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ABSTRACT. — We develop a Hungarian construction for the partial sum process of independen
non-identically distributed random variables. The process is indexed by fungtifsom a class
‘H, but the supremum ovef € H is taken outside the probability. This form is a prerequisite
for the Komlés—Major—Tusnady inequality in the space of bounded functidfatsl), but
contrary to the latter it essentially preserves the classicil?logn approximation rate over
large functional classe® such as the Holder ball of smoothneg21This specific form of a
strong approximation is useful for proving asymptotic equivalence of statistical experiments.
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RESUME. — Nous développons une construction hongroise pour des sommes partielles d
variables aléatoires indépendantes non identiquement distribuées. Le processus est indexé par
fonctions f d’'une classé{ mais le suprémum efi € H est pris a I'extérieur de la probabilité.
Cette forme est un prérequis pour l'inégalité de Komlés—Major-Tusnady dans I'espace de:
fonctionnelles bornéd8°(H), mais contrairement a cette derniére, elle préserve pour I'essentiel
la vitesse d’approximation classique en'/2logn pour une large classe d’espakey compris
la boule hélderienne d’indice /2. Cette forme spécifique d’approximation est utile pour
démontrer I'équivalence asymptotique des expériences statistiques.
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1. Introduction

LetX;,i=1,...,n, be asequence of independent random variables with zero means
and finite variances. Lét be a class of real valued functions on the unit intef@all]
andt; =i/n,i =1,...,n. Thepartial sum process indexed by functidashe process

X"(f)=n""2Y" fu)Xi, feH.

i=1

Supposef € H are uniformly bounded; thel” = {X"(f), f € H} may be regarded

as a random element with values/M(H)- the space of real valued functionals Bh

The classH is Donsker if X" converges weakly ii*°(H) to a Gaussian process. We
are interested in associated coupling results, i.e. in finding versioX¥ aind of this
Gaussian process on a common probability space which are close as random variable
The standard coupling results of the type “nearby variables with nearby laws” (cf.
Dudley [3], Section 11.6) naturally refer to the sup-metri¢?(#): for an appropriate
version of X" (X" = {X"(f), f € H}, say) and of a Gaussian proce¥8 = {N"(f),

f € H}, we have

P*(sup|X"(f) = N"(f)| >x) - 0, x>0, (1.1)
feH

where P* is the outer probability on the common probability space (cf. van der Vaart
and Wellner [20], 1.9.3, 1.10.4). Here we shall consider a different type of coupling. We
are looking for versionX”, N" such that

supP(|X"(f) — N"(f)| >x) =0, x>0, (1.2)
feH

and such that additional exponential bounds of the Koml6s—Major-Tusnady type are
valid. Note that (1.2) is weaker than (1.1) since the supremum is taken outside the
probability. More specifically we are interested in a construction involving also a rate
sequence, — 0 such that

supP (r; H|X"(f) — N"(f)| > x) < coexp(—c1x}, x> 0. (1.3)
feH

Herecg, ¢; are constants depending on the class

The classical results of Komlés, Major and Tusnady ([9] and [10]) refer to a sup
inside the probability fof{ = Hy, whereHg is the class of indicatorg (1) = 1(t < ),
s € [0, 1]. The following bound was established: fgr=n—%/?

P(rt Sup]f(”(f) - ]\~/”(f)] > x) < coexp{—cix}, x =czlogn, (1.4)
feHo

providedXq, ..., X, is a sequence of i.i.d. r.v.’s fulfilling Cramér’s condition

Eexp{tX;} <oo, |t|<to, i=1,...,n, (1.5)
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wherecg, c1, ¢ are constants depending on the common distribution ofXtheNote
thatr, in (1.4) can be interpreted as a rate of convergence in the CLTI8%6t).

The main reason for a construction with the supremum outside the probability is that an
extension of(1.4)to larger functional classe®{ in general implies a substantial loss of
approximation rater,, (cp. Koltchinskii ([8], Theorem 11.1). Our goal is a construction
where the almost—Y/2-rate of the original KMT result is preserved despite the passage
to large functional classé¥ like Lipschitz classes.

Couplings of the type (1.3) have first been obtained by Koltchinskii ([8], Theorem 3.5)
and Rio [18] for the empirical process of i.i.d. random variables, as intermediate results
They can be extended to a full functional KMT result, i.e. to a coupling©i(#) with
exponential bounds, but an additional control of the size of the functional ¢laiss
required, usually in terms of entropy conditions. A reduced approximatioryatey
occur as a result.

We carry over the functional strong approximation result from the empirical process to
the partial sum process under very general conditions: the distributiotisasé allowed
to be nonidenticaland nonsmooth That setting substantially complicates the task of
a Hungarian construction. We can rely on the powerful methodology of Sakhanenkc
[19], who established the classical coupling (1.4) for nonidentical and nonsmooth
summands. We stress however that for the functional version (1.3) we need to perforr
the construction entirely anew. Our results relate to Sakhanenko’s [19] as Koltchinskii's
Theorem 3.5 relates to Komlés, Major and Tusnady ([9] and [10]).

Further motivational discussion can be grouped under headings (A)—(C) below.

(A) Statistical applicationsThe Komlés—Major—Tusnady approximation has recently
found an application in the asymptotic theory of statistical experiments. In [14] the
classical KMT inequality for the empirical process was used to establish that a
nonparametric experiment of i.i.d. observation on an interval can be approximated, ir
the sense of Le Cam’s deficiency distance, by a sequence of signal estimation problen
in Gaussian white noise. The two sequences of experiments are then asymptoticall
equivalent for all purposes of statistical decision with bounded loss. This appears a
a generalization of Le Cam’s theory of local asymptotic normality, applicable to ill-
posed problems like density estimation. In particular it implies a nonparametric version
of the Hajek—Le Cam asymptotic minimax theorem. The control of the Le Cam distance
is given by a relation to likelihood processes (see Le Cam and Yang [12]). ASSume
that there is an elemerfy € £ such that the measures in the experimégrfitandg” are
absolutely continuous w.r.ey andQ’ respectively. If there are versiod®’; /d P and
dQ"/d Q" of the likelihood ratios! P/'/d P}, andd Q",/d Q" on a common probability
space(2", F", P"), then

A(E",G") < \/E?SSEg (\/dﬁ]’}/dﬁ}’o - \/dé’}/dé’}o)2

(here the expected value on the right side coincides with the Hellinger distance betwee
P} and Q7). Thus asymptotic equivalence of experimegitsandg” requires a “good”
coupling of the corresponding likelihood ratié®} /d Py andd Q; /d Q'; on a common
probability space. This is achieved by constructing the linear termg ¢nfo) in the
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expansions of the log-likelihoods such that they are close as random variables; hence tl
demand for an inequality (1.3) with the supremum outside the probability.

The Hungarian construction had been applied in statistics before, mostly for result:
on strong approximation of particular density and regression estimators (cf.¢Catlg
Révész [2]). It is typical for these results that the “supremum inside the probability”
is needed; for such an application of the functional KMT cf. Rio [18]. However for
asymptotic equivalence of experiments, it turned out that it is sufficient, and indeed
preferable, to have a coupling like (1.3) with the “supremum outside the probability”.
Applying theorem 3.5 of Koltchinskii [8], it became possible in [15] to extend the
scope of asymptotic equivalence, for the density estimation problem, down to the
limit of smoothness A2. Analogously the present result is essential for establishing
asymptotic equivalence of smooth nongaussian regression models to a sequence
Gaussian experiments, cf. Grama and Nussbaum [6]. The original result of Komlés
Major and Tusnady on the partial sum process [9] can be used for asymptotic equivalenc
in regression models, but presumably with a non-optimal smoothness limit as in [14].

(B) Nonidentical and nonsmooth distributioriEhe assumption of identically distrib-
uted r.v.'s substantially restricts the scope of application of the classical KMT inequality
for partial sums. However this assumption happens to be an essential point in the orig
nal proof by Komlés, Major and Tusnady and also in much of the subsequent work. The
original bound was extended and improved by many authors. Multidimensional version:s
were proved by Einmahl [4] and Zaitsev [22], [23] with a supremum over the class of
indicatorsHy. A transparent proof of the original result was given by Bretagnolle and
Massart [1]. We would like to mention the series of papers by Massart [13] and Rio
[16], [17]. They treat the case &*-valued r.v.sX;, indexed inZ4 with a supremum
taken over classeX of indicator functionsf = 15 of Borel setsS satisfying some reg-
ularity conditions. Condition (1.5) is also relaxed to moment assumptions, but identical
distributions are still assumed.

Although there are no formal restrictions on the distributionX pivhen performing
a Hungarian construction, it is not possible to get the required closeness between tt

constructed r.v.'sX; 4 X; and their normal counterparts; if the r.v’s X; are non-
identically and non-smoothly distributed (see Section 4). This can be argued in the
following way (see Sakhanenko [19]). Let us consider the sum X1 + --- + X,
whereX; takes values=(1+ 27). Then we can identify each realizatiah by knowing
only S. In the dyadic Hungarian scheme, the conditional distributiok of - - - + X, 2
given S is considered and used for coupling with a Gaussian random variable. Howevel
this distribution is now degenerate and hence not useful for coupling. This problem doe:
not appear in the i.i.d. case, due to the exchangeability okthe

We adopt a method to overcome this difficulty proposed by Sakhanenko [19]. In his
original paper Sakhanenko treats the case of independent non-identically distribute
r.v.'s for a class of indicators of intervald = Hy. Here we consider the problem in
another settingH = H(1/2, L) whereH(1/2, L) is a Hélder ball with exponent/2
and the sup is outside the probability, i.e. we give an exponential bound for the quantity
(2.3) uniformly in f over the set of function$<(1/2, L). One complication which
then appears is that the paiX;, W), i = 1,...,n, of rv’s X; < X; and W; < w;,
i =1,...,n, constructed on the same probability space by the KMT method are no
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longer independent, even though, i = 1,...,n, andW;, i =1,...,n, are sequences
of independent r.v.’s. To deal with this we have to develop additional properties of the
Hungarian construction which are not used in the classical setting (see Lemma 5.5 fo
details). N N

(C) Coupling from marginalsA weaker coupling ofX” and N" can be obtained
as follows. Assume for a moment that the r.\Xs are uniformly bounded}X;| < L,
i=1...,n, and also that| f || < L, f € H. Take a finite collection of functions
Hoo = (f})j=1...a C H and considerZ; = (f(t;)X;) rer,, @S random vectors iRe.
Reasoning as in Fact 2.2 of Einmahl and Mason [5] (using the result of Zaitsev [21]
on the Prokhorov distance between the laydf ;, Z; and a Gaussian law) we infer that
for all suchHq there are version&"( f), N*(f), f € Hoo (depending orx) such that

P(n'? max|X"(f) = N"(f)| > x) <coexp(—erxL™?), x>0 (1.6)
€/100

This yields (1.3) with rate, = n~1/2 for every finite clas${qo C H of sized, but with
constantsyg, c; depending orl. Hence any attempt to construkt () and N" (), on

the full classH from (1.6) is bound to entail a substantial loss in ratebut laws of

the iterated logarithm can be established in this way (cf. Einmahl and Mason [5]). Thus.
to obtain (1.3) forr, = n~%2log?n and a full Hélder clas${(1/2, L), the shortcut via
(1.6) appears not feasible, and we revert to a direct KMT-type construction.

In order to keep the proof somewhat transparent we do not look for optimal
logarithmic terms, but we believe that the optimal rate can be obtained by using the
very delicate technique of the paper [19]. The main idea is, roughly speaking, to
consider somemoothedsequences of r.v.'s instead of the initiadssmoothedequence
X1,...,X,, and to apply the KMT construction for the smoothed sequences. This we
perform by substituting normal r.v.8; for the original r.v.sX;, for even indices = 2k
in the initial sequence. Thus we are able to construct one half of our sequence an
combine it with a Haar expansion of the functignFor the other half we apply the same
argument which leads to a recursive procedure. It turns out that this kind of smoothinc
is enough to obtain “good” quantile inequalities although it gives rise to an additional
logn term. On the other hand the usual smoothing technique (of eadh mdividually)
fails. Unfortunately even the above smoothing procedure applied with normal r.v.'s is not
sufficient to obtain the best power for the logn the KMT inequality for non-identically
distributed r.v.'s. An optimal approach is developed in the paper of Sakhanenko [19] anc
uses r.v.'s constructed in a special way instead of the normal r.v.'s. Roughly speaking i
corresponds to taking into consideration the higher terms in an asymptotic expansion fc
the probabilities of large deviations, which dramatically complicates the problem. For
more details we refer the reader to this beautiful paper.

Nevertheless we would like to point out that the additionalddagrm which appears
in our KMT result does not affect the eventual applications that we have in mind, i.e.
asymptotic equivalence of sequences of nonparametric statistical experiments. We als
believe that a stronger version of this result (with a supremum inside the probability)
might be of use for constructing efficient kernel estimators in nonparametric models.
But such an extension is beyond of the scope of the paper.
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2. Notation and main results

Letn € {1, 2,...}. Suppose that on the probability spa&#, 7', P’) we are given a
sequence of independent r.\Xs, ..., X,, such that

E/Xi :0’ len E X2 Cmax, = 1, R /N

whereCnin < Cmax are some positive absolute constants. Heredftés the expectation
under the measurg’. Assume also that the following extension of a condition due to
Sakhanenko [19] holds true:

ME'| X Pexp{r X} < E'X?, i=1,...,n, (2.1)

where),, is a sequence of real numbers satisfying @, < A, n > 1, for some positive
absolute constant Along with this, assume that on another probability sp@ze?, P)
we are given a sequence of independent normal M.s. ., N, such that

EN;=0, EN?=E'X?,

foralli =1, ..., n. HereafterE is the expectation under the measire
Let H(1/2, L) be the Holder ball with exponent/2, i.e. the set of real valued
functions f defined on the unit intervdD, 1] and satisfying the following conditions

|f) = FO|<Lix—y"%,  |Iflle <L/2,

whereL is a positive absolute constant.

Lets; =i/n,i =1,...,n, be a uniform grid in the unit intervdD, 1]. The notation
Y £ X for random variables means equality in distribution. The symlfalith possible
indices) denotes a generic positive absolute constant (more precisely this means that
is a function only of the absolute constants introduced before).

The main result of the paper is the following.

THEOREM 2.1.— Let n > 2. A sequence of independent r\s, ..., X, can be
constructed on the probability spa¢g, F, P) such that)N(i < X;,i=1,...,n,and

n 2
sup P |3 FuXi—N)| > x—2 ) <crexpi—cox}, x>0.
FeH/2,L) iz1 n
Remark2.1. —In the above theorenX;, i = 1,...,n, are not supposed to be

identically distributed nor to have smooth dlstrlbutlons although the result is new even
in the case of i.i.d. r.v.s. The r.v. Xl, .. X constructed are functions of the r.v.'s
Ny, ..., N, only, so that no assumptlons on the probability sp@azeF, P) are required
other than existence &4, ..., N,,.

Remark2.2. — The use of condition (2.1) instead of a more familiar Cramér type
condition is motivated by the desire to cover also the case of non-identically distributec
r.v.'s with subexponential moments, which corresponds,te> 0. This case cannot be
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treated under Cramér’s condition, but it is important since it essentially includes the cas
of non-identically distributed r.v.’s with finite moments.

Theorem 2.1 can be formulated in the following equivalent form.

THEOREM 2.2. — Letn > 2. A sequence of independent r.\z)?si,...,f(,, can be
constructed on the probability spac€, F, P) such thatX; £X,i=1,...,n, and
for anyr satisfying|¢| < c1

sup Eexp{ N(X; — N)} exp{cat?}.

feH/2,L)
Let us formulate yet another equivalent version of Theorem 2.1. Assume that on the

probability spac&<’, 7', P’) we are given a sequence of independent rXxs..., X
suchthatforali =1,...,n

E/Xi =0, )¥2Cm|n SE X2 Cmax)L (2.2)

n’

whereCnin < Cmax are positive absolute constants ands a sequence of real numbers
0<x, <1,n>1. Assume also that the following condition due to Sakhanenko [19]
holds true:

AE'|X Pexp{alX;|} < E'XZ, i=1...n, (2.3)

where A is a positive absolute constant. Suppose that on another probability spact
(22, F, P) we are given a sequence of independent normal t4.s .., N, such that
fori=1,...,n

EN;=0, EN?=E'XZ (2.4)
THEOREM 2.3.— Letn > 2. A sequence of independent r.\z)?si,...,f(,, can be

constructed on the probability spac€, F, P) such thatX; £X,i=1,...,n, and
for anyr satisfying|¢| < c1

sup Eexp{Iog Zf(z,)(X N)} exp{cat?®}.

FeH(1/2,L)

We shall give a proof of Theorem 2.3 in Section 6.
Now we turn to a particular case of the above results. Assume that the sequence ¢
independent r.v.Xy, ..., X, is such that

E'X;=0, Crin<E'X!<Cmax i=1....n, (2.5)

for some positive absolute constar@%,, < Cmax. ASsume also that the following
Cramér type condition holds true:

E/eXp{C1|Xi|}<C2, i=1...,n, (26)

whereC; andC; are positive absolute constants.
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THEOREM 2.4.—Let n > 2. A sequence of independent r\s, ..., X, can be
constructed on the probability spa¢g, F, P) such that)N(l- < X;,i=1,...,n,and

n

> F(Xi — N

i=1

sup P
feH1/2,L)

> X |ngn> <crexpl—cox}, x=0.
To deduce this result from Theorem 2.1, it suffices to note that Sakhanenko’s conditior
(2.3) holds true with,, = const depending 0@, C1 andC,, under (2.5) and (2.6).

Remark2.3. — It should be mentioned that Sakhanenko’s condition (2.3) holds true
for the normal r.v’sNy,..., N, only if the constantr is small enough, namely if
A< c(ENl?)_l/z. Since the functionx|x|® exp(a|x|) is increasing inx, the condition
(2.3) holds true for any. < A’ if it holds true with some. = A’. Therefore without loss

of generality it can be assumed that the constafutlfills A < ¢/Cmax < c(E’X,?)_l/Z,
i=1,...,n,thus ensuring that (2.3) holds true also i@, ..., N,.

3. Elementary properties of Haar expansions

For the following basic facts we refer to Kashin and Saakyan [7]). The Fourier—
Haar basis on the intervdD, 1] is introduced as follows. Consider the dyadic system
of partitions by setting

sk,j = j2_",
forj=1,...,2% and
Ag,1 =10, sg 11, Ak, j = (Sk,j—1, Sk, 1, (3.1)

for j=2,...,2" wherek > 0. Define Haar functions via indicatorg A ;)

ho=1(A01), M =2%(L(Ars12j-1) — L(Ari12))), (3.2)

for j=1,...,2andk > 0.
If fis afunction fromZ,([0, 1]) then the following Haar expansion

oo 2k
f=co(f)ho+ chk,j(f)hk,j,

k=0 j=1

holds true with Fourier—Haar coefficients

1 1
co(f) = / F@ho@ydu, e (f) = / F@)he ;) du, (3.3)
0 0
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for j =1,...,2* andk > 0. Along with this, consider the truncated Haar expansion

m—1 2

fo=co(Hho+ D> > cij(Hhi (3.4

k=0 j=1
for somem > 1.
PropPosSITION 3.1. — For f € H(1/2, L) we have

(N <L/2, e (f)| <27¥2L27F,

fork=0,1,...andj=1,...,2*.
Proof. —It is easy to see that

ck,j<f>=2"/2( [ rwan— [ f(u)du),

Apy1.2j-1 Ajt1.2)
=2k2 / (f@) — fu+27%D)) du.
Agt1,2j-1

Since f is in the Holder ballH (3, L) we get

e (N[ <272 sup | fu) — fu+27CHD) / du

UEAK+1,.2j-1 A
k+1,2j—

< 2k/2L2—(k+l)/22—(k+l) < 2_3/2L2_k_ 0O
Next we give an estimate for the uniform distance betwgemd f,, .
PROPOSITION 3.2. —For f € H(1/2, L) we have

sup | f(t) — fu(O| < L2272,

0<r<1

Proof. —It is easy to check (see for instance Kashin and Saakyan [7], p. 81) that,
whenever € A, ;,

Fult)=2" / F(s)ds,

Am,j

for j=1,...,2", which gives usf,,(t) = f(tn.;), With somez,, ; € A, ;. Sincef (¢) is
in the Holder ballH(%, L), we obtain foranyj =1,...,2" andr € A, ;

FO) = fu@| = £ @) = fulon )| < LIt = j|Y2 < L2272, .

4. Background on quantile transforms

Let (', F’, P’) be a probability space. Letbe a real number such thatOx < oo.
Denote byD (1) the set of all r.v.'sS on the probability spac&?’, 7', P’) which can be
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represented as a sush= X; + --- + X,, of some independent r.v.'s q®2’, 7', P’) for
somen > 1, satisfying relations (4.1), (4.2) below:
e Therv'sXy,..., X, have zero means and finite variances:

E'X; =0, 0<E'X?<o00 (4.1)

foranyi=1,...,n
e Sakhanenko’s condition

AE'| X |Pexp{A|X;|} < E'X?, (4.2)

is satisfied forali =1,...,n
Let u be a real number satisfying© 1 < co. By Dg(A, 1) we denote the subset of
allr.v’'s S € ® (1) which additionally satisfy the following smoothness condition (4.3):
e Forany O< e <1, we have

E'e p: l+h S v
/ ‘ X (| ) } dt <
|h|<£

< : 4.3
E'exp(hS} eE'S? (4.3)

where i=+/—1.

Remark4.1. — In the sequel we shall assume thaits a positive absolute constant,
and therefore, we shall drop the dependence:an the notation for9q(A, 1), i.e. we
write for short®g(A) = Do(A, 1).

We now introduce thguantile transformatiorand the associated basic inequality (see
Lemma 4.1). Assume that on probability sp&ge, 7', P’) we are given an arbitrary r.v.
X of mean zero and finite varianc&’X = 0 and E'X? < oo. Assume that on another
probability space(2, F, P) we are given a normal r.wW with the same mean and
variance:EN = 0 andEN? = E’'X?. Let Fx(x) and®, (x) be the distribution functions
of X andN respectively. Note that the r.¥. = & (N) is distributed uniformly o0, 1].
Define the r.vX to be the solution of the equation

Fx(X)=®y(N) =

The r.v. X is called a quantile transformation af . It is easy to see that a solution
always exists and has distribution functignalthough it need not be unique. In the case
of non-uniqueness, we choose one of the possible solutions.

The following assertion follows from the results in Sakhanenko [19] (see Theorem 4,
p. 10).

LEMMA 4.1.— SetB? = E’X? = EN?. In addition to the above suppose thite

Do(A). Then
. X2
X — N| < {1+ }

prOV|ded|X | < coAB? andAB > c3, Wherecy, ¢, andcs are positive absolute constants.
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Let us now introduce theonditional quantile transformatioand the associated basic
inequality (Lemma 4.3 below).

Assume that on the probability spage’, 7', P’) we are given two independent r.v.'s
X1, X, of means zero and finite variances!X; = 0 and E’Xl.2 < oo, fori =1,2.
Assume further that on another probability spate F, P) we are given two normal
r.v.'s N1, No with the same means and variancE®(; = 0 andEN? = E'X?,fori = 1, 2.
SetXo= X1 + X2 and No = N1 + N,. DenoteB; = E'X?, ay = B1/ B, a2 = Ba/Bs.
Suppose that we have constructed @having the same distribution &g, and which
depends only orNg and on some random vect®¥. Suppose thatv; and N, do not
depend onW. We wish to constructX; and X,. Let Fpx,(x|y) be the conditional
distribution function offy = a2 X1 — a1 X given Xo = y and®y, (x) be the distribution
function of the normal r.Wy = a, N1 — a1 N,. DefineT, to be the solution of the equation

Fryixo(Tol Xo) = @y, (Vo) = U.

The r.v. Ty is called a conditional guantile transformation@fgiven Xo.

PROPOSITION 4.2. — SetX; = oy }(To + a1 X0) and X, = ag (T — a2Xo). ThenX;
and X, are independent and such thay 2 X1, X, < X,. MoreoverX; and X, are
functions of the r.v!sXo, N1 and N, only.

Proof. —ConsiderU = ® (Vp). Itis clear that the distribution df is uniform on[O0, 1].
Since Vo = aoN1 — a1 N> and Ng = N1 + N, are normal and uncorrelatedd, and Ny
are independent. Sina&/,, N,) does not depend oW, we conclude that/ does not
depend onvVy andW. But X, is a function ofNy and W only. HencelU and X, are also
independent.

Next, since the uniform r.vU does not depend 05(0, we easily check that the
distribution of7p given Xo = y, for any realy, is exactlyFr, x,(-|y). Taking into account
that Xo < Xo, we conclude that the two-dimensional distributions of the p@issXo)
and(Tp, Xo) coincide. From this we obtain in particular théf and X, are independent

and thatX, < X1, )N(NZ < X,. Moreover it is obvious from the construction thgt and
X, are functions ofXy, N; andN, only. O

The following assertion follows from the results in Sakhanenko [19] (see Theorem 6,
p. 20).

LEMMA 4.3.-SetB = B1B,/By. In addition to the above suppose th#i, X, €
Do(A). Then

~ C]_Bo Toz )?(2)
|To — Vol < Tg{l-l-ﬁ-l-ﬁ )

provided |7o| < coAB2, |Xo| < c2AB? and AB > cs, wherecy, ¢, and c3 are absolute
constants.
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5. A construction for non-identically distributed r.v.'s

In this section we assume that we are given a sequence of independenk;r.v.'s
i=1,...,n, satisfying (2.2) and (2.3). We shall construct a version of this sequence
and an appropriate sequence of independent normal¥y.5=1,...,n, on the same
probability space such that these are as close as possible. More precisely, the constructi
is performed so that the quantile inequalities in Section 4 are applicable. Of course
the sequences which we obtain are dependent. To assure that this dependence rems
under control, we partition the initial sequence into dyadic blocks with similar size of
variances. Some prerequisites for this are given in the next section. The constructio
itself is performed in Section 5.2.

5.1. A dyadic blocking procedure

In this section we exhibit a special partition of the initial sequence into dyadic blocks
so that the sums of th¥; inside the blocks at any dyadic level have approximately the
same variances. This will be used for proving quantile inequalities in Section 5.4 and
some exponential bounds in Section 6 (see Lemma 6.4 and Proposition 6.7).

Assume that: > nmin > 1, wherennn is an absolute constant whose precise value
will be indicated below. SeM = [log,(1n/nmin)]. It is clear thatM > 0 andnmin2” <
n < nmin2¥*tt Let Jy; = {1,...,n} and define consecutively,, = {i: 2i € J,,.1}, for
m=0,...,M — 1. Alternatively, for anym =0, ..., M the set of indices/,, can be
defined as follows:

Jn={i: 1<i2" ™ <}

Let n,, denote the last element if, i.e. n,, = #J,,. It is not difficult to see that
Nmin < 1o < 2 min.
Recall that each r.\X; is attached to a design point=i/n,i =1, ...,n. Set

tl-m == tizM—m, le - Xl'2M—m, m = 0, eeey M, l (S Jm. (51)

Our next task is to split each sequen<g, i € J,, into dyadic blocks so that the sums
of X" over blocks at a given resolution levelhave approximately the same variances.
To ensure this we shall introduce the strictly increasing funakipé) : [0, 1] — [0, 1],
which is related to the variances &f" as follows:

t 1
bt = [ ﬂm(S)dS/ [fnrds. 1c@11 BaO =0
0 0

where
CJE(XM?, ifse @, "], i € Jn,
Pn(s) = { E'(X" )%, ifse@ 1]

Leta,, (r) be the inverse db,,(r), i.e.

an(t) =inf{s € [0, 1]: b, (s) >1}. (5.2)
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It is easy to see that condition (2.2) implies that bétz) anda,,(¢) are Lipschitz
functions: for anyty, #, € [0, 1], we have

1D (12) — by (11)| < Limaxlf2 — 1], |am (12) — am(11)| < Lmaxlt2 — 1], (5.3)
whereLmax = Cmax/ Cmin. Consider the dyadic scheme of partitions
Aej, j=1,....2k=0....M

of the interval[0, 1] as defined by (3.1). Foramy =0, ..., M, denote by/;"; the set of
those indices € J,, for which b,,(¢/") falls into A, ;, i.e.

'={iely byt e}, j=1...2k=0...m

Since Ay j = Agy12j-1 + Akqa2j, It is clear thatl,?j Blagjo1 + Bz for
j=1,...,2% InparticularJy, = I}, = {1, ..., n}. We leave to the reader to show that
each sef}"; contains at least two elements, if the constant is large enough.

PROPOSITION 5.1. —Assume thatmin > 2Cmax/ Cmin = 2. Thenforanyj =1, ..., 2%,
k=0,...,m,m=0,...,M,we have#]”j] > 2.

In the sequel we shall assume that- nmin > 2Cmax/ Cmin = 2. Now the sequence
X", i € J, can be split into dyadic blocks corresponding to the sets of indifess
follows:

2k
{x/iel.y=) {Xitiel;}, k=0,...m.
j=1

Set
Xy = > X B = Xk] => F X’" (5.4)

H m 771
lelk_j lEI !

The following assertions are crucial in the proof of our results, as shall be seen later. Thi
proofs being elementary are left to the reader.

PROPOSITION 5.2. —For anyk =0,...,M —1landj=1,...,2* we have
’Bll:zi-l,2j—1 - B/’:;l,zﬂ < cki- (5.5)
PROPOSITION 5.3. —Foranyk =0,...,M —1andj =1,..., 2" we have
< Bl’<n+1,2j—1/Bl€n+l,2j Sc.

5.2. Theconstruction

Recall that at this moment we are given just two sequences of independent r.v.'s
X;, i =1,...,n, on the probability spacéR’, 7', P’) and N;, i = 1,...,n, on the
probability space(2, F, P). We would like to construct a sequence of independent
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rv’s X;, i = 1,...,n on the probability spacg2, 7, P) such that eachX; has the
same distribution aX; and the two sequences;,i =1,...,n,andN;,i=1,...,n,

are as close as possible. Before proceeding with the construction we shall describe tw
necessary ingredients: the dyadic scheme of Komlds, Major and Tusnady [9] and al
auxiliary construction.

5.2.1. The Komlés-M agjor-Tusnady dyadic scheme

In this section we shall describe a version of the construction appropriate for our
purposes.

Lett, ;, j=1,...,2", beasequence of r.v’s of zero means and finite variances given
on a probability space?’, 7', P'), and lety,, ;, j =1,...,2", be a sequence of normal
r.v.'s with the same means and variances given on a probability $pacg, P). At this
moment it is not necessary to assume that these are sequences of independent r.v.’s.
goal is to construct a version &f, ;, j =1,...,2", on the probability spac&z, 7, P).

The new sequence will be denot.é,gj, j=1...,2".

Setérj = Skr12j-1 + Skr12; AN 1 j = Migr2j-1 + Metr2j, for j=1,..., 2" and
k=0,...,m — 1. First defineZ ; to be the quantile transformation g 1, i.e. define
&o.1 to be the solution of the equation

Fg,(Bon) = @, . (10,1)

where Fg,,(x) is the distribution function oftp,, and ®,,,(x) is the distribution
function of 11 (see Section 4). Suppose that for sote-0O,...,m — 1 the r.v’s
&.;, j=1,...,2" have already been constructed, and the goal is to congruct,
j=1,...,2¢" . Tothisend setfoj =1, ..., 2¢

Vij = Qr1,2jMk4+1,2j—1 — Ok1,2j—11k+1,2) » (5.6)
where
1/2 1/2
Bii12j-1 By 112;
App12j-1= | ——— ] 12 = (| =————
Bii1.2) Biy12j-1
and
Byi12i-1= EE? Byi12; = EE?
k+1,2j—-1 = §k+l,2j—1v k+1,2j = k41,2

Define fk,j to be the conditional quantile transformation f ; given 'g?k,,-, i.e. for
j=1,...,2 defineT; ; as the solution of the equation

FTk,_/lék,_/(fk,ﬂgk,j) =®y,; (Vij) (5.7)

where Fy, ¢, . (x]y) is the conditional distribution function df; ; given&; ; =y, and
@y, ;(x) is the distribution function oV ; (see Section 4). For any=1,...,2", the
desired r.v.’§k+1,2j_l andEkH,gj are defined as the solution the linear system

Z’w' =8‘k+1,2j5k+1,gj—1 — 0k41.2j-16k+1.2) (5.8)
Erj =&r12j-1 +&kr1.2)s
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the determinant of which is obviously strictly positive. This completes description of the
dyadic procedure. N

The following result concerns basic properties of the resulting sequgneej =
1,...,2".

LEMMA 5.4.-Assume that, ;, j =1,...,2", and n,;, j=1,...,2", are
sequences of independent r.v’s. Then for aryo, ..., m, the rvis& ;, j =1,..., 2,
are independent and such thit; < & ;, j =1,..., 2. Moreoverg ;, j =1,..., 2,
are functions of the sequengg;, j =1, ..., 2%, only.

Proof. —The proof is similar to statements in Komlés, Major and Tusnady [9] (see also
Sakhanenko [19], Einmahl [4], Zaitsev [24]) and therefore will not be detailed here.

It turns out that the properties of the Koml6s—Major-Tusnady dyadic construction
established in Lemma 5.4 are sufficient for proving a strong approximation result if the
index functions of the process belong to the class of indicators. However for proving our
functional version we need one more property of this construction, which we formulate
below. Recall thaV, ; and T} ; are defined by(5.6) and (5.8).

LEMMA 55.-If &, ;, j=1,...,2", and n, ;, j =1,...,2", are sequences of
independent r.v’s, then, for aty=0,...,m, the rv’sT, ; — Vi ;, j=1,..., 2", are
independent.

Proof. —For the proof of this statement it suffces to note that for agyo, ..., m,

(& Vi j=1,...,2
is a collection of of jointly independent random variables:

5.2.2. An auxiliary construction

In the sequel we shall need also an auxiliary procedure which is not as powerful as thi
KMT construction, but which permits us to construct somehow the components inside
an already constructed arbitrary sum of independent r.v.’s. Below we present one of th
possible methods.

We start from an arbitrary sequence of r.¥ss..., &, (not necessarily independent)
given on(Q, F', P’). SetS; =& + --- + &, k=1,...,n. Suppose that on another
probability space2, F, P) we have constructed only the r.y, % S, which corre-
sponds to the surfi, and we wish to construct its components, ¢£... ., &, such that

BLe,.. .85 LE andS, =& + --- + &,. As a prerequisite we assume that on the
probability space(2, F, P) we are given a sequence of nondegenerate normal r.v.'s
n1, ..., N, (Not necessarily independent). First we deffpeo be the conditional quan-
tile transformation ofj, givens,,, i.e. we define, to be the solution of the equation

F5n|sn (gn |§l’l) = (DT]n (nn)

where F;, s, (x|y) is the conditional distribution of, given S, =y, and®,, (x) is the
distribution function ofy,. SetS,_, =S, — &,. If for some 2< k <n — 1 the r.v's
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£y, ..., Epr @ndS, are already constructed, we defifeto be the conditional quantile
transformatlon oy, given Sy, i.e. we deflnesk to be the solution of the equation

Feis (Bl Sk) = @, (i)

where Fy, g, (x]y) is the conditional distribution of; given S; =y, and®,, (x) is the
distribution function ofy.. SetS;_1 = S — &. Finally, fork = 1, we defing; = Sy, this
completing our procedure.

The easy proof of the following assertion is left to the reader.

LEMMA 5.6. —Assume that,, ..., &, andnq, ..., n, are sequences of independent
rv’s. Thené, ..., &, are independents; £ &, i =1,...,n, and& + --- + &, = S,.
Moreoveréy, ..., &, are functions ofy, ..., n, and S, only.

5.2.3. Themain construction

_Our next step is to describe a construction which will result in the desired sequence
X;,i=1,...,n. It should be noted that although both the dyadic procedure and the
auxiliary construction described above work with arbitrary distributions, in order to use
the quantile inequalities stated in Section 4 (which actually will provide the desired
closeness ofX;, i =1,...,n,andN;, i =1,...,n), one has to assume the r.vs,
i=1,...,n,tobeinthe clas®q(r), for somer > 0, or to be identically distributed (as

in Komlés, Major and Tusnady [9], [10]). In order to avoid such assumptions we shall
employ an inductive procedure which goes back to the paper of Sakhanenko [19]. Th
idea is first to substitute the initial sequence with some smoothed sequences, and then
apply the dyadic procedure described in Section 5.2.1 to the smoothed sequences. Belc
we formally describe this construction.

Consider the product probability spa¢”, F’, P") = (', F', P") x (Q,F, P),
where P’ = P’ x P. It is obvious that the sequencés, i =1,...,n, andN;, i =
1,...,n, are independent on the probability spag¥, 7”, P”).

Recall that above we introduced the sets of indidggs= {i: 1< i2M~" < n}. For
eachm = M, ..., 0, the set/,, can be decomposed ds = J! + J2, where

Jr={(i-odd:i e J,}, J?=/{i-even:iec J,), m=M,...,1,
andJg = Jo, J& = . Itis clear that
Jna={i:2ield,}, m=1...,M.
To start our iterative construction, for ang Jy, = {1, ..., n}, define the following r.v.’s:
xM+1l=x,, YA+ = N, (5.9)

We proceed to describe te-th step of our construction which is performed consecu-
tively forallm=M,...,0.

e mth step For anyi € J,,, define the following r.v.’s:
X=Xyt W =yptt (5.10)

1
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and

i wr, ifieJz. (®.11)
Note that the r.v./",i € J,,, are defined on the probability spage, F, P), while the
rv.'sY™", i e J,, are defined on the probability spat®”, 7, P”). Here X", i € J,,,
is the part of the initial sequenck;, i € Jy, = {1, ...,n}, given on the probability
space(Q’, 7', P’), which is not yet constructed on the probability spate F, P);
w", i e J,, is the corresponding sequence of normal r.v.’s &g i € J,, is the
smoothed sequence which is constructed at this step. Consider the following sums: fc
j=1,...,2%andk =0, ..., m set

Y=o W= W (5.12)

: m H m
lelk_j lelkh/.

Ym:{x;", ifieJ?

Then obviously forj =1,...,2¢andk =0,...,m — 1
Y =Yoo+ Yo W =Wlioia+ Wik o) (5.13)

We will apply the dyadic procedure described in Section 5.2.1, gjth= Y7, and

Mm,j =W, ;,j=1...,2", to construct a doubly indexed sequeﬂN’gﬁ j=1...,2",
k=0,...,m.LetYy, be the quantile transformation &g, i.e. let¥y’; be the solution
of the equation

Fym, (Yoy) = Dy, (Wg'a), (5.14)
Whererén1 (x) is the distribution function of’; and® wer, (%) is the distribution function
of Wg'y,. The solution exists sincé/g’, is a nondegenerate normal r.v. Assume that
we have already constructeftjg?., j=1,...,2 for somek =0,...,m — 1. We shall
construct such an array with+ 1 replacingk. To this end set, foj = 1, ..., 2*,

m __ _.m m m m
Vk,j =0p41.2j Wk+1,2j—1 - O(k+1,2j—1Wk+1,2j7 (5.15)
where
m 1/2 m 1/2
m . Bii12j-1 m . Bl 1 2
Opy12j-1= B ’ Opy1,2j = B
k+1,2) k+1,2j-1
and
= 2 = 2
m _ m m _ m
Bit12i1=E(Y{i10;-1)" Bli12=E(Y{12)" (5.16)

Let Tk’flj be the conditional quantile transformationgf;, given ?,gf’j, forj=1,...,2,
i.e. let Tk’f‘j be the solution of the equation

Frwp (TE1YE) = v (Vi) (5.17)

where FT]:’lj|y]I"j (x|y) is the conditional distribution function of”;, given v}";, and
®wy (x) is the distribution function ofW;”;. The solution exists, sinc&”, is a



940 I. GRAMA, M. NUSSBAUM / Ann. |. H. Poincaré — PR 38 (2002) 923-957

nondegenerate normal r.v. For ajiy= 1, ..., 2* we define the desired r.v.E,;’_’Fl’zj_l
and?,g’_‘kl’zj as the solution of the linear system

=m oom vm m ym

Te's = %2V 2j1 ~ %21 Yk o) 5.18

Yr = o o
k,j — 1Tk+1,2j-1 k+1,2j*

Thus the rv’si?,g"], j=1,...,2% are constructed foral =0, ..., m on the probability
space(2, F, P). It remains to construct the components |nS|de each B’gm

1,...,2". Forthis we make use of the auxiliary construction described in Sectlon 5.2.2,
W|th é, =Y/ andn, = ,i €1, ;. For each fixedi andm it provides a sequence of

VSY"=&,ie L, such that

=> (5.19)

: m
lelm_j

This completes the:th step of our construction.

Let us recall briefly some notation associated with the construction, which will also
be used in the sequel. For any= M, ..., 0 we have defined the r.v.8", W/, Y,
i€y, andyy, Wy, v, j=1,...,25 k=0,....m, such that, by (5.12) and (5.19)
(cp. with (5.4)),

Y= Wl =YW = (5.20)

iell’, iell’, iell’,
fork=0,....,m,j=1,...,25,m=0,.... M
5.3. Correctness and some useful properties

In fact implicitly the construction of the desired seque[f(c;ei =1,...,n, has already
been carried out; it remains to select the appropriate components from the sequenc
{Y: i e J,,} found above. But before this step we need to show that the construction is
performed correctly, and we shall also discuss some properties of the’f\asid W
introduced. The proofs of the following assertions are left to the reader.

In analogy toX" (see (5.1)), seN" = N;ou-n, Wherem =0,..., M, i € J,,.

LEMMA 5.7.—Foranym =0, ..., M the following statements hold true
(a) The rv'sw", i € J,, are independent and satisWy,” LNm = = Njoy-n, i € Jy.
(b) The rvsY", i € J,, are independent, are functions W’”, i € J,, only and
satisfy, fori € J,,,
om d ym d
YyrEyr=

1

xm o if ieJi,

N if e J2.

Remark5.1. — Since by Proposition 5.1#; > 2, from Lemma 5.7 and from (5.20)
it follows thatW";, j =1,..., 2%, k=0,...,m, are nondegenerate normal r.v.'s which
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ensures that the solutions of Egs. (5.14), (5.17) exist. This proves the correctness of tt
main construction.

PROPOSITION 5.8. —The vectorY/”: i € J}},m =M, ..., 0, are independent.

Now finally we are able to present the sequelgei = 1, ..., n. It is defined on the
probability spac&<2, F, P) in the following way:

Xl'2M—m - ?l-m, Wherel (S Jl 0 < m X M (521)

m?

PROPOSITION 5.9.— X;, i = 1,...,n, are independent and such tha < X;,
i=1...,n

Proof. —The required assertion follows from Lemma 5.7 and Proposition 5:8.

In the proof of our main result Theorem 2.3, the following elementary representation
is essential. Recall that" =7, = v/n wherev =i2¥=" i e J,,m=0,..., M (see
Section 5.1).

ProPOSITION 5.10. —For any real valued functionf(¢) on the interval[O, 1], we
have

Zf(t)(x N)—ZZf w).

m=0jeJy,
5.4. Quantileinequalities

In this section we shall establish so-called quantile inequalities (see Lemma 5.12 an
Lemma 5.13), which will ensure the required closeness of theky,'6=1,...,n, and
Ni,i:].,...,l’l

The following lemma shows that the r.vly";, j=1,..., 2%, are smooth enough to
allow application of the quantile inequalities stated in Section 4.

LEMMA 5.11.-Form =0,...,M,k=0,....,m, j=1,...,2" the rv.Y;"; is in the
class®(r), for some positive absolute constant

Proof. —We shall check conditions (4.1), (4.2) and (4.3) in Section 4. Toward this end
fix m, k, j as in the condition of the lemma and note that

=Yl=) Y'=) Y'+) Y'=u+ti

ieI,:”j ielp iel

wherel; and I, are the sets of all odd and even indicedfh respectively. By Lemma

5.7, we havey" = 4 N;, for anyi € I,. Thusg, is actually a sum of independent normal
r.v.s. Slncenm.n is large enough, the séf’; has at least two elements (see Proposition
5.1), from which we conclude thd has at least one element. Next, taking into account
(2.2) and the obvious inequality/#> 1#I,§"], we get

C m
Ef > Crinhottly > g'”,\,,#lk] cEZE.
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For|h| <X andr € R, let

fo(t,h) = Eexp{(it + h)¢; }/ E exp{hi;)

be the conjugate characteristic function of the ¢v.i = 0,1, 2. Since¢; and ¢, are
independent ang, is normal,

| foot. )| = | fer (2, h) for (2, )| < | for (2, 1)

2, 2,
< ex —EEg“Z < ex —EcEg“o ,

for |h| < A, t € RL. With this bound we have

[ 1fano]dr < /exp{——cE;o}dz —

[t]>e |t|>e

wherep is some absolute constant, which proves tat ¥;"; satisfies condition (4.3).
It remains only to show that condltlons (4. l) and (4.2) are satisfied. The first condition

follows from (2.2) as soon aK’" X; or Y’" N; for anyi e L' S I, by Lemma

5.7. For the second we make use of (2. 3) and of the eIementary fact that Sakhanenko
condition (4.2) holds true for any normal rA. if A is small enougha < c(VarN)~%/?

(see Remark 2.3). O

Recall thatforanyn =0,..., M, k=1,...,mandj=1,...,2" by (5.18),
fknjj =y; lenzj 1 al’:f2j—1?1?,12jv (5.22)
and by (5.15),
Vi =l Wil —otn;_ Wil (5.23)

Recall also thaB}’; = E'(X}')* (see (5.4)).
The following quantile inequalities show that the r.\T?,gj andWy"; are close enough.
These statements are crucial for our results.

LEMMA 5.12. -Foranym =0,..., M, we have

(Vgh)?
|Yo,1— 01 131+ By, )

provided |176f‘1| < 2By and Bgly > c3, wherecy, ¢ and ¢z are positive absolute
constants.

Proof. —According to the constructiorf’(’;jl is the quantile transformation f’; (see
(5.14)). Then it suffices to note that, by Lemma 5.11, theﬁg’g. is in the classO (1q)
and to apply Lemma 4.1 with = ¥, N = Wg, andX = ¥§,. O
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LEMMA 5.13.-lLetm=0,...,M,k=0,....m—1,j=1,...,2% Then

m

v 2 v 2

(Va2 0? (Va5
) B™ . .. |

k+1,2j-1 k+1,2j

m m
" =V < c1{1+
provided|Y;", 1 ;1] < 2B 215 Y105l S 2BY15; @NA B 551 = c3, Bilyy 55 2

c3, Wherecy, ¢, andcs are positive absolute constants.

Proof. —Fix m, k, andj as in the condition of the lemma. We are going to make use
of Lemma 4.3 with

Xp=Y"1, 0. Xo=Yli,. Xo=Xi+Xo=Y, (5.24)

and
Ni= W2 1, No=W/ 1,5, No= N1+ N2=W;",. (5.25)
Note that, by Lemma 5.11, the r.v.¥o, X; and X, are in the classD(r) for

some absolute constant> 0. Since by constructiorT}”; is the conditional quantile
transformation o, (see (5.17)), Lemma 4.3 implies

Tm m Bo 1 52, 32
7, - v <a {1+ R+ X)), (5.26)
provided
Tm 2 Sm 2
T < c2B? V| < 2B, (5.27)
andB > c3, where
BB
2 m 2 m 2 2 2 2 1D2
Bl =Bk+l,2j—l’ B2 =Bk+1,2ja BO=B1+B27 B = BO .

By Proposition 5.3, we have
it <BY/B<ca (5.28)
Now we check that (5.27) holds true|iX;| < csB? and|X»| < c5B3, wherecs is a
sufficiently small constant. Indeed

7" <ﬁ|)?|+ﬁ|)?|<2c33
k’j\Bl 1 Bz 2l x 5D1D32.

By (5.28), we getfk’fljl < csceB?. Choosing the constaag such thatescg < ¢z, we see
that (5.27) is satisfied. Exactly in the same way we show that the second inequality ir
(5.27) holds true. ConditioB > c3 follows easily from (5.28). O
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6. Proof of themain results
6.1. An auxiliary exponential bound
We keep the same notation as in the previous section. In addition set for brevity
Sg =Yg —Woy, Sp=T0 -V, j=1....2,k=0....m, (6.1

WhereT’" and V", are defined by (5.22) and (5.23). The main result of this section is
Lemma 6 1 which establishes an exponential type bound for the dlfferéﬁg;emdS

Because of the special constructlonig? andV;"; on the same probability space, this
bound is much better that the usual exponentlal bounds (cf. Lemma 6.3 below). Thi:
statement plays a crucial role in establishing our functional version of the Hungarian
construction. It is the only place where the quantile inequalities are used.

LEMMA 6.1.—Foranym =0,...,.M,k=0,....m—1,j=1,..., 2,

Eexp{tSy} <exp{ci®}, Eexp{tS;;} <exp{ewr?},  |t|<co

We postpone the proof of the lemma to the end of this section; it will be based on
some estimates stated and proved below.

LEMMA 6.2. —For anye > 0 there is a constant(e) depending only o, such that
foranym=0,...,M,k=0,...,mandj € J,

P(|Y] > eBy;) < 2exp{—c(e) B! }.
Proof. —By Chebyshev’s inequality, we have for- 0
P(Y", > eB)';) <exp{—teB}', } Eexp{tY}";}. (6.2)

Note that by (5.20) and by Lemma 5.7, the @“}j is the sum of independent r.v.’s
Y/".i € Il",. Then by (2.3) and Lemma A.1, we obtain fof < /3,

Eexp{ty;";} = [ Eexp{ty"} <exp{r’B};}.

el
Inserting this bound into (6.2), with an appropriate choice @epending om), we get
E(Y}"; > eBy;) <exp{—c(e) By, }.
In the same way one can show that
E(Y"; < —eB};) <exp{—c(e) B},

which in conjunction with the previous bound proves the lemna.
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LEMMA 6.3.-Letm =0,....M, k=0,....,m —1, j =1,...,2% Then for any
0< 1t <y we have
Eexp{t|Sy';|} < coexp{r*B}'; }.
Proof. —Fix m, k and j as in the condition of the lemma. From (6.1) and from the
Holder inequality one gets, forQ ¢ < A
om Tm m 1/2
Eexp{t|Sy|} < (Eexp{t|T[" |} Eexp{t|vi [} (6.3)

The rv.¥/", ,;_, andY}", ,; are independent, hence by (5.22)

Eexp{tﬁk’f’j]} < EeXp{tO(lrcn+1,2j’?l?—l&-l,Zj—l’}Eexp{to{lrcn+1,2j—1|yl?—l&-l,2j’}' (6.4)

Since by (5.20) and by Lemma Sﬂ’” " 1.2j-1 Is exactly the sum of independent r\KS
i€l 1,1, 0ne has

Eexp{£1a],1 5V 10-0) = ] Eexp{rafy "}

. m
i€hl0i1

Taking into account (2.3) and choosingmall enoughf < 1/3), by Lemma A.1 one
obtains

~ 2 2
Eexp{italrcn—&-l,Zle?—lt—l,Zj—l} < H Eexp{tz(a,’{"le’Zj) E(X!")"}
i€ 10j1

2
< eXp{IZ(“lran,Zj) Blr<n+1,2j—1}'

2 _
Since( 1 2))° = Bi'y12i/ Bi'ya.2j-15

Eexp{te 5; |Y1?-1+1 2j— 1|} < ZeXp{’2Bﬁl 2j )

For the second expectation on the right hand side of (6.4) one gets an analogous boun
Then

Eexp{t|T";|} <4exp(t’B}' 1 ; + 1°B}1 5,1} = 4exp{t*B}'; }. (6.5)
A similar bound holds for the second expectation on the right-hand side of (6.3), i.e.
Eexp{t|V}"|} <4exp{s*B}';}. (6.6)

Now the lemma follows from (6.5), (6.6) and (6.3)0

Now we are prepared to show thﬁ’@j has a bounded exponential moment uniformly
inm, kandj.

LEMMA 6.4.—Foranym =0,...,M,k=0,....m—1,j=1,..., 2"

Eexp{c1|§gfj]} o)
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Proof. —Fix m, k and j as in the condition of the lemma. It is enough to consider
the case wher&;",; ,,_; and By, ,; are greater than’ only, wherec’ is the absolute
constanicz in Lemma 5.13; otherwise, by Proposition 5.3, we h&ye, ,; 1, B ,; <
c1 (thusBY'; = By 15,1+ Bi'y1 2, < 2c1) and the claim follows from Lemma 6.3.

Set for brevity

1l = {’?/{11,1’ <'Blia), 1=2j-1,2), (6.7)

wherec” = min(1, c,} andc; is the absolute constant in Lemma 5.13. Denot&Hy,
the complement of the s - It is easy to see that, forQr < A,

Eexp{t|S;|} = 01+ Q. (6.8)

where
O1=E eXp{’|§l':fj|}1(G2nfl,2j—1 UGi12j-1) (6.9)
Q2= Eexp{t|S{';|}1(Gly12-1 N Glirzjo1)- (6.10)

First we give an estimate fap,. Applying Holder’s inequality, we obtain from (6.9),
om 1/2 m,c 1/2 m,c 1/2
01 < (exp{2r|ST;|}) " (P(Gh0j-1) "+ P(G2) ™). (6.11)
By Lemma 6.2 we have with=2j — 1, 2;
P(Gi1)) = P(ﬁ/?il,z| > "Bl y,) <2exp{—c2Bi iy} (6.12)

Note that by Proposition 5.3, we havg' < B} 12,-1/Bi' 12, < c3, Which implies
Biy11 = caBy jforl =25 —1,2j. Then from (6.12) it follows that

P(Giih,) <2exp{—csBy';}, 1=2j—-1,2;. (6.13)

Inserting the bound provided by Lemma 6.3 and the inequality (6.13) into (6.11) and
choosing sufficiently small we obtain

1
01 < C6eXp{(C7l2 — Cg)Bij} < Cgexp{—ECSBZj} < cg.

Now we shall give a bound fo@Q,. Recall that the r.v.’sYN,g’_;l,l, l=2j—12j are
smooth (belong to the clag(r)), by Lemma 5.11. By virtue of Lemma 5.13 and of the
assumptionB;, ; ,;, 1 = ¢’ andBy,; ,; > ¢/, on the seGy',; ,; 1 NG,y ,; We have

’glrcrfj’ <co{l+ U010+ Uliags ) (6.14)

where forl =25 — 1, 2j

o~ 2 o~ o~
U/:n+1,1 = (Yl?—li-il) /B/T+1,1v lzﬁz = Yk”—li-l,ll(’Yl:r—li-l,l’ < Blrcn+1,1>'
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According to (6.10) and (6.14)
O2< Eexpltero(1+ U101+ Ulao)) )
= expltcio} E explrcioUy 1 o1} E expleceU o)} (6.15)
By Lemma A.3 (see Appendix A) we have

EeXp{CloU,:n_‘_l’zj_l} <14+ 2/cio (6.16)
and a similar bound holds true far;" , ,; ;. Taking s sufficiently small, from (6.15)

and (6.16) we obtai, < ¢11. Combining the estimate@; < ¢g and Q, < ¢;1 obtained
above with (6.8) yields the lemma.C

LEMMA 6.5.—Foranym =0,..., M
EeXp{C1|§6n’} <L oeo.

Proof. -The argument is similar to that for Lemma 6.4, and therefore will not
be given here. The only difference is that instead of Lemma 5.13 we make use o
Lemmab5.12. O

Now Lemma 6.1 follows easily from Lemmas 6.4, 6.5 and Lemma A.1 in Appendix A.
6.2. Proof of Theorem 2.3

The idea of the proof is to decompose the functifrinto a Haar expansion and
then to make use of the closeness properties of the sequ&nces-1,...,n, andN;,
i=1,...,n,over the dyadic blocks. For this the representation provided by Proposition
5.10 and the exponential inequalities in Lemma 6.1 are crucial.

For the sake of brevity set

Si(f) =D ft)(Xi — Ny).
i=1
What we have to show is that for amgatisfying|¢| < co,

E exp{t(logn)2S,(f)} < exp{t?c1}. (6.17)

Toward this end leM = [log,(n/no)] and note that according to Proposition 5.10,

M
Si(f)=>_8" wheres" =" f(t") (¥ — wW").
m=0 i€ty

By Hoélder’s inequality

M
Eexp{t(logn)2S,(f)} < [ (E exp{t(M + Dlogn)=25" )™ (6.18)

m=0
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Set for brevity
u, = (M + 1)(logn) 2. (6.19)

Obviouslyu, < 1 for n large enough (such that lag> 2).
It is easy to see that inequality (6.17) follows from (6.18) if we prove that for
m=0,..., M and anyr satisfying|¢| < co

E exp{tu,S™} < exp{t®c1}. (6.20)

In the sequel we will give a proof of (6.20).
First we consider the cage = 0. By Hdlder’s inequality,

E exp{tu,S°} < (E exp{Ztun Z £ EO}E exp{Ztun Z () W?}) 1/2. (6.21)

ieJo ieJo

Sinceﬁo, i € Jo, are independent we have

Eexp{Ztun Z f(tio)z-o} — H Eexp{2tunf(zl.°)17iO}.

iedo ieJo

By choosing the constart small enough we can easily guarantee tat, f (°)| <
A/3, and by Lemma A.1 we obtain

E exp{Ztun Sr) 171.0} < exp{czt2 > E(ﬁo)z}. (6.22)
iedo ieJo
Since E(Y2)? = E'(X;pu)? < Crax fOr i € Jo, and #o < 2nmin (S€€ Section 5.1), we
havey~;.,, E(Y?)? < cs, Which in conjunction with (6.22) yields

Eexp{Ztun ST () 1710} < exp|cat?}.

ieJo

An analogous bound holds true for the second expectation in (6.21). From these bounc
and from (6.21) we obtain (6.20) fer = 0.

For the casen > 1 introduce the functiorz(s) = f(a(s)), s € [0, 1], wherea(s) is
defined by (5.2). Set for brevity" = b(t"), i € J,. Then for the sunms” we get the
following representation:

§" =3 gl (¥ — W),
i€y
Let g,, be the truncated Haar expansiongdior m > 1 (see (3.4):

m—1 2%

gm=co(@ho+ > cj(®hi; (6.23)

k=0 j=1
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wherecy(g) andey j(g) are the corresponding Fourier—Haar coefficients defined by (3.3)
with g replacing f. Then obviously

S =8I+ Sy,

where

ST =D (8(s") = gm(s)) (X" = W),

i€y
SE="" gu(s/") (Y" = WM. (6.24)
iEJ”,
By Hoélder’s inequality
E exp{tu, S™} < (E exp{2tu, '} E exp{2tu, Sy )2, (6.25)

Now the inequality (6.20) form > 1 will be established if we prove that both
expectations on the right-hand side of (6.25) are bounded Hy%}pThese inequalities
are the subject of Propositions 6.6 and 6.7 below. This completes the proof of Theorer
2.3.

First we prove the bound for the first expectation on the right hand side of (6.25).

PROPOSITION 6.6. —Foranym =1, ..., M andr satisfying|t| < ¢ we have
E exp{tu, Sy} < exp{t?ci}.

Proof. —Since by (5.3) the function(s) is Lipschitz andf e H(%, L), itis easy to
see that the functiog(s) = f(a(s)) is also in a Holder barH(%, Lo) but with another
absolute constarity. By Hélder’s inequality

Eexp{tu,S7'} < (E exp{z Pi Z’"}E eXp{_ Z o Wl.’"})l/Z’ (6.26)

ictn iety

where p; = 2tu, (g(s"") — gn(s/")) and |t| < ¢o for some sufficiently small absolute
constantcy. Note that by Proposition 3.2 we hayg — gnlleo < Lo27"/2. Therefore
for |¢] < co (Wherecg is small)

|0i] < caltlun 27" < ealt|272 < 1/3.

Then according to Lemma A.1 we get foe J,,

Eexp{p¥"} <exp{p?E(Y")?} < exp{cat?2 " E(X")?}. (6.27)

1

An analogous bound holds true for the normal rWg,i € J,,:

Eexp{—p W} < exp{ct?27"E (X)), (6.28)
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Taking into account thaﬁ”’, ieJy, andW, i e J,, are sequences of independent r.v.s
and inserting (6.27) and (6.28) into (6.26), we obtain

Eexp{tu,Sy'} < exp{cthZ‘m > E(X;")Z}. (6.29)
i€y

Now we remark that #, < 2"+1. Hence by (2.2)

3" E(X7)? < #,,Cinax < 2" Cona (6.30)
i€y
Inserting (6.30) into (6.29), we obtain the resulta
Now we will find the bound for the second expectation on the right hand side of (6.25).
PROPOSITION 6.7. —Foranym =1, ..., M andr satisfying|t| < ¢ we have

E exp{tu, Sy} < exp{t®ci}.

Proof. —From (6.24), (6.23) and (3.2) we obtain

m—1 2k
Sy =co(g)(Yo1 — Woia) + Z Zk/zzck,j(g)(ka}m - Vi)
k=0 =1
where
T =Y — Yz Vi =Wlazja— Wlao; (6.31)

(compare with (5.22) and (5.23)). Heié’fj and W;"; are defined by (5.20). Set in
analogy to (6.1)

Se =YWy, Sy =T =V, j=1...,2 k=0,....m—1 (6.32)

Since the functiorg(s) is in the Holder ball with a Holder constatfy, according to
Proposition 3.1 we have the following bounds for the Fourier—Haar coefficients:

co(g) < Lo/2, e (@) <2732Lo27%, j=1,...,2 k=0,...,m—1. (6.33)

Note also that by Lemma 6.1 there is an absolute congganifficiently small such that
for |v| <1y

Eexp{vSy} <exp{cv?},  Eexp{vS}';} < exp{civ®} (6.34)

for j=1,...,2"andk =0, ...,m — 1, whereSy ands}"; are defined by (6.1).
By Holder’s inequality we have, for anysatisfying|¢| < co < fo,

m—1 1/(m+1)
Eexp{tu,Sy} < (E exp{r(m + Du,co()Sg } [ E exp{t(m + 1)unUk}> :

k=0
(6.35)
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where
2k
Up =22 e j @Sy, k=0,....m—1 (6.36)
j=1
The claim will be established, if we show that the constantan be chosen such that
for ¢ satisfying|z| < co,

E exp{tu, nco(g)Sy } < exp{cztz} (6.37)
and

E expltu,, Ui} < exp|cat?}, (6.38)

where for the sake of brevity we s@}, , = (m + L)u,,.
It is easy to show (6.37). For this we note that by (6.33) and (6.19)/fet c¢o we
have

|t nco(g)] < caltl(m + 1) (M + 1) Lo/ log? n < caco < fo, (6.39)
if the constantcg is small enough. Then the inequality (6.37) follows from (6.34) and
from (6.39).

The proof of (6.38) is somewhat more involved. The main problem is Sifat
j=1,...,2" are dependent and therefore we cannot make use of the product structur
of the exponent eXpU,} directly. However Proposition 5.2 ensures that the components
of the sumU; (see (6.36)) aralmostindependent, which allows to exploit the product
structure in an implicit way. The main idea is to “substitug”;, j =1,..., 2%, by St
j=1,...,2% which are independent. With this in mind we write

Uy = UL+ UZ,
where
2k 2/\'
U =223 e j(9)SE. UF=2"23"c (@) (Sp = Si))-
j=1 j=1
Then by Holder's inequality,
E expltu, Ui} < (E exp{2tu,, ,UL} E exp{Ztum,nU,f})l/z. (6.40)

Now we proceed to estimate the first expectation on the right-hand side of (6.40). We
make use of the independenceSf,, j =1, ..., 2¢ (see Lemma 5.5), to get

2/\
Eexp{2tu,, .U} = || E exp{tq;S};}. (6.41)
j=1

whereq; = g nx.;j = 2um .2"?cy ; (g). Note that by (6.33) and (6.19)

Itq;] < |2t n2%cr (8)| < eslt]27/2 < 1o,
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providedcg is small enough. It then follows from (6.34) that fpe= 1, ..., 2*
Eexp(tq;S;';} < exp{cet?27*}. (6.42)
Inserting (6.42) into (6.41) we find the bound
E exp{2tu,, ,Ul} < explcqt®}. (6.43)

Thus we have estimated the first expectation on the right hand side of (6.40). It remain
to estimate the second one.

Note that
Se =S¢ = (T =T — (VI = Vo).
Hence
UZ=U2+ U},
where

2k

Uk3 = 2]‘/2ZCI<,]’ (8)(Tk’7j - Tk#j’]m)’
2k

U,f = 2]‘/2ZCk,j (g)(anfj - Vk#j}'m)'

By Holder’s inequality we obtain

E exp{2tu,, ,U?} < (E exp{4tu,, ,U} E exp{4tu,, , U} . (6.44)
SinceTk’f‘j — T,;’j’j’", j=1,...,2% is asequence of independent r.v.'s, we get
2k
E exp{4tu,, .U} < [ E exp{2tq; (T, — 1) } (6.45)
j=1

whereg; is defined above (see (6.41)). The definitionsfgg and okaf’j’" (see (5.22)
and (6.31)) imply

Tm *,m om “m
Tk,j - Tk,j = Poj Yk+1,2j—1 - ,32j—lYk+1,2j-
Hereafter we abbreviate = ;" ; — 1, B; = B}", 1 ;. Then

E exp{2tq; (fk’flj —T") ) = Eexp{tq;Ba; ?l:r—li-l,Zj—l}

x Eexp{—tq;B2j-1Y{\12;}- (6.46)
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Since by Proposition 5.35; < cgBzj_1, we havep,; < 14 cg. Hence by (6.33)
and (6.19)
|19 B2;| < colt|27/%B5; < 1/3 (6.47)

for ¢ sufficiently small. By (5.20) and by Lemma 5)?,3_’}1,2]._1 is a sum of independent
r.v.’s which satisfy Sakhanenko’s condition (2.3). Hence using Lemma A.1 we obtain

E exp{tq;B2; I71511,2;—1} = II E exp{tq;Bo; ¥/"}

: m
1€l 19j 1

[T exp{i%4?62E(Y")°).

. m
i€hl0i1

N

By (6.47)

EeXp{"IjIBZj171?1+1,2]'—1}< H eXp{CIO’ZZ_k/ZIBSjE(Zm)Z}

i€l 1
20—k/2 p2
:eXp{Clol 2 /,32]-32]'_1}.

Taking into account Proposition 5.2, we obtain

IBZZJ'BZj—J_Z (1/32]' — \/sz'_l)2 g |B2j — B2j—1| g c11.

This proves that

For the second expectation on the right hand side of (6.46) we prove an analogous boun
Invoking these bounds in (6.46) we get

Eexp{2tq; (T}, — T") } < exp{ciat®27*/%}. (6.48)
Inserting in turn (6.48) into (6.45) we arrive at
E exp{4tu,, ,UZ} < explciat®}.
In the same way we prove an inequality 16f. Then by (6.44) we have
E exp{2tu,, ,UZ} < explciat®}. (6.49)

From (6.40), (6.49) and (6.43) we obtain inequality (6.38), this completing the proof of
the proposition. O

Acknowledgement

We would like to thank A. Zaitsev for useful discussions and the referee for remarks
which helped to improve the presentation of the paper.



954 I. GRAMA, M. NUSSBAUM / Ann. |. H. Poincaré — PR 38 (2002) 923-957

Appendix A

In the course of the reasoning we made use of the following simple auxiliary results.

LEMMA A.l.— Let¢& be areal valued r.v. with meadhand finite variance E€ = 0,
0 < E&? < co. Assume that Sakhanenko’s condition

LEIEPexp{rls|} < EE?
holds true for some > 0. Then for alljz|] < 1/3
E explt&) < exp{t?E&?}.

Proof. —Let u(r) = Eexp(t§) and ¢ (t) = logu(r) be the moment and cumulant
generating functions respectively. The conditions of the lemma imply gt < ¢,
for any real|t| < A/3. Using a three term Taylor expansion we obtain fet 0 < 1

2 3
V() =¥ (0) + ' (O)f + 1//”(0% + wm)%.

Note thaty (0) = 0, v/(0) = 0, ¥"(0) = E£? andu () > 1 by Jensen’s inequality, while
for the third derivative we have for any reakatisfying|s| < 1/3,

Y (s) = " ($)p(s) ™ = 3 () () (s) 2+ 2 ()3 (s) 2.
Using Hélder's inequality angk(s) > 1 we obtain the bound
[y (s)| < BE|&*exp(r]&]).

Since|r| < A/3, by Sakhanenko’s condition we have

2
0< () < B+ Elg Pexp(lg]) < °EE”. 0
LEMMA A.2.—Let& be areal valued r.v. such tha@é = 0 and

Eexp{Alt]} <c1

for someir > 0andc; > 1. Then for alljz] < A/2 we have
E exp{t€} < exp{cat?},

wherec, = 4cq /A2,

Proof. —The argument is similar to Lemma A.1. We use the same notations. A two
term Taylor expansion yields, forQv <1,

2

¥ (1) =y (0) + ¥/ (O)t + w”(wf?
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Sincex? < 2exp(|x|) for any realx, we have for any satisfying|s| < 1/2
0< Y/ (s) = u(s) 2 { E&2 explst) — (E& exp(sé))”}

< EE%expist) < Es’-‘exp<%|s|) <82

Consequently
" tz 1 2
O<v(@) =y (vt)§<4ﬁt . O
LEMMA A.3.-Let&,i=1,...,n, be asequence of independent r.v's such that for
alli=1,...,nwe haveEg =0, 0 < E&2 < oo and

LE|E Pexp{rlE|)} < E&2

for some positive constant SetS,, = & +---+&,, B> = ES? and S¥ = S,1(|S,| < B?).
Then

Eexp{ci(S;/By)?} <1+ 2/c,

wherec; = z min{x/3,1/2}.
Proof. —Denote
F(x) = P((S}/B,)?> x).

First we shall prove that

F(x) <2exp—cyx}, x>0, (A1)
wherec, = 2¢4. For this we note that

F(x)=P(S}/B,>+x)+ P(S}/B, < —/x).

It suffices to estimate only the first probability on the right hand side of the above
equality; the second can be treated in the same way>If82 then

P(S¥/B, > /x) =0,
thus there is nothing to prove in this case. ket B2. Denotingt = 2c,./x, one obtains

P(S¥>/x)< P(S, > x) <exp{—ty/x } Eexp{tS,/B,}
=exp{—1v/x } [ | E expit&:/B.}. (A.2)
i=1
Note thatt /B, = 2c2+/x/B, < 2c; < A/3. Hence by Lemma A.1

E explt&;/B,) < exp{t*E&?/B?}.
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Inserting this into (A.2) we get
P(S;/B, > /x) <exp{—1v/x } | [ exp{r*EE?/B}}
i=1

= exp{—1/x + 12} < exp{—cax)
which proves (A.1). Integrating by parts we obtain

o]

E exp{ci(S5)?/B,} = / exp{cix} dF (x)

0

= 1+/F(x) exp{cix}dx
0

<1+ Z/exp{clx —cox}dx
0

< 1—|—2/C1.
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