1,2j−1 ∪Gm,c

k+1,2j−1

)
, (6.9)

Q2 =E exp
{
t
∣∣S̃mk,j ∣∣}1

(
Gm
k+1,2j−1 ∩Gm

k+1,2j−1

)
. (6.10)

First we give an estimate forQ1. Applying Hölder’s inequality, we obtain from (6.9),

Q1 �
(
exp
{
2t
∣∣S̃mk,j ∣∣})1/2(P (Gm,c

k+1,2j−1

)1/2 +P
(
G
m,c
k+1,2j

)1/2)
. (6.11)

By Lemma 6.2 we have withl = 2j − 1,2j

P
(
G
m,c
k+1,l

)= P
(∣∣Ỹ mk+1,l

∣∣> c′′Bmk+1,l

)
� 2exp

{−c2B
m
k+1,l

}
. (6.12)

Note that by Proposition 5.3, we havec−1
3 � Bmk+1,2j−1/B

m
k+1,2j � c3, which implies

Bk+1,l � c4Bk,j for l = 2j − 1,2j . Then from (6.12) it follows that

P
(
G
m,c
k+1,l

)
� 2exp

{−c5B
m
k,j

}
, l = 2j − 1,2j. (6.13)

Inserting the bound provided by Lemma 6.3 and the inequality (6.13) into (6.11) and
choosingt sufficiently small we obtain

Q1 � c6 exp
{(
c7t

2 − c8
)
Bmk,j

}
� c6 exp

{
−1

2
c8B

m
k,j

}
� c6.

Now we shall give a bound forQ2. Recall that the r.v.’s̃Ymk+1,l, l = 2j − 1,2j are
smooth (belong to the classD(r)), by Lemma 5.11. By virtue of Lemma 5.13 and of the
assumptionBmk+1,2j−1 � c′ andBmk+1,2j � c′, on the setGm

k+1,2j−1 ∩Gm
k+1,2j we have

∣∣S̃mk,j ∣∣� c9
{
1+Um

k+1,2j−1 +Um
k+1,2j

}
, (6.14)

where forl = 2j − 1,2j

Um
k+1,l =

(
Ỹ
m,∗
k+1,l

)2
/Bmk+1,l, Ỹ

m,∗
k+1,l = Ỹ mk+1,l1

(∣∣Ỹ mk+1,l

∣∣�Bmk+1,l

)
.
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According to (6.10) and (6.14)

Q2 �E exp
{
tc10

(
1+Um

k+1,2j−1 +Um
k+1,2j

)}
= exp{tc10}E exp

{
tc10U

m
k+1,2j−1

}
E exp

{
tc6U

m
k+1,2j

}
. (6.15)

By Lemma A.3 (see Appendix A) we have

E exp
{
c10U

m
k+1,2j−1

}
� 1+ 2/c10 (6.16)

and a similar bound holds true forUm
k+1,2j−1. Taking t sufficiently small, from (6.15)

and (6.16) we obtainQ2 � c11. Combining the estimatesQ1 � c6 andQ2 � c11 obtained
above with (6.8) yields the lemma.✷

LEMMA 6.5. –For anym= 0, . . . ,M

E exp
{
c1
∣∣S̃m0 ∣∣}� c2.

Proof. –The argument is similar to that for Lemma 6.4, and therefore will not
be given here. The only difference is that instead of Lemma 5.13 we make use of
Lemma 5.12. ✷

Now Lemma 6.1 follows easily from Lemmas 6.4, 6.5 and Lemma A.1 in Appendix A.

6.2. Proof of Theorem 2.3

The idea of the proof is to decompose the functionf into a Haar expansion and
then to make use of the closeness properties of the sequencesX̃i , i = 1, . . . , n, andNi ,
i = 1, . . . , n, over the dyadic blocks. For this the representation provided by Proposition
5.10 and the exponential inequalities in Lemma 6.1 are crucial.

For the sake of brevity set

Sn(f )=
n∑
i=1

f (ti)(X̃i −Ni).

What we have to show is that for anyt satisfying|t| � c0,

E exp
{
t (logn)−2Sn(f )

}
� exp

{
t2c1

}
. (6.17)

Toward this end letM = [log2(n/n0)] and note that according to Proposition 5.10,

Sn(f )=
M∑
m=0

Sm whereSm = ∑
i∈Jm

f
(
tmi
)(
Ỹ mi −Wm

i

)
.

By Hölder’s inequality

E exp
{
t (logn)−2Sn(f )

}
�

M∏
m=0

(
E exp

{
t (M + 1)(logn)−2Sm

})1/(M+1)
. (6.18)
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Set for brevity

un = (M + 1)(logn)−2. (6.19)

Obviouslyun � 1 for n large enough (such that logn� 2).
It is easy to see that inequality (6.17) follows from (6.18) if we prove that for

m= 0, . . . ,M and anyt satisfying|t| � c0

E exp
{
tunS

m
}

� exp
{
t2c1

}
. (6.20)

In the sequel we will give a proof of (6.20).
First we consider the casem= 0. By Hölder’s inequality,

E exp
{
tunS

0}�
(
E exp

{
2tun

∑
i∈J0

f
(
t0i
)
Ỹ 0
i

}
E exp

{
2tun

∑
i∈J0

f
(
t0i
)
W 0
i

})1/2

. (6.21)

SinceỸ 0
i , i ∈ J0, are independent we have

E exp
{

2tun
∑
i∈J0

f (t0i )Ỹ
0
i

}
= ∏

i∈J0

E exp
{
2tunf (t

0
i )Ỹ

0
i

}
.

By choosing the constantc0 small enough we can easily guarantee that|2tunf (t0i )| �
λ/3, and by Lemma A.1 we obtain

E exp
{

2tun
∑
i∈J0

f
(
t0i
)
Ỹ 0
i

}
� exp

{
c2t

2
∑
i∈J0

E
(
Ỹ 0
i

)2}
. (6.22)

SinceE(Ỹ 0
i )

2 = E′(Xi2M )2 � Cmax for i ∈ J0, and #J0 � 2nmin (see Section 5.1), we
have

∑
i∈J0

E(Ỹ 0
i )

2 � c3, which in conjunction with (6.22) yields

E exp
{

2tun
∑
i∈J0

f
(
t0i
)
Ỹ 0
i

}
� exp

{
c4t

2}.
An analogous bound holds true for the second expectation in (6.21). From these bounds
and from (6.21) we obtain (6.20) form= 0.

For the casem � 1 introduce the functiong(s) = f (a(s)), s ∈ [0,1], wherea(s) is
defined by (5.2). Set for brevitysmi = b(tmi ), i ∈ Jm. Then for the sumSm we get the
following representation:

Sm = ∑
i∈Jm

g
(
smi
)(
Ỹ mi −Wm

i

)
.

Let gm be the truncated Haar expansion ofg for m� 1 (see (3.4):

gm = c0(g)h0 +
m−1∑
k=0

2k∑
j=1

ck,j (g)hk,j , (6.23)
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wherec0(g) andck,j (g) are the corresponding Fourier–Haar coefficients defined by (3.3)
with g replacingf . Then obviously

Sm = Sm1 + Sm2 ,

where

Sm1 = ∑
i∈Jm

(
g
(
smi
)− gm

(
smi
))(
Ỹ mi −Wm

i

)
,

Sm2 = ∑
i∈Jm

gm
(
smi
)(
Ỹ mi −Wm

i

)
. (6.24)

By Hölder’s inequality

E exp
{
tunS

m
}

�
(
E exp

{
2tunS

m
1

}
E exp

{
2tunS

m
2

})1/2
. (6.25)

Now the inequality (6.20) form � 1 will be established if we prove that both
expectations on the right-hand side of (6.25) are bounded by exp{t2c}. These inequalities
are the subject of Propositions 6.6 and 6.7 below. This completes the proof of Theorem
2.3.

First we prove the bound for the first expectation on the right hand side of (6.25).

PROPOSITION 6.6. –For anym= 1, . . . ,M and t satisfying|t| � c0 we have

E exp
{
tunS

m
1

}
� exp

{
t2c1

}
.

Proof. –Since by (5.3) the functiona(s) is Lipschitz andf ∈ H(1
2,L), it is easy to

see that the functiong(s)= f (a(s)) is also in a Hölder ballH(1
2,L0) but with another

absolute constantL0. By Hölder’s inequality

E exp
{
tunS

m
1

}
�
(
E exp

{∑
i∈Jm

ρiỸ
m
i

}
E exp

{
−∑
i∈Jm

ρiW
m
i

})1/2

, (6.26)

whereρi = 2tun(g(smi ) − gm(s
m
i )) and |t| � c0 for some sufficiently small absolute

constantc0. Note that by Proposition 3.2 we have‖g − gm‖∞ � L02−m/2. Therefore
for |t| � c0 (wherec0 is small)

|ρi| � c1|t|un2−m/2 � c1|t|2−m/2 � λ/3.

Then according to Lemma A.1 we get fori ∈ Jm

E exp
{
ρiỸ

m
i

}
� exp

{
ρ2
i E
(
Ỹ mi
)2}� exp

{
c2t

22−mE(Xm
i )

2}. (6.27)

An analogous bound holds true for the normal r.v.’sWm
i , i ∈ Jm:

E exp
{−ρiWm

i

}
� exp

{
c2t

22−mE
(
Xm
i

)2}
. (6.28)
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Taking into account that̃Ymi , i ∈ Jm, andWm
i , i ∈ Jm, are sequences of independent r.v.’s

and inserting (6.27) and (6.28) into (6.26), we obtain

E exp
{
tunS

m
1

}
� exp

{
c3t

22−m∑
i∈Jm

E
(
Xm
i

)2}
. (6.29)

Now we remark that #Jm � 2m+1. Hence by (2.2)∑
i∈Jm

E
(
Xm
i

)2 � #JmCmax� 2m+1Cmax. (6.30)

Inserting (6.30) into (6.29), we obtain the result.✷
Now we will find the bound for the second expectation on the right hand side of (6.25).

PROPOSITION 6.7. –For anym= 1, . . . ,M and t satisfying|t| � c0 we have

E exp
{
tunS

m
2

}
� exp

{
t2c1

}
.

Proof. –From (6.24), (6.23) and (3.2) we obtain

Sm2 = c0(g)
(
Ỹ m0,1 −Wm

0,1

)+
m−1∑
k=0

2k/2
2k∑
j=1

ck,j (g)
(
T

∗,m
k,j − V

∗,m
k,j

)
where

T
∗,m
k,j = Ỹ mk+1,2j−1 − Ỹ mk+1,2j , V

∗,m
k,j =Wm

k+1,2j−1 −Wm
k+1,2j (6.31)

(compare with (5.22) and (5.23)). HerẽYmk,j andWm
k,j are defined by (5.20). Set in

analogy to (6.1)

Sm0 = Ỹ m0,1 −Wm
0,1, Smk,j = T

∗,m
k,j −V

∗,m
k,j , j = 1, . . . ,2k, k = 0, . . . ,m− 1. (6.32)

Since the functiong(s) is in the Hölder ball with a Hölder constantL0, according to
Proposition 3.1 we have the following bounds for the Fourier–Haar coefficients:

c0(g)� L0/2,
∣∣ck,j (g)∣∣� 2−3/2L02−k, j = 1, . . . ,2k, k = 0, . . . ,m− 1. (6.33)

Note also that by Lemma 6.1 there is an absolute constantt0 sufficiently small such that
for |v| � t0

E exp
{
vS̃m0

}
� exp

{
c1v

2}, E exp
{
vS̃mk,j

}
� exp

{
c1v

2} (6.34)

for j = 1, . . . ,2k andk = 0, . . . ,m− 1, whereS̃m0 andS̃mk,j are defined by (6.1).
By Hölder’s inequality we have, for anyt satisfying|t| � c0 � t0,

E exp
{
tunS

m
2

}
�
(
E exp

{
t (m+ 1)unc0(g)S

m
0

}m−1∏
k=0

E exp
{
t (m+ 1)unUk

})1/(m+1)

,

(6.35)
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where

Uk = 2k/2
2k∑
j=1

ck,j (g)S
m
k,j , k = 0, . . . ,m− 1. (6.36)

The claim will be established, if we show that the constantc0 can be chosen such that
for t satisfying|t| � c0,

E exp
{
tum,nc0(g)S

m
0

}
� exp

{
c2t

2} (6.37)

and

E exp{tum,nUk} � exp
{
c2t

2}, (6.38)

where for the sake of brevity we setum,n = (m+ 1)un.
It is easy to show (6.37). For this we note that by (6.33) and (6.19), for|t| � c0 we

have ∣∣tum,nc0(g)
∣∣� c3|t|(m+ 1)(M + 1)L0/ log2n� c4c0 � t0, (6.39)

if the constantc0 is small enough. Then the inequality (6.37) follows from (6.34) and
from (6.39).

The proof of (6.38) is somewhat more involved. The main problem is thatSmk,j ,
j = 1, . . . ,2k , are dependent and therefore we cannot make use of the product structure
of the exponent exp{tUk} directly. However Proposition 5.2 ensures that the components
of the sumUk (see (6.36)) arealmostindependent, which allows to exploit the product
structure in an implicit way. The main idea is to “substitute”Smk,j , j = 1, . . . ,2k , by S̃mk,j ,
j = 1, . . . ,2k, which are independent. With this in mind we write

Uk =U1
k +U2

k ,

where

U1
k = 2k/2

2k∑
j=1

ck,j (g)S̃
m
k,j , U2

k = 2k/2
2k∑
j=1

ck,j (g)
(
Smk,j − S̃mk,j

)
.

Then by Hölder’s inequality,

E exp{tum,nUk} �
(
E exp

{
2tum,nU

1
k

}
E exp

{
2tum,nU

2
k

})1/2
. (6.40)

Now we proceed to estimate the first expectation on the right-hand side of (6.40). We
make use of the independence ofS̃mk,j , j = 1, . . . ,2k (see Lemma 5.5), to get

E exp
{
2tum,nU

1
k

}=
2k∏
j=1

E exp
{
tqj S̃

m
k,j

}
, (6.41)

whereqj = qm,n,k,j = 2um,n2k/2ck,j (g). Note that by (6.33) and (6.19)

|tqj | �
∣∣2tum,n2k/2ck,j (g)∣∣� c5|t|2−k/2 � t0,
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providedc0 is small enough. It then follows from (6.34) that forj = 1, . . . ,2k

E exp
{
tqj S̃

m
k,j

}
� exp

{
c6t

22−k}. (6.42)

Inserting (6.42) into (6.41) we find the bound

E exp
{
2tum,nU

1
k

}
� exp

{
c7t

2}. (6.43)

Thus we have estimated the first expectation on the right hand side of (6.40). It remains
to estimate the second one.

Note that

S̃mk,j − Smk,j = (
T̃ mk,j − T

∗,m
k,j

)− (V m
k,j − V

∗,m
k,j

)
.

Hence

U2
k =U3

k +U4
k ,

where

U3
k = 2k/2

2k∑
j=1

ck,j (g)
(
T̃ mk,j − T

∗,m
k,j

)
,

U4
k = 2k/2

2k∑
j=1

ck,j (g)
(
V m
k,j − V

∗,m
k,j

)
.

By Hölder’s inequality we obtain

E exp
{
2tum,nU

2
k

}
�
(
E exp

{
4tum,nU

3
k

}
E exp

{
4tum,nU

4
k

})1/2
. (6.44)

SinceT̃ mk,j − T
∗,m
k,j , j = 1, . . . ,2k , is a sequence of independent r.v.’s, we get

E exp
{
4tum,nU

3
k

}
�

2k∏
j=1

E exp
{
2tqj

(
T̃ mk,j − T

∗,m
k,j

)}
(6.45)

whereqj is defined above (see (6.41)). The definitions ofT̃ mk,j and ofT ∗,m
k,j (see (5.22)

and (6.31)) imply

T̃ mk,j − T
∗,m
k,j = β2j Ỹ

m
k+1,2j−1 − β2j−1Ỹ

m
k+1,2j .

Hereafter we abbreviateβi = αmk+1,i − 1,Bi = Bmk+1,i . Then

E exp
{
2tqj

(
T̃ mk,j − T

∗,m
k,j

)}=E exp
{
tqjβ2j Ỹ

m
k+1,2j−1

}
×E exp

{−tqjβ2j−1Ỹ
m
k+1,2j

}
. (6.46)
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Since by Proposition 5.3B2j � c8B2j−1, we haveβ2j � 1 + c8. Hence by (6.33)
and (6.19)

|tqjβ2j | � c9|t|2−k/2β2j � λ/3 (6.47)

for t sufficiently small. By (5.20) and by Lemma 5.7,Ỹ mk+1,2j−1 is a sum of independent
r.v.’s which satisfy Sakhanenko’s condition (2.3). Hence using Lemma A.1 we obtain

E exp
{
tqjβ2j Ỹ

m
k+1,2j−1

}= ∏
i∈Im

k+1,2j−1

E exp
{
tqjβ2j Ỹ

m
i

}
�

∏
i∈Im

k+1,2j−1

exp
{
t2q2

j β
2
2jE

(
Ỹ mi
)2}
.

By (6.47)

E exp
{
tqjβ2j Ỹ

m
k+1,2j−1

}
�

∏
i∈Im

k+1,2j−1

exp
{
c10t

22−k/2β2
2jE

(
Ỹ mi
)2}

= exp
{
c10t

22−k/2β2
2jB2j−1

}
.

Taking into account Proposition 5.2, we obtain

β2
2jB2j−1 = (√

B2j −
√
B2j−1

)2 � |B2j −B2j−1| � c11.

This proves that

E exp
{
tqjβ2j Ỹ

m
k+1,2j−1

}
� exp

{
c12t

22−k/2}.
For the second expectation on the right hand side of (6.46) we prove an analogous bound.
Invoking these bounds in (6.46) we get

E exp
{
2tqj

(
T̃ mk,j − T

∗,m
k,j

)}
� exp

{
c13t

22−k/2}. (6.48)

Inserting in turn (6.48) into (6.45) we arrive at

E exp
{
4tum,nU

3
k

}
� exp

{
c14t

2}.
In the same way we prove an inequality forU4

k . Then by (6.44) we have

E exp
{
2tum,nU

2
k

}
� exp

{
c14t

2}. (6.49)

From (6.40), (6.49) and (6.43) we obtain inequality (6.38), this completing the proof of
the proposition. ✷
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Appendix A

In the course of the reasoning we made use of the following simple auxiliary results.

LEMMA A.1. – Let ξ be a real valued r.v. with mean0 and finite variance: Eξ = 0,
0<Eξ2<∞. Assume that Sakhanenko’s condition

λE|ξ |3 exp
{
λ|ξ |}�Eξ2

holds true for someλ > 0. Then for all|t| � λ/3

E exp{tξ } � exp
{
t2Eξ2}.

Proof. –Let µ(t) = E exp(tξ ) and ψ(t) = logµ(t) be the moment and cumulant
generating functions respectively. The conditions of the lemma imply thatµ(t) � c1

for any real|t| � λ/3. Using a three term Taylor expansion we obtain for 0� ν � 1

ψ(t)=ψ(0)+ψ ′(0)t +ψ ′′(0)
t2

2
+ψ ′′′(νt)

t3

6
.

Note thatψ(0)= 0,ψ ′(0)= 0,ψ ′′(0)=Eξ2 andµ(t)� 1 by Jensen’s inequality, while
for the third derivative we have for any reals satisfying|s| � λ/3,

ψ ′′′(s)= µ′′′(s)µ(s)−1 − 3µ′′(s)µ′(s)µ(s)−2 + 2µ′(s)3µ(s)−3.

Using Hölder’s inequality andµ(s)� 1 we obtain the bound∣∣ψ ′′′(s)
∣∣� 6E|ξ |3 exp

(
λ|ξ |).

Since|t| � λ/3, by Sakhanenko’s condition we have

0� ψ(t)� t2

2
Eξ2 + t3E|ξ |3 exp

(
λ|ξ |)� t2Eξ2. �

LEMMA A.2. –Let ξ be a real valued r.v. such thatEξ = 0 and

E exp
{
λ|ξ |}� c1

for someλ� 0 andc1 � 1. Then for all|t| � λ/2 we have

E exp{tξ } � exp
{
c2t

2},
wherec2 = 4c1/λ

2.

Proof. –The argument is similar to Lemma A.1. We use the same notations. A two
term Taylor expansion yields, for 0� ν � 1,

ψ(t)=ψ(0)+ψ ′(0)t +ψ ′′(νt)
t2

2
.
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Sincex2 � 2exp(|x|) for any realx, we have for anys satisfying|s| � λ/2

0�ψ ′′(s)= µ(s)−2{Eξ2 exp(sξ)− (Eξ exp(sξ)
)2}

�Eξ2 exp(sξ)�Eξ2 exp
(
λ

2
|ξ |
)

� 8
c1

λ2
.

Consequently

0 �ψ(t)=ψ ′′(νt)
t2

2
� 4

c1

λ2
t2. �

LEMMA A.3. –Let ξi , i = 1, . . . , n, be a sequence of independent r.v.’s such that for
all i = 1, . . . , n we haveEξi = 0, 0<Eξ2

i <∞ and

λE|ξi|3 exp
{
λ|ξi|}�Eξ2

i

for some positive constantλ. SetSn = ξ1+· · ·+ξn,B2
n =ES2

n andS∗
n = Sn1

(|Sn| �B2
n

)
.

Then

E exp
{
c1(S

∗
n/Bn)

2}� 1+ 2/c1,

wherec1 = 1
4 min{λ/3,1/2}.

Proof. –Denote

F(x)= P
(
(S∗
n/Bn)

2> x
)
.

First we shall prove that

F(x)� 2exp{−c2x}, x � 0, (A.1)

wherec2 = 2c1. For this we note that

F(x)= P
(
S∗
n/Bn >

√
x
)+ P

(
S∗
n/Bn <−√

x
)
.

It suffices to estimate only the first probability on the right hand side of the above
equality; the second can be treated in the same way. Ifx > B2

n then

P
(
S∗
n/Bn >

√
x
)= 0;

thus there is nothing to prove in this case. Letx �B2
n . Denotingt = 2c2

√
x, one obtains

P
(
S∗
n >

√
x
)
� P

(
Sn >

√
x
)
� exp

{−t√x }E exp{tSn/Bn}

= exp
{−t√x } n∏

i=1

E exp{tξi/Bn}. (A.2)

Note thatt/Bn = 2c2
√
x/Bn � 2c2 � λ/3. Hence by Lemma A.1

E exp{tξi/Bn} � exp
{
t2Eξ2

i /B
2
n

}
.



956 I. GRAMA, M. NUSSBAUM / Ann. I. H. Poincaré – PR 38 (2002) 923–957

Inserting this into (A.2) we get

P
(
S∗
n/Bn >

√
x
)
� exp

{−t√x } n∏
i=1

exp
{
t2Eξ2

i /B
2
n

}
= exp

{−t√x + t2
}

� exp{−c2x}
which proves (A.1). Integrating by parts we obtain

E exp
{
c1(S

∗
n)

2/Bn
}=

∞∫
0

exp{c1x}dF(x)

= 1+
∞∫

0

F(x)exp{c1x}dx

� 1+ 2

∞∫
0

exp{c1x − c2x}dx

� 1+ 2/c1.
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