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Abstract

We prove essential self-adjointness of Kolmogorov operators corresponding to gradient systems with pGtentihlshat
DU is not square integrable with respect the invariant measure (irregular potentials). An application is given to the Cahn—
Hilliard—Cook equation in dimension one. In this case the spectral gap is proved for the correspondig semigroup. We also
obtain a log-Sobolev inequality.
0 2003 Elsevier SAS. All rights reserved.

Résumé

On étudie certains opérateurs de Kolmogorov associés a des systémes de type gradient ayant ut/fgetente U n'est
pas de carré intégrable par rapport a la mesure invariante (potentiels irréguliers). On montre que ceux-ci sont essentiellement
auto-adjoints. On applique ensuite les résultats obtenus au cas de I'équation de Cahn—Hilliard—Cook en dimension 1. Dans ce

cas, une inégalité de type log-Sobolev est établie ainsi que I'existence d’'un trou spectral pour le semigroupe associé.
0 2003 Elsevier SAS. All rights reserved.

1. Introduction and setting of the problem

Let H be a separable real Hilbert space (ngrmf, inner product-, -)). We are concerned with the following
Kolmogorov operator

1
Nog =35 TI[D?p(x)] + (x, AD@(x)) — (DU, Dg), ¢ € Ea(H),

where D denotes the Fréchet derivative with respecktdHere A: D(A) C H — H is a negative self-adjoint
operator such that 1 is of trace class anti : H — (—o0, +00] is a semi-convex function. Moreovéy (H) is
the vector space of all linear combinations of functions of the form

cog(x, h)),sin((x,h)), heD(A).
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Let « be the Gaussian measurefhwith mean 0 and covariance opera@r= —%A*l, we consider the measure

v(dx) =Z"te Y™ u(dx), (1.1)
whereZ is a normalization constant:
Z= / e 2™ i (dx), (1.2)
H

Our goal is to show that, under suitable assumptionslonthe operatorNg is dissipative in some space
L?(H,v), p > 1 and that its closure iz-dissipative.

As well known, the Kolmogorov operata¥y is related to a gradient system described by the following
differential stochastic equation

dX =(AX —DUX))dt +dW (), X(©O0)=nx,

whereW (¢) is a cylindrical Wiener process ai.

Several papers have been devoted to gradient systems. We recall the Dirichlet forms approach, [1,2,14], and
the semigroup approach, see [12] and references therein. But in all these papers, with the exceptibthef [2],
assumption that (at leasb)U is square integrable with respectito

/|DU(x)|2v(dx) < +00, (1.3)
H

is made. This assumption is fulfilled in several applications as the reaction—diffusion equations, but it does not hold
for semilinear equations perturbed by noise where the nonlinearity involves the derivative of the unknown, see [10]
for a discussion on this point. In [10] a concrete case, the Kolmogorov equation corresponding-iapiecian
(perturbed by a bilaplacian) was considered. In the present paper we replace (1.3) with the weaker condition

1

/\(—A)*m DU dv < oo, (1.4)

H
where 0< B8 < 1, proving that the closuréVi,g of the operatorNg is m-dissipative inL1*P(H,v). As an
application, we solve the Kolmogorov equation corresponding to the stochastic Cahn—Hilliard equation.

Let us explain our method. Proceeding as in [9], we consider an approximating equation
1
Apa = 5 Tr[D?pa (0] = (v, ADga (1)) + (DUs, D) = f. (1.5)

wheref € £4(H), A > 0, andU, is a smooth approximation @& . We prove thafp, € D(N11g), so that it can be
written as

Aoy — N14g@a = [+ (DU — DUy, D@y ). (1.6)
Now the key point is to show that

IimO(DU — DUy, Dgy) =0 inLY¥P(H,v), (1.7)

o—>

so that the range of — N1,g is dense inL*A(H,v) and N14g is m-dissipative. In [9], (1.7) was proved using
(1.3) and the basic inequality

1
/Nowwdv=—§/ID<pI2dv, ¢ eEa(H), (1.8)
H H

In [2], DU is not assumed to be square integrable with respect t&/therm but with respect to a weaker norm. Howel¥U has to be
semibounded with respect to the corresponding dual norm, a condition, in general, not easy to check in the applications. We thank the referee
for pointing out this fact.
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which yields easily an a-priori estimate f@y, |Dg|2dv. In the present situation, since only (1.4) holds, (1.8) is no
longer sufficient. We need a stronger estimate which is proved in Section 3.

Section 2 is devoted to some preliminaries, Section 4 to an application to the stochastic Cahn—Hilliard equation
in the interval[0, ]. In this case we prove thaY is essentially self-adjoint iL2(H,v). Moreover, we prove
the Poincaré and the log-Sobolev inequalities for the measurais implies that the spectral gap property holds
for No.

We notice that the Poincaré and the log-Sobolev inequalities do not follow from the Bakry-Emery criterion,
see [3], due to the lack of regularity of the potentiabf the Cahn-Hilliard equation. The main idea to prove these
inequalities is to show thatis the image of a measupg through the embeddinb?([0, 1) ¢ H~1([0, =]) where
vo is the invariant measure for a reaction-diffusion system for which the Poincaré and the log-Sobolev inequalities
hold.

2. Preliminaries
Let us state our assumptions. Concerningre shall assume that
Hypothesis2.1.

() A is self-adjoint and there exists> 0 such that
(Ax,x) < —wlx|?, x eD(A).

(i) A~1lis oftrace class.

Remark. From (ii) it follows that there exist a complete orthonormal sysfeph in H and a sequence of positive
numbergay;} such that

. 1
Aep = —ager, keN, with Z — < +o00.
keN «

We consider the operatdfp as a perturbation of the Ornstein—Uhlenbeck operator

Lo(x) = %Tr[Dz(p(x)] +(x, ADgp(x)), xeH, g e&a(H),
that is
Nop = Le(x) — (DU, Do), ¢ €&a(H).
We recall thatL is a self-adjoint operator ih?(H, i) with the property that

1
/ Loy dp=—3 / (Do, DY)dp. . € WH(H, p). (2.1)
H H

Concerning’ we shall make two assumptions.
Hypothesis2.2.

() GivenU : H — (—o0, +00], there exist$ > 0 such that the function — U (x) + §|x|? is convex.
(i) The numberZ defined by (1.2) is finite and positive.



76 G. Da Prato et al. / Ann. I. H. Poincaré — PR 40 (2004) 73-88

(iii) There exists a familf{U, }~0 of C2 class functions such that— U, (x) + 8|x|2 is convex,U, (x) < U (x)
andU,(x) 1+ U(x) foranyx € H.

We shall denote by,, the Borel measure i&/ defined as

ve (dx) = Z; e 2V« p(dx),

where
Zy = / e 2V (dx).
H
Hypothesis2.3.

1 1
(i) limy—o(—A) 222 DU, =: (—A)~ 22 DU in L>T26(H, v; H).
1 1
(i) liMg—o [y |(—A)” 2% DU, — (—A)” 2% DU|?*2P dv, = 0.
(ii) If B =0, we also assume that there exists 0 such tha’(—A)‘% DU € L?t¢(H,v; H).

We set
Nyw =Ly — (DUy, D), ¢ €Ea(H).

Lemma 2.4. The following identity holds

1
/Na¢1/fdva:_§/(D¢s Dy)dvy, ¢, € Ea(H). (2.2)
H H
In particular, takingyr = 1, we get

/./\/'agodvazO, pe&a(H), (2.3)
H

that isv,, is infinitesimally invariant for\, .

Proof. Letg, v € E4(H). We have by (2.1)

1
/L¢I/fdva:/L¢(¢Pa)dﬂz_§/<D¢s D(Ypy))d

H H H

z_%/ww,ovndva +f<D¢,DUa>wdva =0,
H H

and the conclusion follows. O
We can now prove that the measures infinitesimally invariant forNg.
Proposition 2.5. We have

/No(pdv=0, pe&a(H), (2.4)
H
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and

1
/Nowwdv=—§/ID<pI2dv, ¢ eEa(H). (2.5)
H H

Proof. Itis enough to prove (2.4), (2.5) follows if we takeé in (2.4). But this follows from (2.3) letting tend to
0 and taking into account Hypothesis 2.3(ii)

Proposition 2.6. Ny is dissipative inL1# (H, v).

Proof. The proof is standard, see [13]0

3. m-dissipativity of Ni4g

Let us first note that, thanks to Proposition 2\, is closable inL+#(H, v); we denote byV144 its closure.
We are going to show tha¥y 4 is m-dissipative.
Leta,A>0, f € C,}(H) and consider the approximating equation

A@a_LlJrﬂ(Pa‘i‘(DUavaﬂa):fv A>0. (3.1)

Lemma 3.1. If » > § Eq.(3.1) has a unique solutiop,, € C,}(H) ND(N14+p) and

N14p@a(x) = L14p@a(x) — (DU (x), Dpy(x)), x € H, (3.2)

and

1
1P¢allo < -—=11Df llo, (3.3)

where|| - ||o denotes the sup norm.

Proof. Stepl. ¢, € Ci(H) and (3.3) holds.
It is well known that

o0
Yo (x) = / e ME[f(Xalt, x))]dt,
0
whereX, (¢, x) is the solution to the following stochastic differential equation
dXo = (AXe — DUg(Xo))dt +dW;,  Xq(0) =1x.
Then for anyh € H

(Dgaa(x),h):/e*“]E[(Df(Xa(t,x)),n{;(t,x))]dt, (3.4)
0

whereng (¢, x) is the solution to the following equation

d
Tl = Ang = D*Uy(Xa) g, 1g(0) =h. (3.5)
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Consequently,, € C,}(H). Moreover, multiplying both sides of equation (3.5) y and taking in account the
dissipativity of A and the convexity of — Uy (x) + §|x|?, yields

Int| <&l t>0.
Using (3.4) we get

1
[(Dga(x), h)| < ~— DS llo,

and (3.3) is proved.
Step2. ¢, € D(L14p) Where Ly, g is the infinitesimal generator of the Ornstein—Uhlenbeck semigroup in
LY F(H, W),

Rip(x) =/<p(e’Ax +NQO, 0)(dy), ¢eCp(H),
H
where

0 =-3a"ta- 4y, 1[0, 400l;

and observing thaD, = Q.
We need a further approximating equation:

1
A —L —— = (DU,, D =f X1>0. 3.6
$a,p — L1+p9a,p + 1+,3|DUa|2( a> Dpa,p) = f > (3.6)
By [12, Proposition 6.6.4], Eq. (3.6) has a unique solutigry € C,(H). Moreover
l@e.pllo < Il fllos
and there exist€ > 0 such that
C

D < —— .
| Dga,plio k_allflll
SinceDU, has linear growth, there exist¥«, || f]11) > 0 such that

|L1150up )| < C(a, 1 f11) (14 |x]), x€H.
It follows that

[ 122150050 wia@n < (a1 £1) A+ Tr Q)
H
By a standard argument this implies tiggte D(L144).
Step3. 9o € D(N14p) and (3.2) holds.
Let us first consider the case whgre (0, 1]. We recall that, see [11],

(DR,g, h) = / (AR, Q7 Y)p(E4x + y)N©, Q) (dy), ¢ eLP(H, p),
H
with
A(r) = 0 Y34,
Hence,

1/2

(—A)Z% DR, h) = f (= A)T% A()h, 07 Y2) p(€x + )N (0, 01)(dy)
H
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and, forp > 1,

{(— A)7% DR, g, h)| / lo(e?x +y)|" N0, 0)(dy)

r/q
</|( A7 A(nh, 07 Y2\ N, Q»(dy)) ,

wheregq is the conjugate exponent pf It follows that

1 2B
|(=A)ZZ DRig|” <Ct PTF R (9)"(x), ¢ LP(H, ),
which, integrating with respect t@ and taking the Laplace tranform, yields

|(=4)2% D — L)l o SCONSllLeg, ¢ € LP(H, . 3.7)

We are now ready to prove that that € D(N14g).
Sincef, (H) is a core forL1, g, see [5], there exists a sequergg} C £4(H) such that,
im g =¢y, WM Liipon=Liipga, in LP(H, ).
n—0o0 n—oo

We claim that
Iim Niipon = Lisppa — (DU W), Do) in L (H, v),

which proves thap, € D(N14g).

1 1
Since by (3.7) we know that-A) % Dy, — (—A)Z% D¢ in LY#(H, p), it is enough to show, in view of
the Vitali theorem, that

/l DU (x), Dg,)|

l+;‘3+e

(dx)

is bounded, for some > 0. We have in fact

1+B+e

/\(Dum, Dgy)| v(dx)

1+B+e

</\(—A>*ﬁDU<x)\ |(—4) 7% Dy, [P u(ax)

H
1484 1+B—¢

1 2428 2+2B 1 2(1+B+8)(1+8) 2428
< / (=)~ DU ()22 () / (—A) 5% D, | T vy )
H H

Now the claim follows from (3.7).
Let us now consider the cage= 0.
Since€4(H) is a core forLy, there exists a sequengg,} C £4(H) such that,

lim ¢, = g@q, lim Lag, = Lapy, In LZ(Ha ).
n—0o0

n—o0

It follows that for allyy € D(Ly) we have, see [12, p. 215]—A)Y2Dy| € L2(H, 1) and there exists > 0 such
that

f [(=A)2Dy [P dp < c f Loy [Pdu, V¥ € D(L2). (3.8)
H

H
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Consequently, by (3.8) it follows that
lim (=A4)Y2Dg, = (—A)?Do, in L*(H, u; H), (3.9)
n—0o0
and there exists > 0 such that

[1=¥2g, P <.
H

We claim that
lim Nogn = Laga — (DU (x), Deg) in LY(H, v).
n—oo

This will imply that ¢, € D(N1). Itis enough to show that

/\(DU(x), D, ()" dv
H

is bounded, for somg > 0. We have in fact

1ty
2

1y
/|<DU(x),D<pn(x)>|l+y dv < (/|(—A)—%DU(x)|2+14yv du)7</|(—A)%D¢,,|2du> :
H H H

hence, because of Hypothesis (2.3)(iii) in the case0, we can apply the Vitali theorem choosipg= 4%8. O
The following identity forDg, is central in the proof of our main result.

Proposition 3.2. Let f € le(H) and lety, be the solution of3.1). Then we have

1 2
A / |Dgadve + / TH{(D%00)?] dv + f (= A)Y2Dg, [P dvy + / (D?Uy Do, Do) dve
H H H H

=/<D§0aa Df)dvq =2/f(f_)¥(/7a)dva- (3.10)
H

H

Proof. Let f € C,}(H) and letyp, be the solution of (3.1). Let us differentiate both sides of (3.1) with respect to
Dy, k € N, whereDy, is the derivative in the direction ef,. We obtain

ADy@y — LDr@y + (DUy, DDy @y) + ik Drpy + (DD Uy, Doy) = Dy f.

Multiplying by D¢, , integrating with respect ta, and taking into account (2.2), we find that

1
A/|Dk¢a|2dva+5f|DDkgoa|2dva+uk/|Dk¢a|2dva+/<DDkUa,Dgoa>Dk¢adva
H H H H

Z/Dk(paDkfdva-
H

Summing up ork gives, taking again into account (2.2), the conclusion follows.
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Corollary 3.3. There existg; > 0 such that for anyf C,f(H)

2
/ (= AY2Dg, |2 dve < c1ll 12,
H

whereg, is the solution tq3.1).
Theorem 3.4. The closureN1.4 of Ng in LY*#(H, v), is m-dissipative inL*# (H, v).

Proof. Letx > 6, f € CE(H), a > 0, and letp, be the solution to (3.1). Since by Lemma $J e D(N145) we
can write

Ao — N14ppe = ((=A)"Y2(DU — DUy), (—=A)Y2Dg,) + f.
We claim that

lim (DU — DUy, Dgy) =0 in L**P(H, v). (3.11)

a—0

This will conclude the proof by applying the classical result of Lumer and Phillips, [15].
Let us prove (3.11). SincE, (x) < U(x) and limy_.0 Z, = Z, Corollary 3.3 implies

2 — 2 _
/‘(—A)l/ZD(pa‘ dv=27 1/|(—A)1/2D§0a| e 2U(X)'u(dx)
H H

Z
<27t [ |- 2pg, e uan < Frer <
H

wherec is a suitable positive constant. Then, by the Holder inequality we obtain,
; )
1 1
/\(DU — DUy, D, )| dv < [/\(_A)M(DU - DUa)f*Zﬂdu} [/|(_A)z+z/s D¢a|2+2ﬂdu} :
H H H

Now we use the well known interpolatory estimate
1 1 1
(a7 5 x| <Pl (—A) 2k, x e D((-A)7),

and find

/|(DU — DUy, Dgo) | dv
H
1 2428 % 2 1 2 %
<C /|<—A) 72 (DU — DUu)|™ ™ dv /|D¢a| P1(=A)2 Dgq|"dv
H H

¢ B ks 2128 \"?
émllDfllollfHo(/K—A) 28 (DU — DUy)| dV)
H

thanks to (3.3) and Corollary 3.3. The proof is complete thanks to Hypothesis 2.8(i).
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4. The stochastic Cahn-Hilliard equation
4.1. m-dissipativity

The Cahn—Hilliard equation is a phenomenological model for various types of nonequilibrium phase transitions
as the early stage spinodal decompositigm physical phenomenon that arises when we rapidly quench an alloy
from the stable region (high temperature) to the unstable region (low temperature). Cook took into account also
the thermal fluctuations introducing the stochastic Cahn—Hilliard equation, which in the litterature is known also
as the Cahn-Hilliard—Cook equation.

This equation has been intensively studied, see e.g. [4,6,7], and the references cited therein.

We will apply the abstract results of Section 3 to the following stochastic Cahn—Hilliard equation:

dX = D2(—DZX + f(X))dt +dW (1), in[0,+00) x [0, 7],

Jo X(©)d& =0, (4.1)
DX (1,0) = D?X(t, 0) = De X (t, ) = D§X(t, ) =0,
X, =x,
whereW (¢) is a cylindrical Wiener process dr—1, and wheref € C2(R) is such that
|f(] <a(l+rm1, (4.2)

for somea and the function
¢(r) = / f(s)ds
0

is semiconvex. Typically is a polynomial with positive leading coefficient of even order (greater then or equal
to 4). In order to avoid technical complications below, we make the additional assumptiofi ihaonotone,
however all our results hold in the more general case of the derivative of a semiconvex function.

The stochastic Cahn—Hilliard equation with periodic boundary conditions can be treated in the same way.

In generalX denotes concentration, for instance in the case of a binary alloy (CuX4m@n be the concentration
of Cu. In the deterministic case the Cahn—Hilliard equation has the property that the total concentration — which
corresponds to the spatial averageXof is a conserved quantity. Without loss of generality, we assume that this
average is zero. It is natural to require that the noise does not destroy this property. Thus we work in spaces of zero
average functions and introdug& (0, ), the space of functions i 1(0, 7) whose average is zero, and its dual
HLO, ).

It is natural to study this problem in the spatle= H~1(0, =) because, with this choice, the equation is of
gradient type and the corresponding transition semigroup is reversible.

We also consider the Hilbert spat:é(0, ) of all square integrable functiogson [0, ] with zero average. Its
inner product is denoted by, -).

Let {ex }ren+2 be the orthonormal basis di?(0, =) defined by

ex(§) = (m/2) Y2 cogks), ke N,
and, for anyx € L2(0, ), set
xp = {x,er), keN*.

We shall identifyZ.2(0, ) with £2(N*) and then we shall considé?(0, ) as a subspace & .

2N*=1,2,....
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Moreover, for any- € R we shall denote by’ the subspace & of all sequences = {xi}ren+ Such that

2= (L4 1K) Ixel? < +o0.

keN*
‘H" is a Hilbert space with the inner product
(x,y)r = Z k¥ xeye, x,yeH. (4.3)
keN*

The corresponding norm is denoted py,. Notice thatZ.2(0, ) = H®, H1(0, =) = HY, H~1(0,7) = H~! and
setting
fi® = 1+ k%) Pen®), keN*,
then{ fi}xren+ is a complete orthonormal basis &1 1. Clearly, ifry > ro,
|x|r1 g |x|r2'
Moreoverwe assume tha¥ (r) is the cylindrical Wiener process di~1 defined (formally) by

Wty =Y fibi

keN*

where{B}ren+ is a sequence of mutually independent standard Brownian motions.
Let us define the linear (unbounded) operatdmnd B in H = H~! by setting

Bfi =k*fi, keN*,
and
Afy = —k*fi, keN*.
Notice that
D(B)=H!, D(A)=H>
and thatB = (—A)1/2.
Moreover, let us introduce the potentlal: H 1 [0, +00]

Ute) = {f{,’ g (€)ds. if x e D), 4.2)
400 otherwise

where
D) = {y € L*([0,71): g(y) € L}([0, 71)},

andg(r) = for f(s)ds.
We have

T

DU -y = [ e
0
We denote byD,,- the gradientir{”, then

Dy1U = (—A)Y2DU = Bf (x).
Forr =—1, we also seD = D;,-1. Thus, Eq. (4.1) can be written as

dX = (AX — DU(X))dt +dW (1),
{X(O):x. (4.5)
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Now we can consider the Kolmogorov operator
Nogp(x) = %Tr[ngo(x)] +{x, ADg(x)) = (DU (x), Do (x)), ¢ € Ea(H),
which we shall write also as
Nogp(x) = %Tr[ngo(x)] +(x, ADg(x)) + (f (x), BDg(x)). (4.6)
We setu = Np whereQ = —3A~1. We have

Theorem 4.1. Let Ng be the Kolmogorov operator defined @4.6), and letv the probability measure defined by
(1.1). ThenNy is essentially self-adjoint in.?(H 1, v).

Proof. We shall apply Theorem 3.4, verifying the required assumptiong ferl ands =0
Verification of Hypothesi.1. It follows from the identity

1 —4
Tro= > Z k
keN*
Verification of Hypothesig.2(ii). For this it is convenient to write(&) in a suitable form. Given € H~! we
start from the obvious identity

x(E) =) (x, fi)rfi = < REDI fk@fk) = p(§) Wy, (x),
keN* V2 keN* 1

whereW represents the white noise functiop, is the element it~ defined by

i 4.7
ne = \/ip(é‘)kg* sz(é)fk (4.7)
and
1+ k2
p2(&) = 2%3* e (£)>. (4.8)

Now we can prove that

Z= / e 2U™ ;i (dx) > 0.
H

For this it is enough to show that

/ Ux)pu(dx) < 4o0. (4.9)
H
We have in fact

/U(X)/L(dX)=//g(X(§))d§M(dX)—/d§/g P(E) Wy (x)) j1(dx)
H H 0 H

T +00

=(271)_%/d§ / e_ég(p(é)r)dr<+oo,

0 —0o0
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in view of (4.2), and Hypothesis 2.2(ii) is fulfilled.
Verification of Hypothesi&.2(iii).
Let us define approximatiorig, of U. Let g, be the Moreau—Yosida approximationsgof

| { ' }
ga(r)=inflg(s) + —@ —5)% s eR}.
2a

We set

b4
Us (x) =/ga((1+a3)*lx(g))dg, a>0. (4.10)
0
ThenU, is of classC2. Moreover,U, < U. In fact, since

T

(L+aB) 'x(®) = f k(&,m) x(n) dn
0
with k(&, n) > 0, we have thafé’ k(&, n) dn = 1: this allows us to apply Jensen inequality to get

ga((L+aB) ™ x) <g(A+aB)™x) <A+aB)Lg).
Hence
Ug(x) < U(X).

Verification of Hypothesig.2(iv). Firstly we observe that

T

DUy(x)-y = / g (L+aB) ™ x (&)1 +aB) ty(®) dt,
0
so that

Dyp1Uqy = (—A)Y2DypoUy = BL+aB) L, (L +aB)7Y).
We have to show that
lim / |(=AY4Dy 1 (U — Uy)[* dv = lim / |Dyo(U — Ug)|gdv =0.
a—0 a—0
7‘[_1 7‘[_1

In view of the dominated convergence theorem it is enough to showmhatU,, |§ can be estimated, uniformly in
«, by av-integrable function. We have in fact, using the Jensen inequality

b4 2

T 2
|DyoUe | = ( / DHan(x)@)zds) ( / fa((1+aB)_1X)(§)2d$>
0

0
2

T 2 T
< (/f((1+0l3)lX)(§)2d$> < (/f(X)(é)zd«?) .
0 0

It remains to show that

b4 2
/ (/f(x)(g)zdg) dv < 40o0.
0

Hfl
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We have in fact, thanks to (4.2), and proceeding as in the proof of (4.9),

/<ff(x(§))2d5>2d"<”/nd§ / f(x(é))4dv<an(7t+fd§ / (X(S))8n14du>
0 0 H1 0 H-1

H—l
_1 (Bm—4)! i —
=a7T(7T+(27T) Zm/p(f)is 4d$>,
0

which is finite. The proof is complete.O
4.2. Spectral gap

We consider here the invariant measuref the Cahn—Hilliard—Cook equation (4.5) 1, that is
v(dx) = Z  exp(—U (x)) w(dx),

whereU is defined by (4.4); we suppose tliatbe a convex potential.
We recall that for a sufficiently smooth functian we have the following relationship between the derivatives
inH%=L2(0,7) and inHL:

DH—lx = BDHOX.
Let T be the natural imbedding df° into H 1. It is easily checked that the adjoifit of T is given by
T'y=—B"1y.
Let us consider of{° the Gaussian measum = N (0, Qg) with Q¢ = —%B*l and set
vo(dy) = Zy  exp(—U () o(dy)
and
Zo= / exp(—U () no(dy).
H
Itis well known, see e.g. [11] that is the unique invariant measure of the following stochastic differential equation

dX = (BX — f(X))dt +dWo.

We need the following lemma
Lemma 4.2. The image measure o through the natural imbedding : #° — 1 coincides withv.

Proof. We first prove that
w(H% =1. (4.11)
We have in fact
/ x50 p(dx) = / IWBx|5, 1 u(dx) =Tr(B™Y) < +o0.
H-1 H-1
To prove the lemma it is enough to show that for any Borel bounded fungtitir 1 — R we have

/fp(y)vo(dy)= / @(x)v(dx). (4.12)
HO H-1
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To prove (4.12) we consider a sequefg} of finite dimensional approximations of the identity%f and we set
P} =T P,,n € N*. Then by the change of variables formula in finite dimensional spaces, we get

/ @(Puy)e 2V PN (0, P, Qo) (dy) = / o(Pix)e 2V PN (0, PLO)(dx).
PyHO PyHL

Now, lettingn tend to infinity and taking into account (4.11), we find (4.12n
Let us prove now the Poincaré inequality for the measure

Theorem 4.3. For anyg € C}(H~1) we have

1
/ o) =700 vin) < 5 f | Dy 1002, 1 v(dx), (4.13)
H-1 H-1
where
7= / (x) v(dx).
H—l

Proof. Itis well known, see [3, Eq. (4.1)], [8, Proposition 2.3], that the Poincaré inequality holds for the measure
vo. Therefore, taking into account that the principal eigenvalue®fis 1 and thaU is convex, for any € C,}(HO)
we have

_ 1
/ o) =8| vo(dy) < 5 / | Dyow (0|20 v(dy), (4.14)
HO HO
where
5=/¢(y) vo(dy).
'HO

On the other hand we have, by the change of variables formulap taai. Consequently

1 2 1 2
> / |DH71(p(x)‘H_1v(dx)=§ / |BDHo<p(x)‘H_1v(dx)

'H—l 'H—l
1 2 1 2
z > |DH0<P(X)‘H0 v(dx) = > |DH0(P(X)|H0 vo(dx)
H1T HO

>f|¢(x)—¢(x)\2vo(dx)= / o) — §(x) P v(dx),
HO H-L

by the change of variables formulac
The spectral gap follows now easily, see [8, Proposition 4.1].

Corollary 4.4. Let N> be the closure oNg in L2(H, v) and leto (N2) be its spectrum. Then we have

o (N2)\{0} C {r e C: Rex < —1}.
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In the same way we obtain the log-Sobolev inequality.

Theorem 4.5. For anyg € C}(H~1) we have

/(pzlog(pzdv< /‘DHfl(p(x)‘;_ldv—i— / <p2dvlog( / (pzdv>. (4.15)

H—l H—l H_l 'H_l

Remark 4.6. As already mentioned, all our results continue to hold if we assume that the nonlineay term

(4.1) is the derivative of a semiconvex function, which is the cagei#fa polynomial of odd degree with positive
leading coefficient. In this case, in the proof of Theorem 4.1 we have to cldoss® The construction of the
approximationd/, also has to be modified. The proof of Theorem 4.3 and 4.5 do not use this assumption since it is
known thatvg satisfy the spectral property and a log-Sobolev inequality also in that case. Of course, in Theorem 4.3,
if U is only semiconvex the constaéthas to be changed to another constant which depends on the oscillations
of U.
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