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ABSTRACT. — In this work we study connections between various asymptotic properties of the
nonlinear filter. It is assumed that the signal has a unique invariant probability measure. The key
property of interest is expressed in terms of a relationship between the obsewvditdeh and
the tailo field of the signal, in the stationary filtering problem. This property can be viewed as
the permissibility of the interchange of the order of the operations of maximum and countable
intersection for certain-fields. Under suitable conditions, it is shown that the above property is
equivalent to various desirable properties of the filter such as

(a) uniqueness of invariant measure for the signal,

(b) uniqueness of invariant measure for the pair (signal, filter),

(c) afinite memory property of the filter,

(d) a property of finite time dependence between the signal and observdids and

(e) asymptotic stability of the filter.

Previous works on the asymptotic stability of the filter for a variety of filtering models then
identify a rich class of filtering problems for which the above equivalent properties hold.
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RESUME. — Dans cet article, nous étudions les relations entre différentes propriétés asympto-
tiques du filtre nonlinéaire. On suppose que le signal a une unique mesure de probabilité inva-
riante. La propriété principale nous donne une relation entre la tribu engendrée par les observa-
tions et la tribu asymptotique du signal dans le probléme a du filtrage stationnaire. Cette propriété
peut étre vue comme la possibilité de changer I'ordre des opérations d’intersection dénombrable
et de maximum pour certaines tribus.

Sous des conditions adéquates, on peut montrer que cette derniére propriété est équivalente a
certaines propriétés recherchées pour les filtres, telles que

(a) l'unicité de la mesure invariante du signal.

(b) l'unicité de la mesure invariante du couple (signal, filtre).

(c) Une propriété de mémoire finie du filtre.
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(d) Une relation entre la tribu du signal et la tribu engendrée par les observations.
(e) la stabilité asymptotique du filtre.
0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

In this work we will consider the classical model of nonlinear filtering. Namely, we
have a pair of stochastic processes, Y;),>0 Where(X,) is called the signal process
and(Y;) the observation process. The signal is taken to be a Markov process with values
in some Polish spacgé and the observations are given via the relation:

t
YI:/h(XS)dS+WI, (1.1)
0

where (W,) is a standardi/-dimensional Brownian motion independent @,) and

h, referred to as the observation function, is a map frém- RY. Tho goal of
nonlinear filtering is the study of the measure valued prod@ss which is the
conditional distribution ofX; given o{Y;: 0 < s < ¢}. This measure valued process

is called the nonlinear filter. In the current work we are primarily interested in the
ergodicity and stability properties of the nonlinear filter. In recent years such a study has
generated significant interest [22,29,23,30,19,28,3,15,2,11,24,8,1,16,26,7,9,27,12,17 4,
18,10,6,25,14].

The problem of invariant measures for filtering processes was first considered by
Kunita [22]. In this classic paper Kunita showed, using the uniqueness of the solution
of the Kushner—Stratonovich equation, that in the above filtering model if the signal is
Feller—Markov with a compact, separable Hausdorff state spaben the optimal filter
is also a Feller—Markov process with state spR¢&), whereP(E) is the space of all
probability measures off. Furthermore, [22] shows that if the signal in addition has
a unique invariant measuye for which (2.13) holds then the filteif1;) has a unique
invariant measure. In subsequent papers Kunita [23] and Stettner [29] extended the
above results to the case where the state space is a locally compact Polish space. In the
above papers [22,23,29] the observation functigmassumed to be bounded. In a recent
paper [4] the results of Kunita—Stettner were extended to the case of unbouraed
signals with state space an arbitrary Polish space. The proofs in [4] are of independent
interest since unlike the arguments in [22,29] they do not rely on the uniqueness of
the solution to Kushner—Stratonovich equation. Using the results of Kunita [22], Ocone
and Pardoux [28], in a pioneering paper, studied the problem of asymptotic stability
of filters. Roughly speaking, the property of asymptotic stability says that the distance
between the optimal filter and an incorrectly initialized filter converges to 0 as time
approacheso. More precisely, forv € P(E) denote byQ, the measure induced by
(Y;) onC = C([0, o0): R?) (the space of all continuous maps frg co) to R?), when
the Markov proces$X,) has the initial laww. One can show that for evetye P(E)
there exists a family of measurable m&ps (v)},>0 from C to P(E) such that ifuq
is the law of X (0), then A; (1) (Y.(w)) is the optimal nonlinear filter whereas for any
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otheru, € P(E), A;(u2)(Y.(w)) is a suboptimal filter which is constructed under the
erroneous assumption that the initial law of the signalignstead ofu,. We say that the
filter is (u1, up) asymptotically stable if for alp € C,(E) (the space of real continuous
and bounded functions af)

Eq,, [(Ai(1t2), 8) — (Ar(12). 6)]? (1.2)

converges to 0 as — oo, whereEy  ~denotes the expectation with respect to the
measureQ ,,. With a somewhat different goal in mind, Delyon and Zeitouni [19] (in an
earlier work than [28]) had also studied the dependence of the optimal filter on the initial
condition. In recent years various authors have considered the problem of asymptotic
stability under different hypothesis [28,3,15,2,11,24,8,1,16,26,12,17,4,18,10,25].
Recently, it has been pointed out [13] that there is a gap in the proof of Lemma 3.5
of [22] which is the key step in the proof of the uniqueness of the invariant measure for
the filter. The difficulty, as will be described below, lies in the statement made just below
equation (3.21) of that paper. The gap is of serious concern since some of the results
in [29,28,4,6] directly appeal to the argument of the above lemma. The basic problem can
be described as follows. For the rest of this section we will assume that the signal process
has a unigue invariant measurenamely Assumption 2.2 holds. Consider the family of
o-fields (G, Z!) _s<s<1<c0, defined in (2.17) and (2.16) respectively. Basically, 4he
fields are obtained via a “stationary filtering problem” 6noco, 00), with the signal
and observation processés)_ ;oo (&) _oso<1<o defined on some probability space
QWO B(QD), Rfﬁ) (see Section 2 for the precise definitions and constructi®his the
R,Sl) completion of thes-field generated by the observatiors;, — «,; s <u <t) and

G! istheR " completion of ther -field generated by the signéd, );<.<;- We will extend
the definition of(G!, Z!) for s, t = oo, —oo in an obvious manner. So, for exampl,>
is defined to bg),>°  U.__. G'. Itis well known (cf. [31]) that under Assumption 2.3,
G- is R(Y trivial. Now the key difficulty is the following. In the course of the proof of
Theorem 3.3 of [22] (which assumes that Assumptions 2.2 and 2.3 hold), the following
result is used

Z20.0= () (2%, v3..). (1.3)

t=—00

Eq. (1.3) can be viewed as the permissibility of the interchange of the max operajion (
and the intersection operatioNC__ ) for theo-fields 2° _ and{G’ __},cr.

However, [22] does not provide a proof for (1.3). Moreover, the above statement,
in general, may not hold. By this we mean that one can construct a probability
space(Qo, Fo, Po) with subo-fields 7*, (G7),>o, such that all thes fields are Py
complete andg,},>o is a decreasing sequence such fiat, G, is P trivial, however,
Nuo(F* Vv Gy) strictly containsF*. We refer the reader to [32] and [33] (Exercise 4.12)
for very instructive examples where the equality of the twdields fails to hold. We
were pointed to these examples by Chigansky and Liptser [13] who also found an error
in the example given by [32]. The problem is rather delicate in view of the following.
For a probability measur®; on (2, Fo) and subs-fieldsH;, i =1, 2, of 7o, we will
say thatH; = H, (mod Py) if the two o fields are equal, modul®; null sets. The paper
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[32] shows that ifG is separable for alk then the problem of equality of the-fields
Nu>o(F* Vv Gr) and F* is equivalent to the statement tha}, G, is Po(- | F*) trivial,
a.s.Po. Now note that theP, triviality of -, G, implies that

Po(A | F*)=Po(A)=00r1 as[P], VYAe()G;. (1.4)

n=>0

Now suppose that there is a separabléeld H such that

N G; =™ (mod Po(- | 7)), a.s.Po. (1.5)

n>0

Then (1.4) implies that

Po(A | F*)=Py(A)=00r1l VAe[)G: as[P, (1.6)
n>0

thus showing thaf,-, G, is Po(- | ) trivial, a.s. Po. Therefore the key difficulty
in establishing the equality of the twe-fields is proving the separability property of
Nu>06, stated in (1.5).

The obijective of this work is to show that the equality (1.3) is the central issue in the
asymptotic study of the nonlinear filter. Our main result, Theorem 2.7, shows that, under
suitable conditions (Assumptions 2.2, 2.3, 2.6), this equality is equivalent to various
desirable properties of the nonlinear filter, such as: (a) uniqueness of invariant measure
for the signal, (b) uniqueness of invariant measure for the pair (signal, filter), (c) finite
memory property of the filter (see Definition 2.4), (d) finite time dependeneefalds
{G" }i<0 with respect to theo-field Z°_ (see Definition 2.5) and (e) asymptotic
stability of the filter.

Of the above listed equivalent statements, the last statement, i.e., the asymptotic
stability of the filters, has been the focus of most research. The first paper in this direction
is [28] where asymptotic stability for Kalman filters was proved. In a sequence of papers
Atar and Zeitouni [3,2] identify several important filtering problems, with a compact
or countable state space for the signal, for which asymptotic stability holds. Other
works on asymptotic stability for compact state space signals are [24,18]. The papers
[11,12,25] study some signals in discrete time with non-compact state space for which
asymptotic stability can be shown to hold. Atar [1] considers a continuous time filtering
problem with non-compact state space and establishes asymptotic stability of the filter.
Asymptotic stability for Benes filters is proved in [26]. In [8], asymptotic stability of the
filter, for a compact state space signal model and point process observations, is proved.

The results of the above papers identify a rich family of filtering problems for which
the equivalent conditions of Theorem 2.7 hold. However, we have been unable to prove
the equality of thes fields in (1.3) without making any additional assumptions than
Assumptions 2.2, 2.3, 2.6. This remains a challenging open problem.

Finally we remark that the current work builds upon and borrows from several
previous works. In particular, many arguments in this work are similar to those in [22,
23,29,28,4,6] and thus wherever possible we have referred the reader to previous papers.
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2. Notation and thefiltering model

Let E be a complete separable metric space an@flet?, P) be a probability space.
Let (X;) be a homogeneous Markov process with valuek imith transition probability
function p(x, ¢, B), i.e.fort,t > 0,x € E andB € B(E)

P(X;i:€Blo(X,: u<1))=p(X,,t,B)as, (2.1)
where for a Polish spac8, B(S) denotes the Borel sigma field afi Denote the
distribution of Xq by y, i.e.

y=Po(Xo L (2.2)

Denote byD = D([0, o0), E), the Skorokhod space @& valued cadlag functions on
[0, 00) and leté, () be the coordinate process Bni.e. &, (0) =60(t) for 6 € D.

We will assume thatX,) admits a cadlag version, i.e. for &, x) € [0, co) x E there
exists a probability measui® , onD such that for 6< s < < oo, andU € B(E),

Ps,x(ét eU|o:u< S)) =ps.t—s,U)as.P, (23)

and
Ps,x(su:x, O<u<s)=1 (24)

For notational simplicityPy . will hereafter be denoted &3..

We will also assume that the Markov process is Feller, i.e. the map P, , is a
continuous map fronE to P (D), where for a Polish spacg, P(S) denotes the space
of probability measures oS, B(S)). Let (T;) denote the semigroup corresponding to
the Markov processX,), i.e. for f e BM(E) (for a Polish spacé, BM(S) denotes the
space of bounded measurable functionsSpn

(T, ) () = / F(&(0)) dP.(®).
D

The Feller property of the Markov process gives thatfa C,(E), (T, f) € C,(E).
The observation process is given as follows:

t
Vo= [hX)dut W, (2.5)
0

wherei: E — R? is a continuous mapping andV,) is a R¢-valued standard Wiener
process, assumed to be independentXgf. Denote bylIl, the conditional distribution
of X; given past and current observations, i.e.Aot B(E),

M,(A)=P(X, € A|o{Y,: 0<u<1}). (2.6)

In order to study an incorrectly initialized filter we will introduce the following
canonical setting, used in [4]. L&B,) be the canonical process 6n= C ([0, oo): R%)
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(the space of continuous functions frd co) to RY), i.e. B;(n) =n(t) for n € C. Let
0 be the standard Wiener measure(6n3(C)). Also set

(Q,F) = (D,B(D)) ® (C. B©))
and define fow € P(E), s >0
Rs,v = Ps,v ® Qa

whereP; , € P(D) is defined as:

P, (B) = / P, (B)v(dx), BeB(D).
E

We will sometimes writePy ,,, Ro,, @s P, and R, respectively. LetZ, : Q — R be the
stochastic process such that for ak@ < z:

t

Zi—Zs= /<h(su), d,Bu>, a-S-Rs,v

N

for all v € P(E), where(-, -) denotes the inner product R. For the existence of such
a common version see Theorem 3 in [21]. Next, fat © < ¢, let

. 1 2
e 2~ 2.~ [InceolPa).

For a Polish spac8 let M(S) denote the space of positive, finite measures ofor
f € BM(S) andm € M(S) we will denote [ f (x) dm(x) by (m, f) or m(f).
Forve M(E) and 0< s <t < oo, define aM(E) valued proces§;(v) onC as

(L), £) = / / FE©)q@. 1) AP, (O)dv(x), 1-as[Ol.  (2.7)
E D

The measurability of the ma@, ¢, n, v) — Ty;(v)(n) is a consequence of Theorem 3
in [21] which gives the measurability of the mépw) — Z;(w).

Finally define for 0< s <t andv € M(E) aP(E) valued random variablé ; (v)
via the normalization of 'y, (v), i.e.

Ly (v)
(T (), 1)
Also, we defind’, (v) =T (v) and A, (v) = Ag (V).

As a consequence of the Kallianpur—Striebel formula (see [20]) it follows that for
f e BM(E)

Ny (v) =

(My(w), )= (Aa(¥)(Y (@), f), w-a.s.[P], t € (0, 00). (2.8)
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By a filter initialized incorrectly at the probability measuyge we mean theP(E)
valued procesd]l/* defined as:

(M%), f) = (Aa(yD)(Y.(@)), f), f€BM(E).

Let 7 be the 0- completion of B(C) andﬁ be the class ofp-null sets inF. For
0<s <t < oo, let Al be the subs-fields of 7 defined by

=0 (0(By—Bs: s <u<t)UN). (2.9)

Next we introduce the probability measure Grunder which the canonical process
has the same law as the observation process. For an arhite®(E) let Q, € P(C)
be defined by

dQ,
dQ
Itis easy toseetha® oY1= Q,.

We now define our basic notion of asymptotic stability which was introduced by
Ocone and Pardoux [28].

=I,(v)(E) onAj, t €0, o). (2.10)

DEFINITION 2.1.— Let u1, up € P(E). We say that the filter igu4, uo)-asymptot-
ically stable if for all¢p € C,,(E)

(A1), @) — (A, (12), @)

converges t® in Q,,,-probability ast — oco.

We now proceed to describe the Markov properties of the filter. It was shown in [4]
that{r,},>0 is a Feller—Markov process with associated semigroup:

(T,F)(v) =Eg, (F(A:(v))); FeBM(P(E)); veP(E).

In order to describe the Markov property of the (signal, filter) pair, we now
introduce the following measure @, 7) which corresponds to the law of the process
(X:,Y1)i>0. Forv e P(E) define

Kiw)y=o(o{Bu—Bs: s<u<t}Uo{§,: s<u<tfUN), (2.11)

where\ is the class of alRg , null sets. Now for fixed € P(E) defineﬁo,v on (S, F)
as follows:
dRo,,
y RZ’ ©.1) =qo(0.7) OnKh(v), £ >0. (2.12)

Observing that
Ry, =Po(X,Y)™}
it follows via an application of Girsanov's theorem (cf. [4], Section 4) that

Ro,=Po(X, W)™
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Now, for fixedv € P(E) let IT} be the filter initialized ab, defined as
) (w) = A, (v)(Y.(w)).

It was shown in [4] that(X,, IT}), F;) isaE x P(E) valued Feller—Markov process on
(2, F, P) with associated semigroud, }o<; -~ defined as follows. FOF € BM(E x
P(E)),

(S F)(x, M) =Eg [F(AR),8)]: (x,4) € E X P(E).

X

The following two conditions will be assumed in many results of this paper.

Assumption2.2. — There is a unique invariant probability measung, for the
semigroup(T;).

Assumption2.3. — For allf € C,(E):

limsup [ |7, () = (. )] n(dx) = 0. (2.13)

t—00

The above assumption in the asymptotic study of the filter was introduced by Kunita
[22], itis equivalent to the statement thatY is R(P — trivial (cf. [31]).
Following Stettner [29], denote fore P(E) andA € B(P(E)),

m}(A) = (T,Z)(v) = Eg, (Za(A:(v,9)) (2.14)
and
M (A) = / (TZ4)(8,) v(do). (2.15)
E

where Z, is the indicator function of the sed. We will now give representations
for m! and M}* as the laws of certain filtering processes in the stationary filtering
problem introduced by Kunita [22]. Henceforth we will assume that Assumption 2.2
holds, i.e., there is a uniqu€l;) invariant measureu. Let Dg = D((—o0, o0); E)
denote the space of r.c.l.l. functions framoo, co) into E with Skorokhod topology
andCr = C((—o0, 00); RY) denote the space of continuous functions froavo, oo)

into RY with topology of uniform convergence on compact subsets-ab, o). Let the
coordinate processes @ andCy be denoted byé, (-)) and (B, (-)) respectively. Let
PP be the unique measure 0P, B(Dr)) which satisfies foi, .. ., E, € B(R) and

—0 < <h<-<l <00,

P,il)(gtl €Ey, ..., gt,l €k,

= / M(dxl)l’(fl, X1, I, de) U p(tn—l, Xn—1, In,s d-xn)-
Eq1x---xE,



A. BUDHIRAJA / Ann. I. H. Poincaré — PR 39 (2003) 919-941 927

Now let 0¥ be a probability measure aiCx, B(Cr)), such that for—co <1y <, <
cee <1, <00,

A R )
m " ol by — -1 " it

are independerw (0, I;..4).
Let Q' =Dg x Cg andRP = PP ® Q. Without loss of generality, we will consider

the coordinate processés), (B,) to be defined on the product space!, B(QY), RD).
Let 7* be the completion oB(') underR(Y. Define the observation process:

o — oy = /h(gu) du + Br - Bs

and the sigma fields
Zl=o(o(ay—a;s <u<v<t) UN™), (2.16)
g;=a(o—(§u: s<u<t)UN™), (2.17)

where—oo < s < t < oo andN* is the class oRfP null sets inF*. Further, lelG=2 be
defined as

<
<

= () 9. (2.18)
—o0<t<X

Now define for—oco < s <t < 00,
79 = Arp(w) (),

wherea* : Q1 — C([0, 00); RY) is defined ag’ (w) = o, (w) — o (w). Also define
7Y = A () (o).

Observe that forf in BM(E)

7O =E[fE) 2] and 70 () =E0[fE)] 2 VvoE))].
s m ’ n

(For two sigma fieldsC, and £, £1 VvV Lo = o (L£1 U L5).) Also note that forF' in
BM(P(E))

B [F(757)] =E g [F (Ao, (o))

- / Eg, F(Ai—s(6,)) u(dx)
E

= [ @ P60 pn) (2.19)
E

=M" (F). (2.20)
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In a similar manner it is seen that
- (0
E [F(79)] =m! (F). (2.21)

A straightforward application of martingale convergence theorem shows that-as
—o0, almost surely the measufig? converges (weakly) to the measutg defined as
follows: For bounded and continuous functigron E

70N =B [fE) ] ZL.]. (2.22)
Furthermore we have that (cf. Lemma 3.3 of Kunita [22])
75 () =Ep [fG) | 2L v G o]

- (1)

and thus by the reverse martingale convergence theorem we have that aso, 7,
converges weakly to the measurg’ defined as

o0

AV ZEqn | fED ] [ (Bl VGis) |- (2.23)

§=—00

Itis stated in [22] that under Assumptions 2.2 and 2.3, the above expectation is equal to
E.olf(&) ]2 ,]. However, we have been unable to prove that statement.
o

In view of (2.20) and (2.21) we have thaf andm! converge weakly a8 — oo
to the law of7? and7,® respectively, which also shows that the lawsw?, 7> are

independent of. Denote these laws as* and M* respectively. Thus we have that
mt —m";, M — M", asu— oo. (2.24)

Also note that sinc€7;) is a Feller semigroup, it follows from (2.14) and (2.15) that both
m* and M* have to bg7;) invariant. This shows that there is at least ¢fg invariant
probability measure. In a similar way it is shown (cf. [4]) that there is at least &ne
invariant probability measure.

We now introduce the property of “finite memaory of the filter”. This property says
that for large timest), the filter initialized at any point € E can be well approximated
by a sub-optimal filter which is constructed using only the observations from the past
units of time, for sufficiently large. This property was introduced in the filter stability
problem by Ocone and Pardoux [28].

DEFINITION 2.4.— We say that the filter has the finite memory property if for all
¢ € Cy(E)

lim suplim supEg, [(A;(8:), @) — (Ai—ri (8:Ty—2), ¢)| = 0; x-a.s.[u]. (2.25)

T—>00 —>0o0

Finally, we give the following definition regarding the dependence between the signal
and the observation process.
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DEFINITION 2.5. — We say that the sequencecoffields{G’ __},-o has a finite time
dependence with respect to thefield 2°_, ifforall k e N, —co <t; <tp < --- <

—00!

ty <00, ¢1,...,¢0r € Cp(E) ande > 0, there existg, € (—oo, 1) andt, < t, such that
Vi <t,

E <es.

D
Ry

k k
E g [H 91| 20V gfoo] ~Ego [H b1 | 20 v 3,
i=1 i=1

The following assumption will be made at some places in this work.

Assumption2.6. — For allvy, vo € P(E) there exists € [0, co) such thatv,T; is
absolutely continuous with respectgr; .

We can now state the main result in this work.

THEOREM 2.7. — Suppose that Assumptio®2, 2.3and2.6hold. Then the following
are equivalent.
() N2 (22 VG ) =20 VG,
(i) mt=M*H.
(i) The filter has a unique invariant measure, i.e. there is a uniguavariant
probability measure.
(iv) The signal-filter pair has a unique invariant measure, i.e. there is a unkjue
invariant probability measure.
(v) Forall vy, v, € P(E), the filter is(v1, v2) asymptotically stable.
(vi) The filteris(s,, u) asymptotically stable for-almost every € E.
(vii) The filter has the finite memory propef®efinition2.4).
(vii) Theo-fields{G" _};<o have finite time dependence with respect todhigeld
Z0_ (Definition2.5).

Remark?2.8. — We show, in fact, a stronger result. Namely under Assumption 2.2
(alone), (V)= (vi); (viii) = (i); and (v)= (iv) = (ii) = (iii). Assuming 2.3 in addition,
(i) = (ii). Finally, assuming 2.6 in addition (iigz (v) and (vi)= (vii) = (viii).

Proof. —(i) = (i) (Kunita [22]). Observe that:* is the probability law ofz(" and
M* is the probability law ofzy”. Assumption 2.3 implies thai-% is R trivial. This
combined with (i) immediately gives, in view of (2.22) and (2.23) thgt = 7° a.s.
and thusn* = M*.

(i) = (iii) (Kunita [22]). If ® is some otheK(7;) invariant probability measure, it
follows (Theorem 3.2 [22]) thau” (F) < ®(F) < M*(F) for all convex bounded and
continuous functiong on M(E). Now (ii) implies thatm* (F) = ®(F) = M*(F) for
all such F. Since the collection of all such is a measure determining class, we have
thatm" = & = M*.

(iii) = (v) (Ocone and Pardoux [28]). Corollary 3.2 gives thd, — u, fori =1, 2,
ast — oo. Also Assumption 2.6 implies tha,, is mutually absolutely continuous with
respect taQ,, (cf. Corollary 3.4 of [6]). Now Theorem 3.2 of [28] yield the implication.
We remark that [28] considers the case wlterns locally compact and is bounded,
however the result holds in the current setting as was shown in Theorem 7.3 of [4].
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(V) = (vi) This is immediate.

(vi) = (vii) See Theorem 3.3.

(vii) = (viii) See Theorem 3.6.

(viii) = (i) See Theorem 3.8.

(v) = (iv) [7,6]. This is a direct consequence of Theorem 3.6 of [6].
(iv) = (ii) Itis shown in Theorem 6.4 of [4] that if we define

= RPo(ad g W= RPo(e®, 60

then bothm* and M* are (S,) invariant. Now (iv) implies thatn* = M" and thus
(m*)y = (M*)1, where forp € P(P(E) x E), we denote byp); the marginal orP(E).
Since(m*), = m* and(M*), = M*, (ii) follows. O

3. Proofs

Throughout this section we will assume that Assumption 2.2 holds. The following
lemma will be used in the proof of Theorem 3.3.

LEMMA 3.1.— Suppose that Assumptidh3 holds. Letv € P(E) be such that
vT, « u for somes > 0. ThenvT; — p ast — oo.

Proof. —We begin by noticing that fof € C,(F) andz > ¢,

dv
d

T
(X)> p(dx).

o1 = [ (T,_8f>(x>(
7 2

This implies that for allK € (0, c0)
dvT,
du

(W) (f) — ()] =

(X)) n(dx)

[ - M(f))(
E

<K / (Tye ) () — ()] 1)
E

dvT,
+2xsequ.f(X)‘E ( du (X))Id;_;g(x)>KM(dX).

Taking limit ast — oo, we have from Assumption 2.3 that

| v,
imsup 7, ()~ ()] < 25U 0] [ (550 Ty .
xe 7 "

du
The result now follows on taking limit a& — oo in the above display. O
As an immediate consequence of the above result we have the following corollary.

COROLLARY 3.2. — Suppose that AssumptioBs3, 2.6hold. Then for allv € P(E),
vl; = u, ast — oo.
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We now give the proof of the statement in Theorem 2.7 that (vi) implies (vii).

THEOREM 3.3. — Suppose that Assumpti@3 and 2.6 hold. Further suppose that
the filter is (8., u) asymptotically stable fori-almost everye € E. Then the filter has
the finite memory property in the sense of Definiofh

Proof. —Fix ¢ € C,(E). In view of Definition 2.4 it suffices to show (2.25). We begin
by observing that from Definition 2.1 it follows that far almost every € E
Next, following [28], we have that
Eo, [(A1(12). ¢) = (Ar—es(uTi—c). &)
=Eo, (A1), 8))° +Eo, (Ar—rs(uT—o). ¢))°
- ZEQ,L (<At(/~L)v ¢><At7t,t(/‘Lth‘E)’ ¢>)

=Eo, (A1), )" — Eo, (Ar—cs(uTi—). $))°

=Eo, (A1), 9))* — Eq, ({(A-(10). 6))°

=m} (Fy) —mi(Fy),
where the last step follows from (2.14) afigl e C,(P(E)) is defined agy (v) = (v, @2,

v € P(E). Taking limit ast — oo and thent — oo in the above display, we have
from (2.24) that

lim suplim SUpE g, [ (A, (12). ) = (Ar—r (nTi—c). 6)| = 0. (3.2)

T—>00 —00

Next, from Assumption 2.6 it follows thaR;, <« Q,,. For a proof of this statement we
refer the reader to Corollary 3.4 of [6]. Thus observing that

(A1), @) = (Ar—rs(UT,—0), ¢)| < ZSUEW(X)

’

we have from (3.2) thatx € E,

lim Suplim SUPE g, (A, (1), @) — (Ar—c (i), ¢)] =0, (3.3)

We now note that
E g, [(A1(8:), @) = (A1 (8:Ti—1). @)
<Eg;, [(Ai(8), ¢) — (A (), @)
+Eo, [(A(), §) = (A1 (UTi—0), §)]

+ EQBX ‘<At—r,t(MTt—r)’ ¢> - <At—r,t(5x Tt—r)’ ¢>| (34)

From (3.1), (3.3) and (3.4) it follows that, in order to prove (2.25) it suffices to show that
for u almost everyc and every fixed

Egy [(At—ri(0Ti—2), ¢) — (A—r(8:Ti—r). )] (3.5)
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converges to 0 as— oo. However (3.5) can be rewritten as

Egsr [(Ac(UTi—2), ¢) — (A (8:Ti—0), ). (3.6)

Next, Corollary 3.2 gives thatj, 7,_, converges tqu ast — oo. Also, uT;_,, being

equal top, trivially converges tqu ast — oo. It now follows from Theorem 7.2 of [4]

that the expression in (3.6), and therefore the expression in (3.5), converges to 0, as
t — oo. This proves the theorem.O

The following lemma and the proposition following it will be used in the proof of
Theorem 3.6.

LEMMA 3.4. - Let{v,} be a sequence iR(E) such that, — v for somev € P(E).
Then for alla € (0, 00)

limsuplimsup | go..(0, M) 1y,6.0>k ARy, 6, 1) =
K—o0 n—o0o J.
Q

Proof. —The proof of this result is contained in Theorem 5.1 of [4] and Theorem 3.2
of [5], however we sketch the argument for the sake of completeness.

Sincev, — v weakly asn — oo, the Feller property of7;) implies thatP, — P,
weakly asn — oco. Now let (X”) and (X,) be processes with values deflned on
some probability spac&, F, P) such thatP o (X")"* =P, , Po (X.) ' = P, and
X" — X. a.s.P. Define

(R0, Fo, R) = (Q2xC,FRB(C), P ® Q)

and the processeg’, Z. on this space as

ZN@, ) = qo (X" (@), 1),  Za(@,10) = qo.(X (@), 7).

Then it follows from the continuity ofs that (cf. [5]) Z" — Z, in L(R). This
immediately yields that

limsuplimsup | go.a(0, M) 14 ,0.m>k dR,, (0, 1)
K—oo n—>oo
Q

= limsuplimsup [ Z;1;:.x dR
K—o0 11%00Q
0

=0.
This proves the lemma. O
PROPOSITION 3.5. — Letg;, i=1,...,k, beinC,(E). LetC € (1, o) be such that

k
[l <C, VxieE;i=1,2... k. (3.7)



A. BUDHIRAJA / Ann. I. H. Poincaré — PR 39 (2003) 919-941 933

Let
—o<thi<b<---<t;=0.

Also lett, g € (—o0, 0) be such that < g < 1. Then

E (3.8)

k k
E g lH ¢i(&) | 2% v Qfoo] —Ego [H ¢iE) | 20V g’ml
i=1 i=1

Ry
is bounded above by [ (U1i(x) 4+ Ua(x)) n(dx), whereU; (x) for i =1, 2 is defined as

/EQ(Fz*(5x)(E)\Az*(5x)(‘1/i(- 1)) = Ap—or oo (8 Tre—er) (¥i (1)) ) Qdn), (3.9)
c

t*=n—t, =1 —19andV¥;: E x C is defined as follows

k
lIjl(x’ T)) = ¢1(X) / H¢l (étift,',l)qo,ftl(e’ T)) Px (de)’ (310)
D i=2
Wa(x, ) = To,—y (3 (E) () = / 0,1, (0. 1) Po(d0). (3.11)
D

Proof. —-We begin by observing that from the Markov property of the signal and
the independence between observation noise and the signal, one can replace the two
conditioningo fields in (3.8) withZ? v o (&} and 22 v o (£}, respectively. Thus, the

expression in (3.8) can be rewritten as an expectatiofotF, R;,) as,

=5,
E

Now an application of Bayes formula and a further conditioning yields that

. N eIl éiE g0 (6, ) P.(d)
= [Ed” 0] Ao 1 N I 018, 1) P, (d6)

N fp \Ill(étl,,, J/zlfz(ﬂ))clo,rrz (0,1n) P (dO)
 JpWolEn—r. Vit (1))g0,1,—1 (0, ) P, (dB)
T B, Y- ()
T (8 (W2l Y- (1))
_ Atl—t((sx)(\yl(' ) th—t(ﬂ)))
A (8 (W2, Y ()

where fors > 0, y,:C — C is defined ag/;(n)(u) =n(u +s) — n(s) and¥;, i =1, 2,

are as defined in the statement of the proposition. In exactly the same manner it is shown
that

w(dx). (3.12)

k k
El/i’:;x [H‘pi(gfi—t) |AEZ] - Eﬁax [H‘Pi(ft,-—t) | -AT_Ot_,
i=1 i=1

(3.13)
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O [y WaEn it Vit (1)) Gro—t.0—1 (0, 1) Py (dO)
_ Aro,t’tl,,(Tm,,Sx)(\Ill(- , Vtrt(’?))) . (3'14)
Atoft,tlft(Troft(Sx)(qJZ(' , Vtrt(’?)))
The above representations show that the term inside the integral in (3.12) is same as
Ay~ (B) (W1, Vi - (M) _ Avgt.3—1 (Trg—18:) (W1 (-, V- ())) H
A1 (6)(W2(, V(1)) Agg—r.y—1t (Trg—18:) (W2l 5 v, — (1)) .
(3.15)
U U’

Next observe that i/, V, U’, V' are real numbers such thgt’/V’| < D for some
‘ V-V

D > 1then
5= }
<D + .
v v Vv Vv

Using this inequality, we have that the term in (3.15) is bounded by

k Y11, Y wo—t.11—1(0, ) Py (dO
Ez, lH‘z’i(fnr) | A ] oW Va0 Grg—1.,-1(8, ) P (d0)
i=1

Eo [FO,I(SX)(E)‘

2
€Y Eo o ((E)
i=1

Atl,t(Sx)(\IJ,-(- > thfr(n))) - Ato,,),l,,(Tto,,Sx)(\IJi(- ) %H(n)))
Ay (8)(V2(, Y- ()

H (3.16)

Next note that
_ Ftl—t((sx)(\IJZ(’a th—t(n)))
Atl—t(Sx)(\IJZ(' ) th—t(n))) - Ftl,t(csx)(E)
_ Toi(3:)(E)
Tyt (8 (E)
Using this equality we have that the term in (3.16) equals

2
CY Eo [Ty 1B (E) A (60 (Wi (-, v (1))

i=1
- A‘L’oft,tlft(Ttoft(Sx) (‘Ijl(‘ ) J/rlft(ﬂ))) H .

Replacing, in the above display— ¢ by t* and#, — 19 by t*, and observing that under
0, y~ is independent ofd; , we have that the above display equald/i (x) + Us(x)),
whereU;(x), i =1, 2, are as defined in (3.9). Combining this observation with (3.12)
we have the result. O

The following theorem shows that under Assumptions 2.3 and 2.6, (vii) implies (viii),
where (vii) and (viii) are as in Theorem 2.7.

THEOREM 3.6. — Suppose that AssumptioBs3 and 2.6 hold. Further suppose that
the filter has the finite memory property as defined in Definifigh Then theo -fields
{G" .}: <0 have finite time dependen¢as defined in Definitior2.5) with respect to the
o-field 2°__.
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Proof. —Let¢;,;, i =1, ..., k, be as in Proposition 3.5. From Definition 2.5 we have
that, it suffices to show that for-a.e.x andi =1, 2,

lim suplim supU; (x) =0, (3.17)

T*—>o00 t*—>o00
whereU; (x) are defined in (3.9). FaK € (0, co), we write

qo.—1 (0, M =qo0— (0, M) AN K + [qo1(0.1) — K] Iy _6.p>k
=40, m+q®®, .
Now for i = 1,2, definew™ and w® by replacinggo _, in the definition of¥; (see
(3.10), (3.11)) byg® and ¢ respectively. Clearly, foi = 1,2, ¥; = v 4+ @@

Observe that foi = 1,2 and Q-a.e.n/, ¥”(-,n) € C,(E). This implies that forx
almost every,

limsuplimsup [ (EoTs+ (8 (E)| A< (8,) (W (-, )

T*—>00 t*—>00

— A o (8 Tre—e) (WP (1)) ) Q')

< [ limsuplim sup(E T (8,) (E) | A (8,) (WP (-, 1))
T*—>00 t*—>00
— Apege o B Ti—e) (WP () ) Q(dn)
= [ limsuplimsup(Eq, | A8 (¥ "¢, 7))
T*—>00 1*—>00 ’
— Apepe o B To—e) (W () ) Q(dn)
=0, (3.18)
where the first inequality above follows on observing that the integrand in the first line
of the display is uniformly bounded i@*, *). and the last equality is a consequence of

the finite memory property of the filter.
Next note that foi = 1, 2,

/ (EoTr(3)(E)|Ar 3 (W2 (. ) |) Q(dn')
C

= [Bolrr (P ¢ Q)

c

<C [ G0,0O. e, O. D, o0k Pe(d6) Q)
Q

=C [aesraO 0= PdO) Q)
Q



936 A. BUDHIRAJA / Ann. I. H. Poincaré — PR 39 (2003) 919-941
=C [ do-u®. DLy 0-x P, (d0) Q). (3.19)
Q

Corollary 3.2 gives tha8,7;+ — u ast* — oo. Using this observation in the above
display, along with Lemma 3.4 we have that fee 1,2 and allx € E,

lim suplimsup [ (ET(8,)(E)|Ax(8,) (W2 (-, 1)) |) Q') = 0. (3.20)

K—oo t*—>o00

Next consider

/ (EQT (8 (E) | Ape—re o (8, T ) (U2 (-, 1)) |) Q(dy)
C

— / EoTr v g BT Y E) | Ape e o (5 Te) (W2 (. ))|) Q)
C

= [Eollmve s BT (U n)) Q)
c

<C [ @O 0D a0 PL(d6) Q)
Q

<C [ Go-u®. 1Ly 0- Ps1. (d6) Q)
Q

where the last step follows as in (3.19). Once more, in view of Corollary 3.2 and
Lemma 3.4 we have that for=1, 2

lim suplim suplimsup [ (EgT (8 (E)|Ase—gx (8, Tre—e) (W2 (-, 1)) ) Q(d') = 0.

K—oo t*>00 t*—>o0

(3.21)

Finally, combining (3.18), (3.20) and (3.21), we have that/faalmost everyx, (3.17)
holds. This proves the result.0

We now proceed to the proof of the statement that (viii) implies (i). We will begin
with the following lemma.

LEMMA 3.7.— Leta € (0, c0) be fixed. Then

N2 va ) =2%vaZ.

t<0

Proof. —Define R* € P(Q?) by the relation

0 0
dRrR* 1 )
T —exp{—[h(su)dam) + élnh@u)n du}.
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Observe that,
underR*, G°__ is independent o£° . (3.22)

Though this is a standard fact, we sketch the proof of the statement in Appendix A. This
immediately yields that

(2% vG ) =2°vG-Z (modR*).

t<0
The lemma now follows on noting that " and R* are mutually absolutely continu-
ous. O

THEOREM 3.8. — Suppose that the-fields {G" _},-0 have finite time dependence
with respect to the -field Z°__ (Definition2.5). Then

N (2% v Gie) =22 VG g

§=—00

Proof. —Note that for every € (—oo, co0)

22 .vG 220 vGY

Therefore, we have that

N (2% vG ) 22° vi-Z.
It thus suffices to show that
Z2.vG X2 ) (2% vEi,). (3.23)

Next note that (3.23) will follow if we show that for alf e N2 __ (2°., vV G* )
P(F|12° vG 2) =1, ae. (3.24)
Since N2 _ (2%, vV G ) = Ni<o(Z2, Vv G, the right side of (3.24) isP(F |

m,go(z_oo v G* ), a.e.and so we have that (3.23) will follow if we show that

P(F|2° _VvG- <F| Nz > a.e. (3.25)
t<0
for all

FGZQOO 9 o) ﬂ VG

§=—00
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By the usual monotone class arguments it suffices to congidafrthe form Fy N F5,
where F; € Z2°  and F, € G° .. Thus (3.25) (and hence the result) will follow if we
show that for all bounded random variablésand U, such that/; is gEoo measurable
andU; is 2°_ measurable

ERK(}) (U]_Uz | Zgoo V gjgj) = ER/&D <U1U2 } m (Zgoo Vv gtoo)> . (326)

t<0

Since U, is measurable with respect to boff | v = and N, o(Z2%, v G ),

it follows that we can take (without loss of generality), = 1. Furthermore, via

a monotone class argument it follows that, it is enough to prove that, given any
qbl,...,qbker(E) andiy <t <--- <t =0,

Eqo (U | 20 vGTR) = E q (U (2% Vv g’_oo)) : (3.27)
t<0

where

U=¢1(5) - P (&y)-

Lete > 0 be arbitrary and let andz, be as in Definition 2.5. Thenforall<z, <1, <11
ER;(}) ‘ER/ELD [U | Z?oo V gioo] — ER/ELD [U | Zg V gioo] ‘ <e.

Let C be as in (3.7), thefU| < C. This implies, on taking limit — —oo in the above
display that

E

R

Eqp [U N (2%, v Gfoo)} ~Eo [U N(2° v gfoo)] ‘ <e.

<0 <0

Combining the above observation with Lemma 3.7 we now have that

E

ERLD [U | ﬂ(zgoovg’_oo)] —IER;}) U | ZSE vg:gj}‘ <e.

t<0

Ry

Thus to everys > 0, there exists aZEoo v GZ¥ measurable random variablé,;
|V,| < C, such that

<Le.

E g {U (2% v gfoo)} — V.

t<0

E a
R

This implies thatERl(})[U | Nico(Z2%, vV G- )1 is 2° v G- measurable. Since
Mico(Z%, Vv G0 2 20 v G=%, we have (3.27). O
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Appendix A

Proof of (3.22). -We denote a typical element &f by (w1, wy). For a fixedw; € Dg,
definer;, € P(Cr), via the relation

0 0
dR}, . . 1
700 =exp{— [#wn)dpow -3 [ ||h<su<w1>>||2du}.

Note thatR;; is indeed a probability measure Gg since

9 0
~ 1
/exp{ - [ hsuwn) dfw) - E/thu(wl))uzdu}de 1
Cr ~a 7,

Furthermore, by Girsanov’s theorgfa, (w1, -) — a_q (@1, -)}—a<u<o IS @ Wiener process
underR;; . Now define processe#;} < <o and{b,}_,<;<o ON (LY, RD) as follows:

by=Bi—B-a; bi=oy—a_,; —a<u<O0.

Then we have that ¥ € C,(C([—a, 0], RY))

0 0
~ ~ 1
E o [w) exp{— [reoasaw -3 [ Hh<su)\yzdu} \gf;o]

=E 0 (W(5)), RY as.

Now let f be aG>,, measurable bounded random variable(@h, R"). Then

- 0 0
- ~ ~ 1
Er- (f¥(B)) =Epo | £¥(B) exp{— [renapw -3 [ Hh(su>uzduH

- 0
=Ego | fEgo (wE) exp{— [ 1o dp

0
1
- 5/Hh<su>||2du} |g°°oo>]

= ER/ELD (fER/al) (llj(b)))
= ER;(ll)(f)ER* (‘IJ(E))

By taking W(-) = 1 in the above display we see thHa}a (f) on the right side of the
n
above expression equdls:(f). This proves (3.22). O
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