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Abstract

We consider multi-allelic Gillspie—Sato diffusion models in population géns. The case where they have reversible
distributions is completely determined in terms of mutation rates and selection intensity. In such cases we give an explicit
expression of the reversible distributions, which turn out to be mutually absolutely continuous with respect to some Dirichlet
distributions.
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Résumé
On considere les modéles de diffusionltihalleles de Gillepsie—Sato, en génétigdes populations. Le cas réversible est
completement déterminé en termes de taux de mutation et d’intensité de sélection. On obtient une expression explicite de

distributions réversibles qui se trouvent étre absolument continues par rapport a certaines distributions de Dirichlet.
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1. Introduction and the main result

In population genetics theory, stochastic methodshsas diffusion approximations had been exploited
extensively, yielding rich results which are of interest from both genetical and mathematical view points. Among
a number of quantities associated with the diffusion models, it is of particular importance to study their stationary
distributions. In general, it is quite difficult to give them in explicit way, and stationary distributions which had
been found explicitly are usually shown to exhibit a stronger property cadhegtsibility, i.e., at stationarity the
process has the same distribution as its time reversal.
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Besides analytical importance of this property, slould mention about a special role of reversibility in
the context of population genetics theory. For this purpose, it seems best to cite an account given by Ewens
from [5, p. 87] concerning the prospective and retrospective aspects of the processes. “For reversible processe
these two aspects have many properties in common, and information about the prospective behavior normally
yields almost immediately useful information about the retrospective behavior”. See also e.g. [28,29,15,20,17] and
[4, 88] for various applicatins of reversibility or time reversal in population genetics models.

In this paper we discuss multi-allelic Gillespie—Sato diffusion models (hereafter G-S diffusions), which were
introduced heuristically by Gillespie [7] in a di-allelic case and rigorously derived by Sato [19] in a multi-allelic
case. In fact, they did not take effect of mutation into consideration, and what we actually study here are diffusion
approximations obtained by Shiga [22,23]. (See also [24] for further development.) He proved not only the well-
posedness of the processes in a countably infinite-allelic case but also derived certain measure-valued diffusio
processes in a continuum limit of the space of alleles. However, our attempt will be made only for finitely-many-
allelic cases because of technical difficulties, and we try to identify the case where the multi-allelic G-S diffusions
have stationary reversible distributions, and to find explicit expressions of them.

According to [22], diffusion processes we wile concerned with are described as follows. d &te an integer
greater than 1 anB . be the set of positive numbers. Suppose that. ., 8; € Ry andys, ..., ys € R are given.

We also need d x d-matrix (i;;) such tha;; > 0 (i # j) andzle Aij = 0. Thed-allele G-S diffusion has state
space

Ky = {x =1, ...,x4-1) 1 x120,...,x4-1>0, x4 ::1—x1—---—xd_1>0}, (1.1)
where’ stands for the transpose. It is prescribed by the generator
191 52 d-1 3
L_Ei;laij(x)er;bi(x)a—m (1.2)
with coefficients

d
aij(x) = 8;j Bixi +Xin<Z,3ka - Bi —,3]') (1.3)

k=1
and

d d
bi(x) =) Ajixj +xi (Vi -3 )/,/x,,'), (1.4)
=1 =1

where$;; denotes the Kronecker's delta. Eaxf represents the rate of mutation from thi allele, sayA;, to
the jth allele A ;, andy; involves the effect of natural selection. It is convenient to introduce notation of the scalar
product onR?

d
Em=)Y &n, E=(En....&) n=0n,....,na) €R’.
i=1

Putf = (B1,...,B8s) andy = (y1,...,yq). Letting ¥ = (x1, ..., x4-1,xq)’ € R? for x € K;, we have rather
simple expression of the above coefficients:

ajj(x) = 8;j Bixi + xix;((x, B) — Bi — Bj).

d
bi(x) =Z)»jixj +xi(yi — (X, 7).
Jj=1
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Letl1=(1,...,1) e R% If B =C1 for someC > 0, then the G-S diffusion is nothing but the Wright—Fisher
diffusion model (hereafter W-F diffusion), more precisely, the diffusion approximation for Wright—Fisher models.
(See e.g. [5,3].) Genetically speaking,s come from the difference among alleles in variances of offspring
numbers. More precisely, the diffusion approximations studied in [7,19,22,23] are based on certain multi-type
branching processes, in the definition of which the variance of the offspring distribution of 4)lé&des; plus a

term negligible in large population liitn In the absence of mutation, Gillesdid discussed effects of variance in
offspring numbers on the fitness of a genotype and on the probability of fixation.

In the present paper, mechanism of mutation is nece$satiye process to have a nontrivial equilibrium state.
Actually, Shiga proved ([21], Theorem 3.2 and Remark 3.1 combined with the main result of [22]), under certain
irreducibility condition we will also assume for the mutatimates, that the G-S diffusion has a unique stationary
distribution and is ergodic. As mentioned above, main purpose of this paper is to find an explicit expression for the
stationary distribution. But we do not intend to consider all of them since, even for the W-F diffusion case, only
reversible stationary distributions are known explicitly. So what we have to do first is to identify the case where
the G-S diffusion has a reversible distribution and then we shall compute it in the reversible case. Here is the main
result of this paper.

Theorem 1.1. Suppose tha8 # C1 for anyC > 0 and that(x;;)1<;, j<aq iS irreducible in the sense that for eveiry
and j there exist a chair, i1, ..., i, in {1,...,d} such thatpo =1, i,, = j andi;,_,;, >0(m=1,...,m). Then
the G-S diffusion has a reversible distribution if and only if the mutation rates are of uniform type, i.e.,

Nj=hij(=:q;/2), foralli,ke{l,...,d}\{j}andje{l,...,d} (1.5)
and
y=CB 4+ C'1l for some constani§ andC’. (1.6)

In the case where bottl.5) and (1.6) are satisfied, the unique stationagversiblg distribution is given by
- a-1y—(g.87H—-20-1 : qifit -1
(x,p ) Hxi' " Tdxi---dxa-1/Zgg.c, (1.7)
i=1

wheref™t = (817%,..., 847Y, ¢ = (q1. ..., qa)" is given in(1.5), and Zg , ¢ is a positive finite constant that
makeg(1.7) a probability distribution onk ;.

Remarks. (i) We should note difference between the G-S diffusion case and the W-F diffusion case. The latter is
covered by a theorem of Li, Shiga and Yao [16]. Thegyad, under the same irreduitity assumption as above,

that reversibility of the W-F diffusion is equivalent émly the condition (1.5). Thus no condition gnis required

in this case. In addition, we can assughe- 1 without loss of generality, and théagionary distribution is known

[30] as

d
e2%7) l_[xf"_ldx1~ --dx4_1/normalization
i=1

Note also that distributions of this form are recovered from (1.7) by seftiagl + C 1y or y = Cg — C1, which
satisfies (1.6), and then lettifg— oc.

(ii) Clearly (1.7) generalizes Dirichlet distributions, that correspond to the case Whei€; 1 for someC; > 0.
Since (1.7) is absolutely continuous with respect to the Dirichlet distribution with parameger?, ..., gs8s~1)
and the density is bounded above and uniformlyifpes normalizability in (1.7) is obvious.

(iif) When C = 0'in (1.7), an explicit expression of the normalizatiog , o will be given in Lemma 3.1 below.

(iv) In the case of/ = 2, (1.5) and (1.6) are always satisfied, and the stationary distribution (1.7) is derived
directly by using integration by parts in one dimension.
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Heuristics behind the proof of Theorem 1.1 is as follows. In view of general facts (e.g. [14,18], [13, Chapter V,
Theorem 4.6]) on symmetrizability afondegenerateperators of the form (1.1), it seems natural to guess that
reversibility of the process we consider would be equiviie the condition that the “drift term” is of the form

b(x):=b1(x),...,bg_1(x)) = —%a(x)VH(x) for some functionH (x), (1.8)

wherea(x) = (a;j(x))1<i, j<d—1 andVH (x) = (0H /dx1, ..., dH /dxq—1)". Furthermore, this reduces to symme-
tries

d-1 ab d-1

> ain() =" (:) = aji)
k=1

k=1

. djell,....d—1). (1.9)

0b; (x)
0Xk

Regarding (1.9) as a family dflentities between polynomials iwy, ..., x;—1, one arrives at (1.5) and (1.6).
Moreover, after multiplying both sides of (1.8) by the inverse mairix) 1, which exists whenever belongs to

Kj = {x:(xl,...,xd_l)/EKdZ x1>0, ..., x4-1>0, xd>0}

(cf. (1.12) below), a functior satisfying (1.8) ork}" is found as

d
Hx) =Y qifi tlogxi ™) + ((g, 8" +2C) log(x, 7). (1.10)
i=1

Lastly, the stationary distribution would be simply given by
e (deta(x)) ‘dx1 - - - dxq—1/normalization (1.11)

Thus, we need to compute dek) and a(x)~1. Such calculations are rathéengthy and summarized in
Appendix A. In particular, it will be shown that

deta(x) = (B1x1) - - - (Baxa) (X, B~ ). (1.12)

Verification of (1.8) and (1.11) for the W-F diffusion can be found, for example, in [1, Appendix F].

In actual proof of Theorem 1.1, we take a strategy similar to [11], in which the same kind of problems are solved
for a class of measure-valued diffusion processes of Fleming—Viot's type. This class contains the W-F diffusions as
finite-dimensional cases. The strategy allows one tichproblems which would be caused by degeneraey of
on the boundary ok (in R¢~1) and is based on a transformation grdsp: f e R?=1} on K4 with property

d
—Supx=a(Su) fo [ = fa-0) € RI7L x e Ky (1.13)

Technicalities regarding this group are collected in Appendix B. In this context, reversible distributions (if exist)
are interpreted as distributions with certain quasi-invariance property (see Theorem 2.1 below), and some measure
theoretic considerations will yield (1.8), a key in the above heuristics. Itis worth noting and observed in Appendix B
that ao -finite measure

(deta(x)) dxy---dxg_1 onK} (1.14)

which appeared in (1.11) is invariant undst }, and that such invariant measures are unique up to multiplicative
constants. We also emphasize that existence of the transformation group (1.13) crucially relies on a special structur
of the diffusion matrix, i.e.,

92U
1 .
(a(X) )U - 8x,-8)Cj

, xekK, (1.15)
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for some functionU on K. See Corollary A.1 in Appendix A for an explicit form d@f. It seems that such
structure characterizes a class of diffusion models for which appropriate modification of methods in the present
paper are available.

The rest of the paper is organized as follows. In the next section, we will prove Theorem 1.1 by means of results
shown in Appendices A and B. Such results would be interesting in their own rights and useful in some other
situations. As the last part (besides appendices) of this paper, we discuss some aspects of the reversible distributio
obtained in Theorem 1.1, especialgghrithmic Sobolev inequalities for the ergible G-S diffusions. This kind
of inequalities is known as a powetfiool to study ergodic behaviors ofelprocess and asymptotic stability of
the equilibrium distribution. (Seeg.[8] for general accountand various examples.) In our case these are shown
to hold as a direct consequence of latanic Sobolev inequalities for the rexsible W-F diffusions proved by
Stannat [25] combined with remark (ii) after Theorem 1.1.

2. Quasi-invariance and reversibility

As for the scalar product oR?~1, we use notation

d-1

(fLoy=)_ figin [=(f1..... fa-D) g=(g1...,a-1) €RITL.

i=1

Setalso|| f|l1 = | f1| + - - - + | fa—1|. As mentioned in the previous section, one of main tools in this section is the
transformation groupS;: f € RY~1} on K, constructed in Appendix B. For eaghe RY~1, the image of € K4
by Sy is denoted as

Spx=((Spx)1, -, (Spx)a—1) € Ka.
Properties of Sy} we employ here are the following. The proofs are found in Appendix B.
(S.1) Foreactie{1,...,d}, (Sfx); =0 whenevenr; =0.
(S.2) Sox =x andS;(Sgx) = Sy4ex. In particular,S_; = (S,)~2.
(S.3) Syxe K ifandonlyifx € K.
(S.4) Foranyr, y € K, there exists a uniqug € RY~ such thaty = S sx.

a(Srx); ..
(S.5) % =a;j(Syx), i.je{l,....d—1}.

(S.6) Srx is continuously differentiable in, and

3(Sfx),'

Dy(Sgx)a(x) =a(Srx), whereD,(Syx)= ( ) .
0x; 1<i, j<d—1
(S.7) There exist constang andC» such that for alk, y € K4, f, g€ R¢1

I1S7x = Seylla < (Ilx = yll1 + Call f — glla) exp(C2min{]l f 11, lgll1})-

. . +
(S.8) For any nonnegative Borel functiéhon K,

/ F(Spx)dfi--dfs_s= / F(»m(dy) = / F(Spy)m(dy),

d—1 + +
R K K]

wherex € K andg € R?~1 are arbitrary anah (dy) = dy1 - - - dyq—1/ deta(y).
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Denote byM1(K) the set of Borel probability measures &p. Given a measurable functiohonR?~1 x K,
we say that a € M1(K,) is quasi-invariant undefS,} with cocycle A if for every f € R¥~1, v andv o S
(=vo (S,f)*l) are mutually absolutely continuous with density given by

dvoS :
%(x) =AY pas, (2.1)
v

which is equivalent to the condition that
/F(S,fx)u(dx)zfF(x)eA(f%(dx), feRt
Kj Ki

holds for any nonnegative Borel functidghon K ;. In this case, the chain rule, (S.2) and (2.1) together imply that
for f,g e RIL

A(f + g, x) = A(f, Sgx) + A(g, x), v-a.s. (2.2)
This is referred to as cocycle identity. Rut) = (b1(x), ..., bg—1(x)) .

Theorem 2.1. Letv € M1(Ky). Thenv is a reversible distribution of the G-S diffusion if and only ifs quasi-
invariant under{S s} with cocycle

1

A(f,x)=2/(b(Sufx),f) du. (2.3)

0
We prepare an equality which plays a key role in proving Theorem 2.1.
Lemma 2.1. Let A be given by(2.3). Fix an arbitrary f € R?~1. For anyG e C1(K,), define
Gi(x) = G(S—rx)exp(—A(tf, S—ifx)), teR.
ThenG, € C1(K,) and

d
276100 ==2(b(x), [)G1(x) = (a() f. VG (x)). (2.4)

Proof. DefineV;(x) = A(tf, S—;yx). We first computeV G, as
VG (x) =e " OV(G o S_)(x) — G (x)VVi(x). (2.5)
Moreover, by (S.6)

(@()f, V(G o S—i) () = (a(x) f, Da(S—1y %) VG (Six))
= (Dx(S_iyx)a(x) £, VG(S_iyx))

d
= (a(S—ifx) f, VG(S—ifx)) = =27 G(S=p), (2.6)

where (S.5) was used to show the last equality. Observing that

1
Vi(x) = A(tf, S,,fx)=2/(b(S,ufx),f)du, (2.7)
0
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we see from (S.6) and (2.5) thay € C1(K,). Applying calculations (2.6) tdV (x) := (b(x), f) instead ofG (x),
we get

t

(@) f, VVi(x)) = 2/(a(x)f, V(W o S_yup)(x)) du
0

)

0

= =2{(b(S—is2), ) = (b, £)}

d
:—EVt(x)—i—Z(b(x),f). (2.8)

Combining (2.5) with (2.6) and (2.8) yields

W (S_uf)du

SIS

d d
(a(x) f,VGi(x)) = —e_v’(X)EG(S—th) - Gt(x){—a Vi(x) +2(b(x), f)}

d
=~ Gi(x) ~ 2(b(x), £)Gy(x).

This proves (2.4). O

Proof of Theorem 2.1. Firstly, we recall a fundamental fact on reversibility which is implied by Theorem 2.3 of
Fukushima and Stroock [6]. Namely,e M1(K,) is a reversible distribution of the G-S diffusion if and only if
the following symmetry holds:

/(LF)(x)G(x)v(dx) = / F(x)(LG)(x)v(dx), F,G e C?*Ky).

(All integrals are taken ovek;.) Note that this particularly implies that for aye C%(Ky), J(LF)(x)v(dx)=0.
Since direct computation shows that

(LF)(x)G(x) + F(x)(LG)(x) — (L(FG))(x) = —(a(x)VF (x), VG (x)), (2.9)
the above symmetry is equivalent to that
— /(LF)(x)G(x)v(dx) = % /(a(x)VF(x), VG(x))v(dx) (2.10)

holds for anyF, G € C%(K4). Moreover, by approximation, this can teplaced by the condition that (2.10) holds
forany F € C%(K4) andG € C1(K,).

Once (2.4) has been established, the following argument is standard (cf. [11], proof of Theorem 2.1). We shall
describe it, using the same notation as in Lemma 2.1. TakiegC (K ;) and f € R¢~1 arbitrarily and integrating
both sides of (2.4) with respect tovae M1(Ky), we have

1 1(d
/(b(x),f)Gt(x)v(dx)—i—E/(a(x)f, VGt(x))v(dx)z—E/EGt(x)v(dx).

Define F(x) = (x, f) to get a more suggesting form

/(LF)(x)G,(x)v(dx)+%/(a(x)VF(x),VG,(x))v(dx):—%%/G,(x)v(dx). (2.11)
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HereG, € C1(K,) by Lemma 2.1. Ifv is a reversible distribution of the G-S diffusion, then the left-hand side of
(2.11) vanishes by (2.10) and in particula6G 1 (x)v(dx) = [ Go(x)v(dx) or

/G(s_fx)exp(—A(f, S_fx))u(dx)=/c(x)u(dx).
This shows the quasi-invariant property with desired density (2.1). Converselis fjuasi-invariant undefs s}
with cocycle A, then the right-hand side of (2.11) vanishes. Thus (2.10) holds foGaayC1(K,) and F such
that F(x) = (x, f) for somef € R¢~1. Furthermore, an inductive argument shows that (2.10) can extend to all
functionsF(x) = (x, f) - (x, f®) with fD, ..., f® e R¥~1 Indeed, assuming that botl &) F; and F»
satisfy (2.10) for anys € C1(K4), we have by (2.9)

/(L(Fle))(X)G(X)v(dx)
=/(LFl)(x)Fz(x)G(x)V(dx)+/Fl(x)(LFz)(X)G(X)V(dx)Jr/(a(X)VFl(x),VFz(x))G(x)v(dx)
= —%/(a(x)VFl(x), V(F2G)(x))v(dx) — %/(a(x)VFz(x), V(F1G)(x))v(dx)

+/(a(x)VF1(x), V F2(x))G (x)v(dx)
=—%/Fz(x)(a(x)VFl(x),VG(x))v(dx)— %/Fl(x)(a(x)VFz(x),VG(x))v(dx)

1
-3 / (a0 V(FLF) (), VG (0))v(dx).

Therefore, it follows from linearity of (2.10) irF that (2.10) holds true for all polynomialg(x). A suitable
approximation procedure (see e.g. Appendix 73] concludes that (2.10) are valid for afl € C2(K). This
implies reversibility ofv. O

In the next lemma, assuming existence and certain stppoperty, we give a concrete expression of quasi-
invariant distributions und€iS ¢} in terms of continuous cocyclé.

Lemma 2.2. (i) Let A : R?~1 x K; — R be continuous. Suppose that there existseaM1(K ) which is quasi-
invariant under{S s} with cocycleA. If v(Kj) =1, then

Z(x):= / eASdfydfy_1 <oo forallxe KT, (2.12)
Rd-1
and
v(dx) = Z(x) " tm(dx). (2.13)

Moreover, for anyf € R?~1 andx € K
A(f,x)=l0gZ(x) — log Z(Ssx). (2.14)
(i) If H is a continuous function on such that

Z .= / e "W (dx) < o0,

+
K;
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thenv(dx) := e~ ™ m(dx)/Z is a unique distribution ork ; which is quasi-invariant undefs} with cocycle
A(f.x)=H(x) — H(Sfx).

Proof. (i) For any nonnegative Borel functiafi on K |, we have the following equalities by the quasi-invariance
supposed.

/ F(S_x)v(dx) = / F(x)eAvdx), feRIL (2.15)

Kj Kj

By integrating both sides with respect & - - - df;_1 over R?~1, using Fubini’s theorem and then (S.8), and
noting thatv(K }) = 1, (2.15) becomes

/F(y)m(dy):/F(x)Z(x)v(dx). (2.16)
K K}

Since the left-hand side is finite féf(x) = deta(x), Z(x) < oo, v-a.e. Therefore, (2.16) proves (2.13). Especially,
the support supp of v coincides withK ;. It is obvious from (S.4) that (2.12) is implied by (2.14). This equality is
shown by virtue of cocycle identities (2.2) which hold for ale K; and f, g € R~ since supp = Kz and A is
continuous. Indeed, for anye K and f e R¢~1

Z(Sx) = / NS gy dggy = e AU f eAEH gy dgg_g = e M Z (),
Rd-1 Rd-1
which proves (2.14).
(ii) Let F be an arbitrary nonnegative Borel function KQL. By the last equality of (S.8)

/ F(x)e Tmdx) = / F(Spx)e 1S mdx), feRI™?

Kj Kj
or equivalently

/ F(x)v(dx) = / F(Spx)eTI=HE™ydx),  feRIL

K K
ReplacingF by F o S_r, we get (2.15) withA(f, x) = H (x) — H(Srx). This shows the required quasi-invariance
property. SinceH is continuous, uniqueness follows from the assertion (i).

For A given by (2.3), we shall verify the condition(X;]) = 1 under the irreducibility assumption of
Theorem 1.1. Set = (1, ...,d}. DefineB = (1;;); je; and decompose(x), f) into

(), f)=(E.BfY+ &), f).  f=(f.... fa1) R, (2.17)
wheref = (f1, ..., fa—1,0) € R? and¢ (x) = (¢1(x), . .., La(x))’ is defined by

) =xi(yi—(x.9), iel
Givené, n € R?, definegy € RY by

&n= (&1, ..., E&na)".
Observe that for alt € K, andé € R¢

(Cx), &)= (x, &) — (X, ¥)(X.§), (2.18)
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and that

[(£(x), &) < w(@)(%, IE]), (2.19)
wherew(y) = maxly; — y;l:i.j € I} and §] = (&l ... 5" € RY. Define§ = (é1.....&-1)" € R by
&=&—-&(G=1,...,d—1).Itis obvious that

g=@) +&1 £cR (2.20)

Lemma 2.3. Suppose thaB = (;;);, je; is irreducible in the same sense as in Theotkm If v € M1(Ky) is
quasi-invariant unde¢ S} with cocycle4 given by(2.3), thenv(kK}) = 1.

Proof. Let f € R¢~1 be given. Pup = w(y). Define
1 1
F(x)= exp|:—2(l+ 0) /(Su?, Frdu — 2/(;(sufx), f)du]. (2.21)
0 0
Then by (2.3) and (2.17)
1
F(x) expA(f, x) = exp[—Z/(W, A+p)f— Bf)du].
0
So the quasi-invariance (2.1) implies that
1
/exp|:—2/(%, A+p)f - Bf)du]v(dx)

Ky 0

1 1
=/exp|:—2(l+ p)/<m,f> du —2/(1,‘(Sufx),f)du:|v(dx). (2.22)
K4 0 0
Since (2.22) holds true if is replaced byf + C1=: & with C € R being arbitrary, we have also by (2.20)
1
/exp[—zf(@, 1+ p)& — BE)du]v(dx)
K4 0
1 1
:/exp[—2(1+ p)/(S_—uéx,&)du — 2/(;(s_u§x),g)du}(dx) (2.23)
Ka 0 0
for any& € R?. In the case wherg >0 (i € I), it follows from (2.19) ang = w(y) that
1 1
/exp[—zf(%, 1+ p)& — BE)du]v(dx) g/exp[—Z/(STéx,E)du]v(dx). (2.24)
K 0 Ky 0
Letk € I be arbitrary and pwt® = (8;3)ic; € R%. For anyc > 0, consideg = c¢n with

o ) tn
71=/e_(1+p)’e’36(k) di and % =3%"—B"
0 =0 n.



K. Handa / Ann. I. H. Poincaré — PR 40 (2004) 569-597 579

Then(1+ p)y — By = e® and hence (2.24) becomes

1

1
/exp|:—2c/(5uc;7x)k du:|v(dx) < /exp|:—2c/(Suc,7x, n)du:|v(dx). (2.25)
0

K4 Ky 0

Here the irreducibility ofB implies thatn; > 0 for eachi € I. Therefore the right-hand side of (2.25) tends to
0 asc — oo, while it follows from (S.1) that the left-hand side is bounded from belowy € K;: x; = 0}).
Consequentlyy; > 0, v-a.s. Sincek € I is arbitrary,v(K;]) = 1 as required. O

Before proving Theorem 1.1, we show a simple lemma. Defing = (a;; (x)); jer, Wherea;; (x) are the same
asin (1.3)evenfor=dorj=d.

Lemma2.4. Leté e R? andg € R?~1. Then

d

—(Sigx, &)

r =(a(x)g. &) (2.26)

t=0

Proof. Noting that the left-hand side of (2.26) dorot change its value after replacemémnt- £ + C1, we use
(S.5) to get

d —
E(&ngg)

d v v .
:E(Stgxsg) :(a(x)gsg):(gva(x)g)
t

=0 =0

Hence (2.26) is easily shown by observing thatc)é); = (@(x)&);, i €{1,...,d —1}. O

Proof of Theorem 1.1. First suppose that there exists a reversible distributienM1(K ;) of the G-S diffusion.
According to remark (iv) afteTheorem 1.1, we assume also tlia 3. By Theorem 2.1v is quasi-invariant
under{Ss} with cocycle A given by (2.3). Since we have both irreducibility Bf= (4;;) and continuity ofA,
Lemmas 2.2(i) and 2.3 together imply that there exists a fundiion) (:=log Z(x)) on K:[ such that

t
H(x) — H(Sipx) = Atf, x) = 2/(b(sufx), f)du, feR4?
0
and therefore

. feR{L (2.27)
=0

1ld
(b, )= 5 S

We claim that is sufficiently smooth ok | . Fixing y € K arbitrarily, consider

1

G(f):=H(Syy)=H(y) - 2/(b(5ufy), f)du
0

as a function off € RY~1. ThenG is smooth by (2.17) and (S.5). By (S.4) the equatian,)y = x defines
a map¥: K} — R?~L. This is nothing but the inverse &¢~15 f > S;y € K, whose Jacobian matrix is
nondegenerate and smooth by (S.5). Hence the inverse function theorem implies smoottinasd atcordingly
of the compositiold =G o V.

Consequently (2.27) yields symmetry of the form
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1 92 92 ps ) 1 92 92 ps )
= uf+rgX = tf+ugX
o 20tdu " i—0u—0  201du R P
d _
:d—(b(S;fx),g) . figeRIL (2.28)
t =0

Making use of (2.17), (2.18), and (2.26), one can compute the most right-hand side of (2.28) as

—d (S Bg)
= ‘_x’
A

d,e— o .
- E((Slfxa }’)(Sth, g))

d —
_ S , o
+dt< fX,V8)

d
7 (b(Sirx), 8)

t=0 =0 t=0 t=0
=(a()f, Bg)+(a) f,ys)—(ax) f,y)x & — & miamf, )
=(ae) f, Bg)+(a) f,y (g — (% 1) — & »)ax) f, 8). (2.29)

Noting that this quantity does not change the value when replatiagd g by f+Cil=:£ andg + Col=:79
respectively and that the last term of (2.29) is symmetri¢ @ndg, we see that (2.28) is equivalent to

J1(0O[E, 1= (@(0)&, By) + (@), y(n — (¥, 1)) = J1(0)[n, &1, & neR™ (2.30)

Moreover, rewriting the bilinear formiz (x) in terms ofg by using Lemma A.1 in Appendix A and then removing
a symmetric part, we obtain from (2.30)

L)€, 0] = J(x)[n, &1, &, peRY, (2.31)

where

J2(x)[&, ] =(x, B(§ — (x.§)1)(Bn — (x, Bp)1)) — (x, B(§ — (X, E)L))x, ¥ (n — (x.m)1))
=<x,ﬁ£<Bn))— (x,&)(x, B(BY)) — (X, BE)( x,Bn>+ (x,B)(x,&)(x, Bn)

— (%, B&) — (. B)(X, ) (¢, ym) — (X, ¥)(X, m). (2.32)
Lete® | k e I be the unit vectors in the proof of Lemma 2.3 and consider equalities
L)[e?, eV = h)[eY, e, xek], i jel (2.33)

Clearly
J(x)[e?, eV =x;B:(Be); — x;(%, B - Be)) — x; 8; (X, BeV)
+ xi (%, BY(X, BeW) — x; (B — (%, B))x;(vj — (¥, 7). (2.349)

Given distinct, j € I, take an arbitrary € I \ {i, j}. This is possible becauge> 3. We regard (2.33) as identities
between polynomials with — 1 independent variabl€s;: [ € I,[ # k}. Note that

EB) =B+ Y x(Bi— B (2.35)
lel\{k}
and similarly
(¥, BeV) = (BeV) + > x((BeV) — (BeV)) =i+ Y xhj — hij)
lel\{k} leI\{k}

Comparing coefficients of a monomiglin (2.33), we get

Bi(hij —iij) =0, i#jFk.

This makes it possible to definge = 2i;; (i # j) for eachj € I, and (1.5) has been derived. It follows from the
irreducibility of (A;);, jes thatg := (g1, ..., qa) € RYL.
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For eacht = (&1, ..., &) € RY, B is now of the form
(Bg)l:(<pvg>_$l)(qtl>/21 iel,

wherep = (p1,..., pa)' € K is given byp; = (g, 1)"1¢; (i € I). Therefore, the previous expression (2.32) of
Jo(x)[&, ] is simplified as follows.

J2(0)[E, 1] =—(x, B(§ — (%,6)1)(n — (x,n)1))(g.1)/2

— (%, B(& — (X, )1))%, ¥ (n — (¥, m1)). (2.36)
By ignoring the first term in the right-hand side of (2.36) which is symmetric, (2.31) becomes
T3, 1= (%, B(& — (£, £)L))(%, ¥y (n — (£, m1)) = Ja()[n. &1, & neR™ (2.37)
Consider again the special cases:
J3(0)[eD, eV = J3x0) eV, e, xeKk], i, jel. (2.38)

By the assumption thag® # C1 for any C, there exists & € I such thatly :={i € I: B; # B} has at least two
distinct elements. We fix suchkaand take, j € I \ {k} such that # j. Observing that

J30)[e?, eV =xi(B: — (%, B))xj(vj — (¥, »))
and using (2.35), one can rewrite (2.38) as

xz'(ﬁi—ﬁk— Z xl(,Bl_,Bk)>xj<Vj_Vk_ Z XI(VI—J/k)>

lel\{k} Lel\{k}
=X (ﬂj —B— > xBi- ﬂk))x/' (Vi —w— Y, u- )/k)>,
lel\{k} Lel\{k}

which is also regarded as identities between polynomialsaivithl independent variablds;: [ € I, # k}. So by
comparing coefficients of;x;, one reduces to

Bi =BV —v)=Bj =BV —vi), iF#k#]. (2.39)
This implies the existence of a constahsuch that
Yi—ve=C(Bi —Br), i€lUik} (2.40)

The restriction € I U {k} in (2.40) can be removed as follows.il# I; U {k}, theni # k and 8; = B¢. On the
other hand, taking € I arbitrarily, we see that j, k are mutually distinct and hence by (2.39)

Bi =B —vi) =Bi —B)(vj — ) =0,
which shows that

Yi— v =0=C(Bi — Br)-
Consequently

Vi—CBi=y—CpBr, i€l

Thusy = CB + C’'1 holds withC” = y; — CB. This proves (1.6).

It remains to show that, under the conditions (1.5) and ({16J) is a reversible distribution of the G-S diffusion.
(As mentioned in the paragraph above Theorem 1.1, thguemiess of stationary distribution is due to Shiga.)
According to these conditions; (x)’s are of the form

1
bi(x) = 5(q,- — (g, Dx;))+Cxi(Bi — (x,B)), i=1,...,d—1 (2.41)
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By virtue of Theorem 2.1, Lemmas 2.2 and 2.3, it suffices to verify an equality

(b)), f)= 2 d H(Syx)| ., xekf, feR? (2.42)
or =

b(x) = —:—zla(x)VH(x), xek;, (2.43)
where

d
Hx)=>)"qipi ogi ™) + ({g. B7) + 2C) log(&, g+
i=1
Indeed,H satisfies the assumption of Lemma 2.2(ii), andvé@x) := e~ #®m(dx)/Z is quasi-invariant under
{Sr} with cocycleH (x) — H(Srx), which equalsA(f, x) given by (2.3) because of (2.42). Therefore, it follows
from Theorem 2.1 that is a reversible distribution of the G-S diffusion, and the coincidencevath (1.7) is seen
from the formula for det (x) given in Proposition A.1 of Appendix A.
Since by direct calculation

C10H _ ¢ qa  (g.BH+2C
20x;  2Bixi  2Baxa 2(x, B~

(2.43) is verified straightforwardly. (Alternatively, computéx) ~1b(x) by using (2.41) and (A.6) in Appendix A
to deduce the right-hand side of (2.44).) The proof of Theorem 1.1 is completed.

Bt =g, (2.44)

3. Analytic aspects of reversible distributions

In this section, we discuss some aspects of reversible distributions obtained in Theorem 1.1, namely
d
_ p—-1_
Pg 4.c(dx) = (¥, g1~ @-P 1>‘ZC—1]_[x;1"3’ Ydx1---dxg-1/Zpq.c (3.1)

where =817 ... 80 Y. g=(q1.....q2) € Rﬁ, C e R, andZg 4 c is the normalization constant. In case
of B =1, P14.c = P1,4,0 coincides with the Dirichlet distributio®, with parametey:

Dy(dx) = X Yax1 - dxy_a, (3.2)
1—1 1F(‘Il i=1

wherel'(-) stands for the gamma function. We see from (3.1) and (3.2)Rhgtc and D gp-t are equivalent and
that the denS|ty function satisfies the following uniform bound

Iog ﬂqC( )‘ )+2C+1\lr<na<>§1|logﬁ,-|, xek]. (3.3)
The integral
T'(g.B7%) / (0 Y201
Zggc—r—— = [ (%, gY@ D .1(dx) (3.4)
"L T @™ af

L
can be thought of as expectation with respect to a distribution of mean of a Dirichlet process, finite dimensional laws
of which are Dirichlet distributions. Such processasédbeen studied in many contexts. (See [2] and references
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therein.) Among analytic methods available, we employ quasi-invarianég; db study the right-hand side of
(3.4). Note that quasi-invariance of the Dirichlet process follows from that of the corresponding gamma process
found in [26] and [27]. See also [10]. We will use the following notation.

loge = (logas, ..., logag), o= (oq,...,aq) € RL,

expE = (e, ..., e, &= (&,... &) eR%

Lemma3.1. Leta € RY anda € R. Then

/ (%, 0" Yy=@D=2p, (dx) = ¢l4:109%) / (%, @) Dy (dx). (3.5)
K Ki
In particular, the normalizatiorZg 4 o for C = 0 is expressed as

(g, B7Y)

2Bg 0=~ -
M T

. - 1
— ¢l4B7"10gp) /(i,ﬁ)Dqﬂ_l(dx)zeW 1!'09'9)7(‘1("}8_)1). (3.6)

+
Kq

Proof. We give a self-contained proof by applying Theorem 2.1 to the case wherd andb;(x) = (¢; —
(g, L)xi)/2, i €{1,...,d —1}. In this case, the associated transformations, denoté@kmke the form

ef’xi ef’xi .
(SFx)i = ST e T = Fonh ie{l,....d—1} (3.7)
(see (A.24) for the proof), and this allows one to compute
1
A(f,x) =2 / (b(Sypx), f)du =g, 1)((p, f) —log(x,exp/)), (3:8)
0

wherep = (¢, 1)~ 1q. By the last half of Theorem 1.1 and Theorem 2.1 vtk 1 togetherD, = Py 4 o is quasi-

invariant undel{S}} with cocycle given by (3.8). Hence, putti§g= loge € R? and defining € R?~1 in the same
way as in Section 2, we have

f(;z,a*)*(‘blHDq(dx)

+
LY

= /(Siéx,ot)m’l)"')‘Dq(dx): /()E,oc)<q’l>+)‘eA(§’x)Dq(dx)

+ +
Kq K,

—l1:8) / (%, @) TV exp{—(g, 1) log(x, exp&) | Dy (dx) = e!4109%) / (X, @) Dy (dx),
Ky Kj
proving (3.5). In the above, the first equality follows from (3.7), while the third equality uses (3.8) and the relation
(2.20).
It is easily seen from (3.8) combined with an obvious equality

d d

_/eA(“f’X)Dq(dx) =—/Dq(dx) =0
u=0 dMK+
d

u=0

du
.
Kd
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holding for eachf € R~ that
f(<p, f)— (%, f))Dq(dx) =0,
Ky

and hence
/ (£.6)D,(dx) = (p.E). &eRY. (3.9)
Ky

So lettingar = 1in (3.5) yields
/ (%, a )y~ 41D, (dx) = 01099 (p o) = @19 (g @) /(g, 1). (3.10)
Ky

Replacingg ande by ¢~ and B, respectively, we get the last equality in (3.6). The first equality is shown by
combining (3.4) with (3.5). We complete the proof

Since (3.6) can be rewritten as
~1_ F(g.87Y) (q.87H (i)%ﬂil
Miir@s™ (@1 3 ’

Bi
we have a more explicit form afg , 0(dx):

ZB,4.0

F((‘Ialg_]')) <q,l3_1> ( ﬁ_l)_@_ﬂ—l)ﬁ(ﬁ)q"ﬁ"_ldxl...dxd_l (3.11)
[ T@s™ (g, D(E,B7 i \Bi X1 Xd—1Xd '

As the final topic, we discuss logarithmic Sobolev inequalities for reversible G-S diffusions. In view of
Theorem 1.1, this means that we restrict ourselves to the case where

1
bi(x) = E(qi — (g, Dx;))+Cxi(Bi — (x,B)), ie€fl,....d—1}. (3.12)

In addition, Pg 4 ¢ is the corresponding reversible distribution. In the W-F diffusions case (i.e., the case where
B = constl), this kind of inequalities was shown to hold by Stannat [25]. In order to describe such inequalities, we
need a bilinear form

1
& (F.G) = 3 /(aﬂ(x)VF(x), VG(x))Pgq.cldx), F,GeC®Ky), (3.13)
K

where C®(Ky) = {F € C(Ky): F(x) = G(x)(Vx € Ky) forsomeG € C®(R?~1)}. In the above and in what
follows, we use the notation?(x) instead ofa(x) to emphasize the dependency §nSince bilinear forms
associated witla® (x) are calculated as (see Lemma A.1 in Appendix A)

@ f o) =xB(f— & HL)(— (% 8)1), fgeR,

it follows from (3.3) that the formgf’c and(‘,‘;ﬂ_1 o are equivalentin the sense that

1€y o(FoF) <€) c(F.F) <cfly s ((F.F). FeC™(Kq) (3.14)
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for some positive finite constants = c¢1(B8, ¢, C) andcz = c2(8, ¢, C). Because the forr(vS‘;Lﬂ,1 o C®(Ky)) is
closable ian(Dqﬂ—l) (see [25, p. 670])(8£C, C>®(Ky)) is closable inLZ(P,g,q,c) and the closures of these two
forms have a common domain. The logarithmic Sobalegualities obtained by Stannat is as follows.
Theorem 3.1 (Stannat, [25], Theorem 2.8)etq € Ri. ForanyF € C*®°(Ky),
320
/ F(0)?10g(F (6)%) Dg (dx) < —— 1 o(F. F) + | Fll 2(py > 109 (I F I3 ) (3.15)

min{g1,...,q4} T
K

By virtue of a uniform bound (3.3), we can generalize this result.

Proposition 3.2. Let 8, q € Ri and C € R. Then there exists a finite constant c¢(B, ¢, C) such that for any
F eC*®(Ky)

f F(x)210g(F (X)) Pg g,c(dx) < ¢ 8 .(F, F) + 1 Fll 2(p, , 2 100(IF | 125, , o 2): (3.16)
Ky

Proof. By the argument in the proof of Lemma (3.13) in [12] (or by Property 4.6 in [8]), one can see from (3.3)
existence of a finite constard = c3(8, ¢, C) such that

2 2
fF(x)zlog(Lz)Pﬂ,q,c(dx)<c3/F(x)zlog(Lz)Dqﬂ_l(dx) (3.17)

F|;2 F|;2
J 1l 27y J 1z, o

wheneverF e LZ(Dqﬂ—l) = L2(P,g,q,c). The inequality (3.16) follows from (3.14) and (3.15)0
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Appendix A. Miscellanious calculationsfor the diffusion matrix

This appendix is devoted to show basic facts of the diffusion mat¢i® of L, some of which are already
used in the preceding sections. It (B1, ..., Ba) € Ri For eachx € K4, consider ad — 1) x (d — 1)-matrix
a(x) = (a;j (x))1gi, j<d-1 and ad x d-matrixa(x) = (aij (xX))1<i, j<d> where

ajj(x) = 8 Bixi + xix; (X, B) — Bi — Bj). (A1)

As before, setf = (fi, ..., fa_1,0) eR4 for f =(f1,..., fs—1) € R9"L andletl ={1,...,d}. Bilinear forms
associated with these matrices are given in the following lemma.

LemmaA.l. For eachx € K,

(ax)f.8) =, B(f — (%, N)1) (¢ — (x.8)1)), f.geRI™? (A.2)
and
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(@&, n)=(x, B&n) — (¥, BEV(X, n) — (X, E)(X, Bn) + (X, B)(X, &) (X, n)
= (%, B(§ — (%, £))(n — (¥, ML), & meR’ (A3)

Proof. In view of (a(x) f, g) = (a x)f,8), itis sufficient to show (A.3) only. This is easily done by considering
the case wherg = e, p = &) (i, j € I). (Heree® = (§;0)¢_,, i =1,...,d.) We omit the details. O

Itis not difficult to see from Lemma A.1 that(x) is degenerate if; = 0 for some € I and thati(x) is always
degenerate. The following proposition shows these facts explicitly.

Proposition A.1.
deta(x) = (B1x1) - - - (Baxa) (X, 7). (A.4)

Proof. Since det:(x) is continuous inx, we can assume thate Kj, i.e.,x; > 0 for all i € I. For notational
simplicity, seth =d — 1 andb = (x, §8). First observe that

Brx1+x2(b—2B1) xixa(b—Pr1—P2) - x1xa(b— P1— By)
deta(x) = | “2¥1b—P2—B1)  Poxo+x3(b—=2B2) - x2xa(b—P2— P
xnx1(b — Bu — B1)  xux2(b— Py —B2) -+ Puxn +x2(b—2B,)
rn+®—-281) b—p1—P2 - b—p1—Bu-1 b—p1— B
b—pa—p1 r2+b-28) - b— B2~ Bu-1 b— B2 — B
= xf« o e
b— IBn—l - ,31 b— ,Bn—l - ,32 cee Tpm1+ (D — 2,8n—l) b— ,Bn—l - ,Bn
b_,Bn_,Bl b_,Bn_,BZ b_,Bn_,anl ”n+(b_2,3n)
wherer; = B; /x;. Let f@ be theith row vector in the above. Subtragt —b from f® (i=n,n—1,...,2) to get
ri+®—-281) b—p1—P2 -+ b—P1—Bu-1 b—P1—Bu
deta(x) —r1+d1 r2+di d1 di
5 I ,.
e .x'% dp_2 dp_2 T rn—1+dp_2 dp_2
dpn_1 dpn_1 coe —=rp—1+dy—1 Tn +dp—1

whered; = g; — Bi+1. Denoting byg/) the jth column vector in the above, subtragt 1 from g\ (j =
n,n—1,...,2)toget

ri+®—-281) -rn+di do e dp—2 dn—1
—ri+dx ri4+r2 —r2 e 0 0
deta(x) . d> —ro ro+rzy --- 0 0
x]z_ .. .x'% ---------------------------------------------------------- : .
dn—2 0 0 rp—2+"r-1  —Ip-1
dpn_1 0 0 —Trn-1 p—1+7rn
Let ) be theith row vector in the above. Add® + --- + h =D toh® (i =3,...,n). Then
ri+®-28) —ri+dr d2 -+ dp-2 dp-1
—ri+d1 ri+rz —-rz -+ 0 0
deta(x) _ | —r1+(B1—fa) r1 rg - 0 0
_x]2_ .. ._xr% .....................................................
—r1+ (81— Bn-1) ri 0 - 1 —ma

—r1+(BL— Bn) r1 o - 0 In
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b—pB1—Bs —ri+di do - dyp dy_1
r2+d ri+rp, —rp -+ 0 0
— B1— B3 r1 rg - 0 0
B1— Bn-1 r1 0 Fnei —Fn_1
B1— Bn rn 0 0 o
b—B1—B2  —ri+di dy - dpp dy1
1+di/r2 1+ri/rp =1 --- 0 0
=rp---ry (ﬂl_ﬂ3)/r3 }’1/}’3 1 O 0
(Br—Bu-1)/tn-1 11/Tn-1 o ... 1 1
(BL— Bu)rn r1/rn o ... 0 1

Puttings; = (81 — Bx)/rr andt, =r1/ry, we have

b—p1—p2 —ri+di do - dy_2 dy
1+ s 1+ -1 .- 0 0
deta(x) 53 3 1 .. 0 0
X2(Box2) -+ (BuXn) |+ o
Sn—1 Ih—1 0 cee 1 -1
Sn Iy 0 0 1
b—p1—p2 —n+di dz dp—2 dn_1
n n
1+> s 1+) 6 0 0 0
k=2 k=2
n n
=l Y s Youo o1 0 o |
k=3 k=3
Sp—1+ Sn th—1+1t, 0 1 0
Sn Iy 0 0 1

which can be reduced to @22 determinant

(b—pB1—B2) — Z (Z Sk) di-1 (—r1+dy)— Z (Z tk) di—1

1=3 \k=l 1=3 \k=I
n n
1+ s 1435
k=2 k=2
Further calculations are messy and left to readers.

Proposition A.2. Letx € K. Then forf, g e RI~1

) _<£,ﬂ—1><A 1{(z>_<ﬁ-l,f> ”< )_<ﬂ—1,g> }>
Y A A LW =T A
N

1 . £ o
) ()22
&8 x) " xa a

g
x
g
x
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where

()= (i)
ANENEN]

In particular, a(x) "1 =: (@ (x))1<i, j<a—1 iS given by

POV S SR TE L "6
xifi | xaa \Bi Ba)\Bi Ba) & B '
Corollary A.1. (i)
-1 2 d—1
(a@)f. f) = (2d) 12I2d(x,ﬂz)(f, ., feRT (A7)
(i) DefineU: K — R by
d 1
_ iB;
U =Y xiptlog —
* ;xﬁ e
Then
32U . .
8x,~3xj:a](x)’ xeKy,i,jefl,....d—1}. (A.8)

Proof. (i) To avoid triviality, we assume € K and putM := max(x;~g;,~1: i € I}. Because of

1 1
E(a(X)_lg, g) = sup {(f, 8 — E(a(X)f, f)} (A.9)
feRd—l

it suffices to show that

(a(x)'g.g) <2dM (g.8), geRI™
Expanding the right-hand side of (A.5), we see without difficulty

(@) tg, g)(x. B7H

<EBHEL BT+ Zxdﬁdl{ TN S
|
(x,B )(1’ N
d

<2z, g7 hE g + ZW $)%,

N (& B7hH1, §>2}

de

and hence

(a)g.g)/2< & B8 +xa 1ML B2
<M(g,8)+M(d—1)(g,8)=dM(g, ).

(i) (A.8) is immediate from
0U _logeif ) logxaByh) ( 1

1
il = = )iogix, 7Y,
0%, 2 Ba 2 ,Bd) oax.A7. o

Proof of Proposition A.2. Although one can check the validity of (A.5) and (A.6) directly, we shall give a sketch
of their derivation. Leg € R~ andx € K, be given. Note that the supremum in (A.9) is attained at a (x) 1g.
By LemmaA.l

(@) f, f) = (x, H2E,B) — 2(x, HE, BS) + (%, BF2).
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Considering

1

G(f)=(f8)— E(a(x)f, f).
observe that the maximizgr of G must satisfy

0=gi — (x, IE B)x; + (X, Bf)xi + (x, HHBixi — Bi fixi = 8 G(f), i=1....d—1 (A.10)
Computing); 3;G(f) and ) ; 9;G(f)/B:i, one can derive the following equalities which together determine
A= (x, f) andB := (x, B f) in terms ofx, B andg.

{(Ba— (x.B))xa}A+xaB=(13), (A.11a)

{(&,B7HE B +xa}A— (&, B HB=(B12). (A.11b)
On the other hand, (A.10) implies thit= a(x) g is given by

g (x,B) B .
== - A+—+A, i=1,...,d-1 A.12
xipi B B ’ (A12)

Using (A.11a), (A.11b) and (A.12), one can compute the quadratic fotm) ~1g, g) = (£, g) to obtain (A.5) with
g in place of f. Remaining calculations are straightforward and omitted.

fi

Appendix B. Transformation group associated with the diffusion matrix
In this appendix, we construct a transformation grésip: f € R9~1} on K4 such that

d
—Supx=a(Su)fo f =, fa-0) € RI7L x e Ky (A.13)

and show the properties (S.1)—(S.8) used in Section 2. Firstly, extgrd as a bounded smooth function BA—1
such that

i (x) = 8ijBixi +xix;((x,B) — Bi — Bj), dist(x, Kg) <1,
K 10, dist(x, Kg) > 2,
wherex = (x4, ..., Xd—1,%g)" With x4 =1—x1 — --- — x4_1. Thena(x) = (a;j (x))1<i, j<a—1 Satisfies Lipschitz
condition
la@) f—a £, <Clflalx =yl x.y, feR¥T (A.14)

for some constar@, where|| f||1 = | f1| + - - - + | fa—1] etc. Therefore, giverf € R?~! andx € R?~1, one can get
a unique global solutio (r) € R?~1(r € R) of an ODE

%X(t) =a(X(0)f, XO)=x (A.15)

by a standard successive approximatiéi (1) — X () (n — oo), where
t
XM () =x +/a(x("*1> ®)fds, XO@ =x.
0
Moreover, setting”’ = (d — 1) sul|a;; (x)|: x e R¥~1, 1<, j <d — 1}, we have

IX® [, <lxlla+ClIfllalel, 1€R. (A.16)
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Let T/ denote the flow associated with (A.15)-fx = X (¢). For eachx € K, defineSyx = Tlfx. The nextlemma
shows not only thaf; : K, — K, but also (S.1) and (S.3).

LemmaA.2. Let f e R¥1 andx € K,. Suppose thak (1) = (X1(7), ..., X4—1(1))’ solves(A.15). Put X,4(r) =
1—(X1(t)+---+ X4-1@1)). ThenX (t) € K; (t € R), and foranyi € I,

() X;(t)=0, t e Rwhenever; =0, and
(i) X;(®) >0, t e Rwhenever; > 0.

Proof. Because of an obvious relatidff,x = T,’fx, we only have to consider> 0 without any loss of generality.
Let x € K;. In order to show thaX (r) € K, for all t > 0, assume that :=inf{r > 0: X () ¢ K4} < 00. By
continuity, we can find also, > f¢ such that digtX (¢), K4) < 1 for all 0< ¢ < r1. On the other hand, it follows
from the definition ofrg that there existp € I and¢’ € (fo, 1) such thatX,,(f) = 0 andX;,(t') < 0. In the case
whereig e {1, ...,d — 1}, for anyz € [1o, 1]
Ld—1
Xio(t)=Xio(t0)+/Zaioj(x(s))fjds
to Jj=1
! d—1
=/xio(s> Y AXi &) (X ), B) = Bio— B)) fi + Bio fio } ds-
i) Jj=1

With the help of (A.16), we get

t
| Xio ()] <C1/|Xio(s)|(l+s)2ds, t € [to, 11]
fo

for some constanC;. So by Gronwall’s inequality (see e.g. [3], Appendix X),(r) = 0, ¢ € [to, 1], which
contradicts to thak;, (") < 0. In the case ofp = d, for anyr € [1g, t1]

d-1 L d-1
Xa() =1-)_ Xi(t) = Xa(to) —f > aii(X () f ds
i=1 1o i,j=1
! d—1 L
= —/Xd(S)ZXj(S)((X(S),ﬂ)—ﬂd —Bj)fjds.
o j=1

Again by (A.16) and Gronwall's inequalityX,(z) = 0, t € [fg, 1], which contradicts to tha¥ (') < O.
Consequentlyg cannot be finite, or equivalently; () € K, for all r > 0.

Clearly, the assertion (i) can be proved in the same way as above, and it remains to prove (ii). First consider the
casewhere Xi <d—1andx; >0.Letr =inf{r >0: X;(t) =0} >0.ThenforO<z <t

t

d-1
llog X; (1)| < |logx;| + / Xi(9) Y @i (X)) f

0 j=1

ds

Lrd—1

= |logx;| +/ ZXJ'(S)((W,M—,BI' —Bj)fi+Bifi

o =1

ds.
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Note that the most right-hand side cannot diverge for any finite valuebafcause of (A.16). This proves that

T = 00. Thus X;(¢z) > 0 for all # > 0. One can handle the remaining case where- 0 by just the same way,
observing that

t

d-1
llogX4(1)| < |logxyl +/ —Xq(s)t Z aij (X (9)) fi|ds
0 ij=1
T1d—1 L
=|Iogxd|+/ DX ) (X (). B)— Ba — Bj) fi|ds
o /=1

aslong aX,(s) > 0foralls €[0,7]. O

The property (S.7) follows from the next lemma.

LemmaA.3. LetC andC’ be as in(A.14) and (A.16), respectively. For any, y e R~ 1, f, g e Rl andr e R

1T = TEylln < (Ix — yllz + 'L f — gllfe])eClmintS luligla}, (A.17)

Proof. As before, we may assume that 0. It is seen from (A.14) and (A.16) that

t
VT % — Tex < /||a(Tufx)f —a(Tx)g] du
0

t
<C’||f—g||1t+C||g||1/IITL;fx—TngIlldu.
0

By Gronwall's inequality

t

1T/ x = TExa < C') f — gnl(r + / uC|g||peCl8let—u du).

(A.18)
0

Also,

t
ITx = TEyll < v — ylla +/||a(T;’x>g — a(Ty)g|) du
0

t
< IIX—y||1+C||g||1/ ITéx — Tyl du.
0

Again by Gronwall’'s inequality

t

IT8x = Tyl < llx — y||1<1+ / C|lgllzeCl8lat=w) du>.
0

Combining (A.18) with (A.19), one obtains

(A.19)
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t

IIT,fx —TEyla < (Ilx =yl +C'll f — gllar) <1+ / CllgllpeClglt=m du)
0
=(lx=yla+C'lIf = g||1t)ec”g“1’.
Exchanging the roll off andg yields
||T,'fx —TEyllL < (Ix =yl + C'lI f — gllar)eCI/ It
The above two inequalities together prove (A.17)1

Now we introduce a map which will play @ role in the argument below. Lettiig: K — R be the function
givenin Corollary A.1(ii), define : K} — R?~1 by & = VU. (S.2) and (S.6) are implied by the next proposition.

Proposition A.3. Let f, g e R~1 andr e R.
() T/ x =TJ)x (x eRIL u e R). In particular, S;7x = T/ x (x € Ky).
(i) 7/ x is continuously differentiable in € R¢~1 and its Jacobian matrixD, (7, x) satisfies
D(T/ x)a(x) =a(Tx), xeKy. (A.20)
(iii) 7/ (1) =T/ "%, xekq. (A.21)

Proof. The first assertion follows immediately from
d
ETuf,x =ta(T)x) f = a(T}x)(tf).

Sincethx is given as the strong limit of successive approximations
t
Tt(n)x =x +/a(TS("7l)x)fds, T(O)(t) =x,
0

itis not difficult to show thatr’ x = lim 7,""x is continuously differentiable in € R¢~1. To show (A.20), we may
assumer € K because of continuity. By (A.8) the Jacobian matbi (x) of ¢ atx € K is given by

Do(x)=a(x)"t, xekK]. (A.22)

We claim that® is an injection. This is because for anyy € Kj

() = @), x—y)= | (DP(y+ulx —y)x—y),x —y)du

(a(y +ux—y) " —y),x—y)du

O\»—\ o\u—\

which vanishes only when = y. Furthermore, observe from (A.22) that for any Kj

d fon
To(1/x) = D ()

, aT/x)f=f

y=T7 x
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or cD(T,fx) =tf + @(x). This proves not only thap is a surjection but also that
T/ x=07(tf +®()), xekj. (A.23)

Differentiating this equality with respect toe K I, we get

Dy(T/ x)=D(®~ DO (x) = (Dcp(y)|y:thx)*la(x)*l =a(T/ x)a(x)™,

1

L
proving (A.20). Lastly, (A.21) is easily seen from (A.23) fore Kj. It extends to alk € K; by continuity. We
complete the proof of Proposition A.3.00

The property (S.5) is shown by &position A.3(iii). Indeed, putting') = (8x;){_1 for eachj =1,...,d - 1,
we have by (A.21)

a(Sfx)i_i(S, )i _i(s 5 (S x))
afj = du fHueDX)i u:o_ du we WO f i o
d 0) ;
= (T S0),| = (a(S0e); =ay(Syx).
u u=0

The following result contains (S.4).
Proposition A.4. Letx, y € K be arbitrary. SebD=(0,...,0) e RI-1,

(i) There exists a uniqug € R?~1 such thaty = Syx.
(i) Foranyf e RI1\ {0}, dist(S;sx, 9K4) — 0ast — oo, whered K is the boundary ok, (in R9~1).

Proof. (i) First we show the uniqueness. Suppose that = S,x for somef, g € R4~1, Then by the property
(S.2)h := f — g satisfiesS,x = x. This together with (S.5) just seen above implies that

1
0= (Shx, 1) — (. h) = / (a(S . h)dt.
0

Since by LemmaA.Z;,x € Kj foranyx € K, a(S;,x) is strictly positive definite and so we conclude that 0
or f = g. Next we shall findf € R?~1 such thatS;x = y. Define f = ®(y) — ®(x) € R?~1. It then follows from

(A.23) that
Spx = Tlfx = ®_1(f + @ (x)) = ¢_1(q§()’)) =y
as required.
(ii) Observe from (S.5), which has been proved, that
t
(Sifx, )= (x, ) = / (a(Supx) f, f)du.
0
Note that the left-hand side remains bounded-asoco. As for the right-hand side, by (A.7)

mini<i<d Bi

(@(Surx) f, f) = >

12'20[(5”)6): (f. /)= =0.

Therefore ming; < (S;sx); — 0 ast — oo, provided thatf # 0. This proves the second assertion
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Our final task is to prove (S.8), which concerns-dinite measure
m(dx) =dx1---dxq_1/ deta(x)

on Kj. In fact, it will be shown thain(dx) is a Haar measure with respect to multiplicationsl@j‘n described as
follows. As was seen in the proof of Proposition A®; K — R?~1 is surjective. So it is possible to define

xxy=0 Hd)+ (), x,yek].
LemmaA 4. (i) There exists a uniquec K such thatr xe =x =e xx forall x € K.
(i) The inverse element— of x € K (i.e., a uniquey € K} such thatx x y = e = y x x) is given by
=8 _pue=0"H-d ).
(iii) It holds that
(Spe) * (Sge) = Syige and (Spe)* 1 =5_ye.
Proof. The unit element is found ase = S_g(y)y with y € Kj being arbitrary. Indeed, the formulgyx =
@~L(f + & (x)) implied by (A.23) yields
e=0H(-2(y) + D) =210

and hence the above definition of thenultiplication verifies immediately that « e = x = e x x. (This implies
also thatS_ey)y is independent of the choice ofe K} .) Verification of (ii) is straightforward. The assertion (iii)
is shown by observing thatre = @ 71(f + @ (e)) = @7 1(f). O

Example. Consider the case @ = 1. Letx € K and f € R¢~. According to Corollary A.1(ii), we have

d
Ux)= in logx;,

i=1
and so
d-1

@ (x) = VU (x) = (log(xi /xa));_ »

whose inverse admits an explicit form:
fi
e
oY) =—— i=1,....d-1

(@)= S
Therefore, for eache {1,...,d — 1}
efi+|09(xi/xd)

Zéj;iefﬁr'o@](x_//xzz) +1

Srx)i= (@ f+2W)), =

fix:
S B (A.24)

d—1 ¢ '
ijlefij + xq

Using these expressions, one can easily seesthatl/d, ..., 1/d) € Kj and that for eache 1

-1
o .
(x#y)i= —2— and (Y= —

-
Zj:lxjyj Zj:lxj !



K. Handa / Ann. I. H. Poincaré — PR 40 (2004) 569-597 595

Since® is differentiable and its Jacobian matrix (A.22higndegenerate, the inverse function theorem implies
differentiability (and hence measurability) of mappings> x = y andy — y*~1 on Kj.

Proposition A.5. Let F be a nonnegative Borel function dfi] and takex € K arbitrarily. Then it holds that
[ Femandtia= [ Fomay = [ oy (A.25)
Rd-1 K K
and for anyg € R9~1
[ Fsoman = [ Fom@n= [ Foenman. (A.26)
Kj Kj Kj
Proof. The first equality of (A.25) is shown by change of variaBlex = y:

dyy---dyg—
f F(Spx)dfy--dfy 1= / F(y>%= f F(y)m(dy),

R K K
where the last equality uses (S.5). Replacig) by F(y*~1) and lettingx = ¢ (the unit element) in the first
equality of (A.25), we get by Lemma A.4(iii)

/ FO*Ym(dy) = / F((Spey* Y dfy--dfy_y = / F(S_pe)dfy---dfy—s

K+ Ri-1 Ri-1
= [ Fesoan- - diia= [ Foma@n.
Rd-1 KF

Thus the last equality of (A.25) holds. For the proof of the first equality of (A.26), apply (A.25) and (S.2) to show

/F(Sgy)M(dy)= / F(Sg(Sye))dfr---dfa—1= / F(Sgrre)dfi---dfa-1

K Rd-1 Rd-1
- f F(Sre)dfydfa1= / F(m(dy).
Rd-1 K

This implies also the other equality in (A.26). Indeed, takifigs R?~1 such thatx = Sye, we havex * y =
@~1(f +@(y)) = Sry and hence

/ Fx % yym(dy) = / F(Spyym(dy) = / F(»)m(dy).

+ + +
Kq Kq Kq

The proof of Proposition A.5 is completed

According to general theory of Haar measures (see e.qg. [9]), we have uniqueness (up to multiplicative constants
of regular measures oki; which are invariant undeliS}. In fact, as we will see below, the uniqueness is easily
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shown by using the first equality in (A.25). Suppose that a regular Borel meagixgon K | is invariant under
{Sr}. Then for arbitrary nonnegative Borel functiofigx) andG (x) on KT,

/F(Sfx)G(x)n(dx)zfF(x)G(S_fx)n(dx).
Ki K

Integrating both sides with respectdg; - - - df;_1 overR¢=1, we have by Fubini’s theorem and (A.25)

/F(y)m(dy)/G(X)n(dX)=/F(X)n(dX)/G(y)m(dy)-
Ki Ky Ki Ki

This implies that there exists a nonnegative finite constauich that:(E) = ¢ m(E) for every Borel subsef of
K. See the proof of Theorem C (§60) in [9] for more details.
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