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Abstract

Considering trees as simple examples of singular metric spaces, we work out a stochastic calculus for tree-valued processes
We study successively continuous processes and processes with jumps, and define notions of semimartingales and martingale:
We show that martingales of class (D) converge almost surely as time tends to infinity, and prove on some probability spaces
the existence and uniqueness of a martingale of class (D) with a prescribed integrable limit; to this end, we use either a coupling
method or an energy method. This problem is related with tree-valued harmonic maps and with the heat semigroup for tree-
valued maps.
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Résumé

Considérant que les arbres sont des exemples simples d’espaces métriques singuliers, nous développons un calcul stocha
tique pour les processus a valeurs dans les arbres. Nous étudions successivement les processus continus et avec sauts,
définissons les notions de semimartingales et martingales. Nous montrons que les martingales de classe (D) convergent presqt
strement quand le temps tend vers l'infini, et établissons sur certains espaces de probabilité I'existence et I'unicité d’'une mar-
tingale de classe (D) avec limite intégrable fixée ; pour cela, nous utilisons soit une méthode de couplage, soit une méthode
d’énergie. Ce probléme a des liens avec les applications harmoniques a valeurs dans les arbres, et avec le semi-groupe de |
chaleur pour les applications a valeurs dans les arbres.
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1. Introduction

The relationship between manifold-valued harmonic maps and manifold-valued continuous martingales have
been investigated in several works in the two last decades, see for instance [18,19,25,28] for the stochastic con-
struction of harmonic maps. In this type of problem, one considers two maniféldad N. On M, one is given
a second-order differential operatbr or equivalently a diffusionX,; for instance, ifM is Riemannian, one can
consider the Laplace—Beltrami operalgror equivalently the Brownian motioki; on M. Then one can associate
to L the notions of heat semigroup and harmonic functiondfqrand these notions have stochastic counterparts;
for instance, it is well known that a harmonic functisrtransforms the diffusiorkX, into a real local martingale
h(X;). On the other hand, on the second manifdldthe target), one is given a connection (more precisely a
linear connection on the tangent bundléV)); for instance, ifN is Riemannian, one can consider the Levi-Civita
connection. The operatdr acts on functiong : M — R, but the connection enables to also define it on functions
f:M — N, and one obtains a functiohy f : M — T(N) (called the tension field). Then it is again possible to
consider the notions of heat semigroup and harmonic maps; for instance, a smodth¥ap N is harmonic if
Lyh =0 (see [16]). These notions have a stochastic interpretation; the connection enables to consider continuous
martingales invV (see [24,7,10]) which are transformed into submartingales by convex function'sjshdrmonic
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if it transforms the diffusionX, into a martingalé:(X;). This is the stochastic analogue of the analytical property
stating that a harmonic map composed with a convex function is subharmonic. In particular, the Dirichlet problem
or the heat equation with values M are strongly related to the problem of finding a continuous martingalg on

with a prescribed final value. Thus

e the stochastic calculus for the diffusidfy and theN-valued martingales can be applied to the construction
and the properties of harmonic maps and of the heat semigroup; in particular, coupling propeXtiesmef
very useful for this purpose, see for instance [18,19];

e conversely, a functional analytic construction of harmonic maps (such as energy minimisatiorL vidhen
symmetric operator) can be applied to the construction of a family of martingales, see [28].

A basic tool in all these studies is 1td’s stochastic calculus involving smooth (atdé&aginctions.

However, it would be interesting to consider more singular spatesmdN. In particular, an analytical theory
for energy minimising maps has been worked out in [20] (see also [9] for the case of Riemannian polyhedra,
and [15] for another method); a functional analytic approach to the heat semigroup is also given by [31]; it would
be desirable to obtain a stochastic interpretation of these theoriesf Fbe analytical theory requires a harmonic
structure, and the stochastic theory requires a diffusion (a continuous Markov process); the relationship between
these two notions has been extensively studied for a long time (see for instance the link between regular Dirichlet
forms and symmetric Hunt processes in [14]); we will not insist on it and only consider some properties of these
diffusions which will be useful to us, namely their coupling properties; in particular, since this article focusses on
trees, we will study the coupling properties of some classical diffusions on trees.

In this article, we will be mainly concerned by the singularity\ofin the analytical theory, the main assumption
on N is that it is a metric space which is geodesic (the distance between two points is given by the minimal length
of a curve joining these two points) and which has nonpositive (or at least bounded above) curvature in the sense
of Alexandrov; our aim is therefore to construct a theory of martingales and semimartingales on these spaces, and
to explore the links between analytical and probabilistic theories. On a geodesic space, one can consider the notior
of convex functions (which are convex on geodesics parameterised by arc length), so the idea is to use stochastic
calculus for convex rather thar? functions. This point of view is already used on smooth manifolds; a continuous
process is a martingale if (at least locally) any convex function maps it to a submartingale, so extending this
definition to singular geodesic spaces is tempting. However, there are some difficulties with too general spaces,
so here, we only consider a simple type of such spaces, namely trees. Multidimensional generalisations such as
Riemannian polyhedra would of course be interesting, but are postponed to future work. In a large part of this
article, we will focus on a toy example of tree, namely a &tawith ¢ raysR; and a common origir.

It appears that martingales of class (DNrconverge almost surely as in the real case, and the basic problem for
the interpretation of harmonic maps is the existence and uniqueness of a martingalétina prescribed limit. In
particular, given a diffusioX; on a spacé/, we first consider limits of typg(X1) or g(X-) for a first exit timer;
then we are able to consider general functionals of the diffusion. Our main result will be to prove the existence and
unigueness of such a martingale under two different frameworks (coupling method, energy method), and to relate it
to analytical problems (heat semigroup, energy minimisation). The difference between the two frameworks lies in
the assumptions on the -valued diffusion; either it will satisfy some coupling properties, or it will be symmetric
and associated to a regular Dirichlet form. The advantage of the coupling method (which is also used in [31]) is
that it also yields smoothness properties on the heat semigroup and that it does not require the symmetry of the
diffusion; its disadvantage is that the coupling property is not always easy to check; on the other hand, the energy
method has been successfully applied in [20,9]. As a particular framework, we will consider the case where both
M andN are trees.

Another problem is to extend this theory to noncontinuous Markov processgs(atich are associated to non
local operatord.) and non continuous martingales & This has been considered in [26] wh&nis smooth; in
this case, the connection (which is a local object) is not sufficient, and one needs a global object, namely a notion
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M space with operator L h harmonic N geodesic space
X, diffusion Y; = h(X;) martingale

Fig. 1. Stochastic interpretation of harmonic maps.

of barycentre. Fortunately, it is known that barycentres can be constructed on geodesic spaces with nonpositive
curvature, so in particular on trees. Thus we want to use them and deduce a notion of martingale with jumps. The
definitions which were used in [26] in the smooth case cannot be handled in the case of trees, so we suggest a nev
definition (which probably is also useful in the smooth case). Then we can extend the results of the continuous case
to this setting.

Let us outline the contents of this article. We begin with some geometric preliminaries such as the construc-
tion and properties of barycentres in Section 2. Then we work out in Section 3 a stochastic calaulasYh
(involving semimartingales), and define a notion of continuous martingale; we will see that we also have a notion
of quasimartingale. The existence of a martingale with prescribed final value is proved either from the coupling
properties of the diffusiolX; in Section 4 (Theorem 4.1.4 and Corollary 4.1.13), or by energy minimisation (when
X, is a symmetric diffusion) in Section 5 (Theorems 5.2.8 and 5.3.1). The techniques which are used Tor
are extended to a more general class of trees in Section 6 (Theorems 6.5.2 and 6.5.6).

In order to apply the results of Section 4, we will give in Section 7 examples of veesd of diffusions
on them satisfying the coupling property. For instancélfifis itself a star, we will see that the Walsh process
introduced in [34] satisfies it. We will also consider some other examples such as the Evans process [13] and the
Brownian snake [22].

Finally, we define in Section 8 a notion of martingale with jumps, and extend the above theory to this case
(Theorems 8.2.5 and 8.2.9).

2. Geometric preliminaries

Let us consider the metric spag¥, §) whereN = Y* is the star with¥ rays (for¢ > 3) ands is the tree distance
(Fig. 2). More precisely, we first consider the disjoint uniorf ®ays(R;, §;), each of them being isometric R ;
then we glue their origins into a single poiat and we consider the distance

8;(A, B) if A, BeR;,
5:(0,A)+5;(0,B) ifAcR;,BeR,fori#j.

Such a space can be embedded in an Euclidean space by chéodsfiegent unit vectorg;, and by putting

8(A,B) = {

Y= JRi. Ri={resr>0}. (2.0.1)

Different choices for; lead to different isometric embeddings of the same metric spAqgisometric” means
that the length of a curve itit is the same when computed for the metridfor the Euclidean metric). One can
for instance embell* in R?, but we will generally embed it ilR¢ and choosée;; 1 < i < ¢) as the canonical basis
of R¢; this will be called the standard embeddingMfinto R¢; then the distance ilv¢ is equal to the distance of
R* induced by the normy| = 3" |y;|; in particular,|y| is the distance of to O, and the coordinate; of y is |y|

if yisin R;, and O otherwise. We pWt; = R; \ {O}.

2.1. Geodesics and convex functions

The singular manifoldv = Y* is an example of a metric space which is a geodesic space; this means that locally
(and here also globally), the distance between two poini$ f the length of an arc with minimal length joining
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Ry

Rs

Fig. 2. The spac&>s.

these two points; this arc is called a geodesic. Here, all these arcs are partg @f th&)/2 infinite geodesics

R; UR;j, i # j. Moreover,N has nonpositive curvature in the sense of Alexandrov (see for instance [9]; this
property is crucial for our study, but we will not need the precise definition of curvature). A property which is more
specific to trees is that the connected subset¥ afre also its convex subsets (a subset is convex if the geodesic
arc linking two points of the subset is included in the subset). Convex functions can be defined similarly to smooth
manifolds.

Definition 2.1.1. A real function f defined onn is said to be convex if it is convex on the geodesic&vofvhen
they are parameterised by arc length.

Consider the restrictiorf; :r — f(re;) of f to the rayR;; it is not difficult to check thatf is convex if it is
continuous, and the function are convex ofR ; and satisfy

[0+ f{(0) =0 fori#j. (2.1.2)

Notice in particular that all but at most one of the functighsire non decreasing.
Example 2.1.3.The functiony — |y|, and more generally the distance functidiisy, .) are convex.
Example 2.1.4.The distance to a convex subset, for instance the component fugction;, is convex.

Example 2.1.5.The ¢ Busemann functiong; associated t®; are convex; these functions are defined (see Fig. 3)
by

(5(y,r€i)—r)=zy]'—yi~ (2.1.6)
J#i
Thus the absolute value ¢f(y) is |y, and its sign is negative oR*, positive on the other rays.

vi(y) =

lim
r—>0o00

2.2. Barycentre

We now introduce the notion of barycentre which replaces the notion of expectation on the real line (see also [32]
for more general spaces). LEtbe a square integrable variable (this means|thpis square integrable, or equiva-
lently thats(yo, Y) is square integrable for any). The functiony i §2(y, z) is strictly convex onV (this again
means that it is strictly convex on the geodesics), so

oy (y) =E82(y,Y)/2

is also strictly convex. It tends tgoo at infinity and is therefore minimal at a unique point.
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O R
Y yd 2
Ry l S R,
| .
71(y) 0

Fig. 3. The Busemann function on Y3.

(0,0,1)

(1,0,0) (0,1,0)

Fig. 4. Inverse images o?i* and O for the projection/T :Ri — Y3 restricted to the triangléz1 + z2 +z3=1}.

Definition 2.2.1.The barycentre of a square integrablevalued variable’ is defined as
B[Y] = argmingy.

The barycentre is computed by solving the variational problem; (if) = ¢y (r ¢;), then its derivative can be
written with the Busemann functiop of (2.1.6) as

¢;(r) =Ey;(Y) +r.
Thus, if there exists asuch thatfy; (Y) < 0, then
BlY]=—-Eyi(Y)e;.

On the other hand, iEy; (Y) > 0 for anyi, theng; is non decreasing for ariysoB[Y] = O. By using the standard
embeddingV c R and the linear extensions (2.1.6) of the functignso R¢, we deduce that

B[Y]=I(E[Y]) (2.2.2)
with

MR} - Y*

i M@ =) %@ e

One can compare this result with the case of smooth Riemannian manifolds; if one uses an isometric embedding
into a Euclidean space, then the barycentre is approximately (for variables with small support) the orthogonal
projection of the expectation on the manifold. Here, the funciiocan also be viewed as a projection. The inverse
image ofO is a coneCyp, and each of thé connected componen& of Ri \ Co is projected onto a different
ray R* (see Fig. 4).

A consequence of (2.2.2) is that the barycentre can be extended to integrable variables.

An equivalent way of characterising the barycentre (which will be useful for more general trees) is as follows. If
yo € N, thenN \ {yo} has two or¢ connected components which are denotegpyor « in {—, +} or {1, ..., ¢}.
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The derivative ayo of a function f in the direction ofyg is denoted by, f (yo). Consider (as in Section 7 of [31])
the oriented distance function

I/f()’ga )’)=5()’O, y)(l{yeyg} _1{y¢_yg}) (223)
These functions are the functionsg;, 1<i < £ if yo= 0, and the functions=(y; (y) — ¥;(y0)) if yo e R;.

Proposition 2.2.4.1f Y is a square integrable variable, thé@{Y ] = yq if and only if
Ey(y5,Y) <0 (2.2.5)
for all the connected component§ of N \ {yo}.

Proof. The derivatives oby at yo are

dae Py (yo) = —Ev (3g, ¥),
andB[Y] = yp if and only if all these derivatives are nonnegative

In particular, we have
B[Y]=0 < ViEy(Y)>0. (2.2.6)

2.3. Properties of the barycentre

The barycentre satisfies the Jensen inequality
f(BIY]) <Ef(Y) (2.3.1)

for convex Lipschitz functiong” (and also for non-Lipschitz functions jf(Y) is integrable); this inequality has
been proved for more general metric spaces with nonpositive curvature in [9] (Proposition 12:8)=fdt, we
will actually prove a generalised form (see Proposition 2.3.5 below).

Remark 2.3.2.Contrary to the Euclidean case, the barycentre is not characterised by the Jensen inequality; the set
of points yg satisfying f (yo) < Ef(Y) for any convex Lipschitz functiorf is called the convex barycentre Bf

see [11]; the Jensen inequality says that the convex barycentre contains the barycentre, but it generally contain othe
points. For instance, if is uniformly distributed orf|y| < 1} in Y3, its barycentre i) and its convex barycentre is

{ly] <1/6}. On smooth manifolds also, the convex barycentre is not a singleton; however, an important difference
is in its size. For small enough smooth manifolds, the diameter of the convex barycentre is dominated by the third
order moment of the law, see [2]; this means that

8(z1, z2) < CIinfES4(y, Y) (2.3.3)
y

for ¢ = 3 and for any;; andz in the convex barycentre af. On our spaceV = Y¢, notice that ifz; andz are in
the convex barycentre, then

8(y,zi) <E8(y,Y)

for anyy, becausé(y, .) is convex. Thus (2.3.3) holds witi = 2 andg = 1. Actually, it is not possible to obtain
a higher value fog; for instance, ifY is uniformly distributed or{|y| < €} in Y3, then its convex barycentre is
{|y] < &/6}, so the left and right sides of (2.3.3) are respectively of osdmnds?.

Remark 2.3.4.The functionsy; are convex, so we see from (2.2.6) tliais in the convex barycentre if and only

if it is the barycentre; actually, it can be seen that the convex barycentre is a closed convex sbhsatathe
barycentre is the point of this subset which is the closest to the origin (this property is particular to our baby tree
and cannot be extended to other trees).
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Proposition 2.3.5.Let Y be a square integrable variable and Igtbe a Lipschitz functiory which is convex on
all the geodesics containifg[Y]. Then(2.3.1)holds true.

Proof. Put yo = B[Y]. The inequality (2.3.1) is evident if is minimal atyg. Otherwise, there is exactly one
connected componeng of N \ {yo} such that the derivative, f(yo) is negative; for all the other connected

componen'@g, we have
dp.f (¥0) = —0a f (¥0)-

This inequality is indeed (2.1.2) ifo = O, and follows easily from the convexity gf on R; if ypisin R. If y is
in yg, the fact thatf is convex on the artyo, y] implies that

f) = fo) + e f (Y0)8(yo, ¥)
andifyisin anotheryg, we have

F) = fo)+9sf(0)d(yo, y) = f(yo) — du f (y0) (o, ).
Thus, in both cases,

FO) = f(yo) + 8o f )Y (G, ¥),
wherey was defined in (2.2.3). We put= Y, take the expectation and use (2.2.5) to conclude.

Proposition 2.3.5 is a semi-localised version of Jensen'’s inequality (we use the word “semi-localised” because
the function satisfies a global condition on a set of geodesics which can be called “IdBgt’|atlf the barycentre
is O, there is no gain with respect to the classical Jensen inequality, but othefugsenly required to be convex
on(¢—1) ofthe£(¢ —1)/2 geodesics. As an example, the functignsy , .) of (2.2.3) are convex on the geodesics
intersectingyg, and concave on the geodesics intersecting its complement, so we have
BlY]eys = v(y5.BIY]) <Ey(y5.Y), (2.3.6a)
B[Y1¢y5 = v(v5. BIY]) > Ey (x5, V). (2.3.6b)

In particular, by takingyg = B[Y], we find again (2.2.5), so the semi-localised Jensen inequality is a characterisa-
tion of the barycentre (this will be in particular useful for the definition of martingales with jumps).

Proposition 2.3.7.For any square integrable variablésand Z, one hass(B[Y], B[Z]) < ES(Y, Z).

Proof. Supposeyo = B[Y] # B[Z], let y§ be the connected component 8f\ {yo} containingB[Z]. Then the
relations (2.3.6) imply that
8(B[Y1, B[Z]) = v (v§.BIZ]) — ¥ (v§. BIY]) <E¥(y§.2Z2) —Ey ()5, Y) <ES(Y, 2)
because/ (yg, .) is nonexpanding. O
Proposition 2.3.7 also holds for more general spaces with nonpositive curvature, see [32]; it says that the

barycentre is a nonexpanding operator. Like (2.2.2), this property can be used to extend barycentres to integrable
variables. Then the result of Proposition 2.3.5 is also extended to integrable variables.

3. Stochastic calculus on a star

We now want to study stochastic calculus Sn= Y*. To this end, we suppose given a probability spsce
with a filtration (F;). The expression “cadlag process” will designate a right continuous process with left limits.
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We assume thaR is a Lusin space; in particular, conditional probabilities exist. We refer to [8] for the classical
real stochastic calculus. Let us first give an exampl& efalued process which can be considered as the standard
diffusion onN.

Example 3.0.1.Given ¢ parameterg; > 0 such tha) | p; = 1, the Walsh process (or spidex) constructed in

[34,4] is the continuous Markov process which is a standard Brownian motion on eaéh aag which, when
hitting 0, immediately quits it and chooses one of the rays according to the probalpitiisusP°[X; € R;]

is p; for ¢t > 0. In particular, the isotropic Walsh process corresponds; te 1/¢. This process can be defined
rigorously by using excursion theory, from its semigroup, or from its Dirichlet form. It has been studied in the last
years because its filtration has interesting properties; in particular, it is not the filtration of a Euclidean Brownian
motion (see [33]).

3.1. Semimartingales

Definition 3.1.1. An adapted cadlag proce¥son N is said to be a semimartingale ff(Y;) is a semimartingale
for any real convex functiorf.

In smooth manifolds, continuous semimartingales are defined by meaft fofctions, and they are trans-
formed into real semimartingales by (not necessatif) convex functions (see [12]); however, non constant
convex functions may not exist, so one generally needs a localisation in order to characterise manifold-valued
semimartingales. Here, convex functions are numerous enough.

By taking into account the fact tha¥ is piecewise smooth and by using (3.1.3), we can replace in Defini-
tion 3.1.1 convex functions by continuous functiofisvhich areC2 on each ray (but this notion will have no sense
on general trees).

Proposition 3.1.2.By using the standard embedding/éf= Y¢ in R, an adapted cadlag procesds with values
in N is a semimartingale if and only if its componetifsare real semimartingales for any

Proof. The component functions are convex, so it is clear that the condition is necessary. Conversele ifeal
semimartingales and if is a convex function, theif(¥;) can be written as

fX) =[O+ (fi(Y) — f(0) (3.1.3)
with f; convex, sof (Y;) is a semimartingale. O
In the continuous case, we only need a single funcfion = |y| to test the semimartingale property.

Proposition 3.1.4.An adapted continuous procegswith values inN is a semimartingale if and only j¥;| is a
real semimartingale.

This result can be deduced from [30]. We give a proof for completeness and because we use it several times. It
is actually sufficient to apply the following lemmatg = |Y;| andV, =Y} .

Lemma 3.1.5LetU; be areal continuous semimartingale, and¥ebe a continuous nonnegative adapted process
such thadV =dU on{V > 0}; this means thaV; — V, = U, — Uy as soon a9/, > Ofors <r <t. ThenV; isa
semimartingale which can be written as

t

1
Vi=Vo+ / Liv,>0dUs + EL’ (3.1.6)
0



640 J. Picard / Ann. |. H. Poincaré — PR 41 (2005) 631-683

for a nondecreasing proceds which is the local time o¥ at 0.

Proof. Lete > 0, letzy =0 and consider the sequences of stopping times

nw=inf{r >1,_;; V, =0},

=
=1 Ve 2 g}

7, =inf{r

which increase to infinity. The process is a semimartingale, si is a semimartingale on the intervalg _,, ]
with dV = dU. Thus Tanaka’s formula yields

1
d(V V&)=L= dU + 5 dL* (3.1.7)

on these time intervals, for a local tinlg. On the time interval$z;, 7;], thenV < e soV v e =¢ is again a
semimartingale and (3.1.7) again holds with® = 0. Thus, by pasting the intervals, we deduce tHat ¢ is a
semimartingale on the whole time interval satisfying

t

1
Vive= V0V8+/1{VY>€}dUS + ELf
0

By taking the limit ass | 0, the stochastic integral converges to the integral of (3.1.6), so we dedudg talsb
converges to a nondecreasing process, and the proof is comptete.

In our case, (3.1.6) can be written as
t
Y = Yé+/1R;(Ys)d|Ys| - %L;’,
0
whereL;' is the local time aD on R?; if f is a convex function, therf(Y;) can be written from (3.1.3) as
t
10 =00+ Y [ Lypq i)+ 5 3 FOL (3.1.8)
i i

0

wheredf; (Y!) can be written with the classical Ité—Tanaka formula. Subsequently, we will also consider the total
local timeL, =" Li.

It is not difficult to check that one can replace in Proposition 3.1.4 the fungtien|y| by another one such as
a Busemann function, or the distance to a fixed point.

Remark 3.1.9.1f Y; is not continuous but cadlag, the semimartingale propertyofis no more sufficient; it is
indeed not difficult to construct a deterministic pathsuch thaty,| = r but y, has not finite variation (let the ray
change at each time=1/n).

Example 3.1.10A Walsh process (Example 3.0.1) is a continuous semimartingale |sihcis a reflected Brown-
ian motion, and its local time a? satisfies

Li=piL,. (3.1.11)



J. Picard / Ann. |. H. Poincaré — PR 41 (2005) 631-683 641

3.2. Quasimartingales

As soon as a metric space is endowed with a notion of barycentre, one can also consider conditional barycentres
(recall that conditional probabilities exist ga) and define a notion of quasimartingale similarly to the real case
(see quasimartingales up to infinity of [8]).

Definition 3.2.1.An integrable adapted proce@s; 0 < ¢ < 0o) with values inN is said to be a quasimartingale if

SUPE Y " 8(Yy,. BIY,, |7, 1) < oo, (3.2.2)
k

where the supremum is taken over all the subdivisi@fsof [0, o], and wherer,, = O.

One can replac® by another point (or an integrable variable). Definition 3.2.1 is also equivalent to the finiteness
of (3.2.2) for subdivisions of compact intervalsRf., and the boundedness 3% | in L1 (the boundedness ih!
follows from (3.2.2) by considering the subdivisiofts ¢, co}).

Proposition 3.2.3.If ¥, is an adapted process iN = Y¢, then the three following conditions are equivalent.

1. The proces¥; is a quasimartingale irnv.
2. The procesyg'(Y;) is a real quasimartingale for any Lipschitz convex real functfon
3. The components; are real quasimartingales.

Proof. LetY; be a quasimartingale anflbe a convex Lipschitz function. We deduce from the Jensen inequality
(2.3.1) that

FX) = E[f Y ) | Fo] < F (V) — F By | Fyl) < C8(Yy, Bl 1 F]).
One can replace the left-hand side by its positive part and deduce from (3.2.2) that

supd E(f(¥y) —E[f (¥Yy,,) | F,])" < oo.
k
On the other hand,
Y E(f(Yy) —E[f Yy | F]) = Ef (Yo) — £(0),
k
SO

SUDZE}f(Ytk) - E[f(Ytk+1) |~7:lk]| < oo.
k

Thus f(Y;) is a quasimartingale, and the first condition of the propositi_on implies the second one. The fact that
the second condition implies the third one is trivial. Finally, we assumethate quasimartingales; the processes
y; (Y;) are quasimartingales, and

8(Y’k’ BlYsy | }—’k]) = miax(yi (B[Ytk+l | ]:tk]) - Vi(Ytk))
< max(E[y; (Vi) | Fo ] = i (Vi)

S Z|E[yi(yfk+1) | .7-—”] - Vi(Ytk)|»

where we have used (2.3.1) in the second line. We deduce (3.2 B)jsa quasimartingale oN. O
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In particular, cadlag quasimartingales are semimartingales. In the continuous case, by applying the result of [30],
it is actually sufficient to suppose th@dt | is a quasimartingale.

3.3. Continuous martingales

Our aim is now to define a notion of continuous martingal@&/ie= Y¢ (cadlag martingales will be considered
in Section 8). We first define the class™ as in [33]; it consists of the nonnegative local submarting&jeshe
nondecreasing part of which increases only{Bn= 0}. This implies that/ 1;y-q, dY is a local martingale. Now
consider a continuous real semimartinggleit can be decomposed as

13
1
V=Yoot [ Letdvo+ 3@f - L)
0
for the local timesL;* at 0 on the two ray®&%., and

t

1
Y=Y+ / Iy (Y,) dY, + éL,i.
0

Theny; is a local martingale if and only if* are inX* and L = L, . If now Y, is N-valued, one can ask for
the same properties, so thgtis in X+ andLi = L (in particularY; is a local submartingale). These processes
have been called spider martingales in [35]. For instance, the Walsh process is a spider martingale if and only if it
is isotropic (recall (3.1.11)).

However, this notion suffers an important limitation with respect to the problem of finding a martingale with
prescribed final value. If for instanch is trivial and F is a bounded variable oN = Y2 such that

P[FeR]]1>0, P[FeR;]>0, P[FeR3]=0, (3.3.1)
then there is no bounded spider martingale converging.t@®ne should indeed havg® = 0 (because it is a
bounded nonnegative submartingale converging to OL,?S@ 0; thus the conditior.; = L; implies that all the
local times are 0, so the process cannot quitvhen it has hit it; such a process cannot satisfy (3.3.1).

Let us give another annoying property of spider martingales; Theorem 6.1 of [33] says that for a Brownian
filtration, one has

dLYAdL?AdLE=0 (332
for any N-valued process such th#f is in ¥+. Thus if ¥, is a spider martingale for a Brownian filtration, then

the conditionZ! = L; again implies that the local times are 0 and thatannot quitO.

Our aim is therefore to find another notion of continuous martingale. As in the smooth case (see [7] or The-
orem 4.39 of [10]), martingales will be defined by means of convex functions; moreover, we only define local
martingales (and as in the manifold-valued case they are simply called martingales).

Definition 3.3.3.A continuous adapted proceEsin N is said to be a martingale jf(Y;) is a local submartingale
for any Lipschitz convex functiorf.

In the real valued case, this definition corresponds to the notion of local martingale. On the other hand, following
another terminology used for real processes (Definition VI.20 of [8]), we sayrthatof class (D) if the family
of variables|Y |, for t finite stopping time, is uniformly integrable. Théh is a martingale of class (D) if (Y;)
is a submartingale of class (D) for any Lipschitz convex functforin this caseY, has almost surely a limi¥y
in N (because the componerits are submartingales of class (D) and therefore have limits) faiig) should be
a submartingale on the compact time intefialoo].
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Proposition 3.3.4.Let Y; be a continuous adapted processNn The following conditions are equivalent.

1. The proces¥; is a martingale.

2. The processeg (Y;) are local submartingaleévherey; are the Busemann functions (#.1.6))

3. The componentg/ are in the classE'* (local nonnegative submartingales, the finite variation parts of which
increase only oY’ = 0}), and the local time<.; and total local timeL, = Y L! satisfy

dLi/dL; <1/2. (3.3.5)

Proof. Itis clear that the first condition implies the second one. Let us prove that the second condition implies the
third one. Ify; (Y;) are local submartingales, th&pis in particular a semimartingale, and (3.1.8) fpiis written
as

t t
. 1. 1 .
0 J#i g J#i
These processes should be local submartingales for\4 deduce that
t t
/1R;(Ys)d)/i(Ys) = (A2 — Lj=i)) / 1R_;(Ys)dij
0 0
are local submartingales for dlland j, so the integrals of the right-hand side are actually local martingales; this

means thaY;' is in the classE*. Moreover, the finite variation part ¢f (Y;) should be non decreasing ¢n = 0},
o)

> dL] —dL}=dL, —2dL; >0

J#i
and (3.3.5) holds. The only thing which has still to be proved is that the third condition of the proposition implies the
first one. Let us write (3.1.8) for a convex Lipschitz functipnand let us prove that(Y;) is a local submartingale.
The propertyY’ € X+ and the convexity off; implies that the stochastic integrals are local submartingales, so it
is sufficient to check tha} fi’(O)L;' is nondecreasing; this is evident if the valuesf6f0) are nonnegative, and if
one of them, say (0), is negative, therf/(0) > | f{(0)| for i # 1 (see (2.1.2)), so

Y fOdLi> |f£<0>|<2 dL} - dL}) >0
i#1
from (3.3.5). O

Remark 3.3.6.Look at Picture 4 about barycentres (foe 3), and notice that the vect@d L: /dL,) is necessarily

in the triangle{zy + z2 + z3 = 1} of Ri. Then (3.3.5) says that for martingales, this vector should l&jnFor a
Brownian filtration, (3.3.2) says that it is necessarily on the boundary of the triangle, so for Brownian martingales,
it can only take three values.

Example 3.3.7 Consider a continuous local martingale on a geodesicRsayR>, which is isometric tdR; it is a

N-valued martingale. In this case, one ligds= L? andL! = 0 fori > 3; in particular, a martingale for a Brownian
filtration does not necessarily stop@t(contrary to spider martingales).

Example 3.3.8.The spider martingales of [35] are martingales; the propeity L{ easily implies (3.3.5).
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Example 3.3.9.From (3.1.11), a Walsh process is a martingale if and on}y; ik 1/2 for anyi (no ray should
have a probability greater than2).

As it is the case for smooth manifolds (Theorem 4.43 of [10]), the class of martingales is stable with respect to
uniform convergence in probability.

Proposition 3.3.10.LetY;" be a sequence of continuo¥svalued martingales and léf; be a continuous process
such that

lim sups (Y, Y;) =0
m LT

in probability for anyT. ThenY; is a martingale.

Proof. Itis sufficient to prove the martingale property for the procgsstopped at the first time at whigli;| > C,

for C > 0. This stopped process is the limit of the procesééstopped at A t,, wherer, is the first time at

which |Y]*| > 2C. Thus we are reduced to prove the proposition for uniformly bounded processes. In this case, the
submartingale property of (¥;") in Definition 3.3.3 is easily transferred #(Y;). O

Proposition 3.3.11.f ¥, and Z, are continuousV-valued martingales, then the distanbe = §(Y;, Z;) is a local
submartingale.

Proof. It is sufficient to prove thaD; Vv ¢ is a local submartingale for any> 0. Let 1o = 0 and consider the
sequence of stopping times

terr=inf{t > 1 8(Ye,, Y1) vV 8(Zy,, Z1) > ¢/5)

which tends to infinity. We want to prove th& v ¢ is a local submartingale on each time interfjad= [z, v r1].
If Dy, <e&/2,thenD, <eonl; soD, Ve =¢ is constant. Otherwise, let be the midpoint on the arc linking;,
andZ,, . ThenY; andZ; do not crossA on I, so

D =68(A,Y) +68(A, Zy).

The function§(A, y) is convex, saS(A, Y;) andd§(A, Z;) are local submartingales, ard} is therefore a local
submartingale ot. This completes the proof.O

Corollary 3.3.12.If Y and Z are continuous martingales of claf®) such thatV, = Z.,, thenY, = Z, for anyz.

This property immediately follows from Proposition 3.3.11 siligds a nonnegative submartingale of class (D)
converging to 0. It is called the nonconfluence property. This is the uniqueness to the problem of constructing a
martingale with prescribed limit.

Corollary 3.3.13.Let (¥;") be a sequence of continuous martingales of c{2§swith limits Y/, and suppose that
Y converges in.1 to a variableY,,. Then there exists a continuous proc&ssvith limit Y., such that

lim sup &(Y/,Y;)=0 (3.3.14)
" 0gr<oo

in probability, andY; is a martingale of clasfD).

Proof. It follows from Proposition 3.3.11 that(Y;*, Y;*) are submartingales of class (D). In particular,

1
P[ sup (Y. Y")>C]< ZES(YL. YD)
0<1<00 C
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convergesto 0 ag, n — oo, so(Y;") converges in the sense of (3.3.14) to a continuous pragelsf is a convex
Lipschitz function, therg f (¥;*); 0 < ¢ < o0) is a submartingale, and this property is transferred) by means
of

S Y) <E[8(YL, Yoo) | ).

This means that; is a martingale of class (D).O

Corollary 3.3.13 means that the set of variables which are limits of martingales of class (D) is closed in the
spaceLl(N) of integrableN-valued variables. The aim of subsequent sections is to find conditions ensuring that
this set is the whole spade (V). Before considering this question, let us give some remarks compasirvajued
martingales with the real and the manifold-valued cases.

Remark 3.3.15.If Y., is integrable, we can consider its conditional barycenBigs,|F;]. On Y¢, contrary to
the Euclidean case, this is generally not a martingale. Let us give an examplg; letX,; where X, is the
isotropic Walsh process (Example 3.0.1) wk = O, and letr be the first time at whichX;| > 1. On{r < 7},
the conditional law ofX; given F; is

((=DIX; | +D/e if X, eR;,
A—1X0)/¢ otherwise.
After some calculation, we can deduce that

P[X: =e; Ifz]={

20— x! +2—¢

e; |if Xj (=2
B[X. | F]= ¢ ! !
(0]

> 20-1)°

; =2
if1X:] < 5575

This is not a martingale; when it quits the poifit it visits for some time only one ray, so that no more than one
local time can increase and this is in contradiction with (3.3.5). On the other hand, it is clear that the martingale of
class (D) converging t&; is X;a¢.

Remark 3.3.16.Remark 3.3.15 is not surprising since the situation is similar for smooth manifolds. Let us now
notice a more surprising fact. On small enough Riemannian manifolds, one can check that a continuous semi-
martingale(Y;; 0 <t < 1) is a martingale if and only if

lim > 8(Yy. BlYyy | F 1) =0
k
in probability as the mesh of the subdivision) of [0, 1] tends to 0 (Theorem 4.5 of [26]); actually, ¥f is a
martingale with bounded quadratic variation, this expression converges to'qQliemma 5.5 of [26]). Here, there
are martingales iiv* which do not satisfy this condition. Consider the case of the isotropic Walsh préigeBer
s <t,if Xy € R?, then the conditional law oX; given F; gives more mass t&; than other rays, and we can check
thatE[y; (X;) | 51> 0 for anyj #i. Thus, by applying (2.2.6),

E[yi(X) | Fs] >0 = BIX, | F;]=0 on{X;, € R}.

We can check that the variably; (X;)|F;] tends to+oo ast 1 oo, so this condition holds if is large enough;
more precisely, by using the scaling property of the process, it holds i > ¢|X,|2. By using the subdivision
t = k/K of [0, 1], we deduce

ZS(th’ IB3[th+1 | ftk]) P Z |th |1{\X,k|<(cl()fl/2}-
k k

The right-hand side does not converge to @.i This difference with respect to the case of smooth manifolds is
essentially due to the difference in the size of convex barycentres (see Remark 2.1B.23;af martingale, both
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variablesy;, andB[Y;,.,|F; ] are in the conditional convex barycentrel@f, ; givenF; , so they are closer to each
other in the manifold-valued case than in the tree-valued case.

4. Martingales and coupling

Let us now return to the problem of constructing a continuous martingadé class (D) with prescribed limit
Y. Itis a property of the probability spae2 and its filtration(F;). For smooth Cartan—Hadamard manifolds, it is
known from [3] that these martingales exist as soon as alFiheal martingales are continuous; we can conjecture
that the same result holds here, but it seems difficult to adapt the proof. A general exact formula is unlikely to
exist (see Remark 3.3.15), and we will limit ourselves to filtrations generated by some diffusion processes. Two
techniques can be used (as in the smooth case), namely coupling of the diffusion (this is the aim of this section),
or energy minimisation when the diffusion is symmetric (see next section). This leads to the existence in two
frameworks.

In this section, we work out the coupling method which is classically used in the manifold-valued case, see for
instance [18] where coupling of the Euclidean Brownian motion is applied, see also [31] for an application in the
singular case using a more functional analytic approach. ApproximatiaH afy hyperbolic planes with highly
negative curvature is also discussed in this section (see Section 4.3).

Let us fix a bounded final variableon N = Y* which is F; measurable, and consider a discretizatios: (1),

0 < k < K of the time intervalO, 1]. The idea is to definéYy) by Yx¢ = Y and

Yi =B[Yit1 | Fy . (4.0.1)

This sequence can be viewed as a discrete martingale (and this is actually compatible with the definition of martin-
gales with jumps which will be given in Section 8). We deduce from Jensen'’s inequality (2.3.1) that the sequence
f(Yy) is a discrete submartingale for any convex Lipschitz funcifooreover, Proposition 2.3.7 says thatif

andY’ are two final values, thes(Yy, Y}) is a submartingale, so

8(Ye, Yp) <E[8(Y,Y)) | .. (4.0.2)

We are looking for a condition ensuring the convergencé&®f as the discretization mesh m@x.1 — #) tends
to 0.

4.1. The main result

Let M be a separable metric space with distasicket 2 be the space of continuous functiansR; — M, and
let X, be the canonical proces§ (w) = w(¢) with its natural filtration(F;). If moreoverM is complete, then the
usual topology of2 (uniform convergence on compact subsets) can be defined by a separable complete distance,
and 2 is a Lusin space. We consider @h a family of probability measure€*; x € M) under whichX; is a
homogeneous Markov process with initial valkie= x; let P, be its semigroup. As usually, we also denotePtiy
the law of the process with initial law.

Definition 4.1.1. An admissible coupling o, with itself is a family([P’xvx'), (x,x") € M x M, of probability
measures o x §2 with canonical procesgX;, X)), filtration (F;"), such that

EY[f(X) | F1=P—s f(Xs),  E*V[f(X) | F/]= Py f(X})

for any bounded Borel functiof.

This means that the laws 0X;) and (X;) are respectivelyP* andP*" underP**', and that the processés
andX; are Markovian for the filtration ofX, X’).
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This binary coupling is a simplification of the notion of stochastic flow, since we do not consider simultaneously
all the initial conditions, but only two of them. We will assume the existence of a good coupling for Whiahd
X, are close to each other wherandx’ are close.

Remark 4.1.2.We do not suppose that the coupling is fully Markovian, since we do not re@Xir&’) to be
Markovian. Notice that another notion of coupling is used in [31].

A particular class of coupling is the class of coalescent couplings for which the procgssed X try to meet
and are equal after their first meeting time
o=inf{t >0, X, =X,}.
In this case, the coupling is good if

lim P“*[o>f]=0 (4.1.3)
d(x,x")—0

for r > 0 fixed. The following main result gives the existenceNin= Y¢ of a martingale with final valug (X1);
recall that the unigueness was proved in Corollary 3.3.12.
Theorem 4.1.4 We suppose that

E*[d(x, X;) A1) < p1(0) (4.1.5)
for some functio; satisfyinglimo ¢, = 0, and that there exists an admissible couplif®~*") such that

B [d(X,, X)) A 1] < do(d(x, X)) (4.1.6)

for some functionp, satisfyinglimg¢2 = 0. Then for any uniformly continuous bounded m@ap — N, there
exists a uniformly continuous map [0, 1] x M — N such thatY, = h(¢, X,), 0< ¢ <1, is underP* the bounded
martingale with final valug; = g(X1).

Proof. On 2 x £ with its natural filtration(F!"), we first construct a coupling®*>¢"x") for nonnegative and
s’ as follows. Suppose for instance thaf s’.

e On the time interval0, s], we put(X;, X;) = (x, x’).

e On the time intervals, s'], we putX; = x" and(X;4,; 0 < u < s’ — 5) evolves according t&*.

o After times’, conditionally onF7, the proces$X, ... X/, : u > 0) evolves according t&*"* for x” = X,
Then X and X’ are Markovian for the filtration ofX, X"), and afters, respectivelys’, they evolve according to
Px, respectivel)an’. We can suppose without loss of generality thais bounded and non decreasing; then, for
s <s' <t, from (4.1.6),

EC 6D a(X,, X)) AL FI] < ¢o(d (X, x)) < do2(dx, x') + d(x, X,0).

A similar inequality can of course be written fof < s < ¢. By taking the expectation and applying (4.1.5), we
obtain an expression which converges to Qsas- s| andd (x, x") tend to 0, so

]E(S’X)’(S,’X/)[d(xt, X)) A 1] < ¢3(|S/ —s| —I—d(x,x')) (4.1.7)

with lim ¢3 =0, fort > s v s’. Now consider the variablgE = g(X3) of the theorem, and a subdivisiah= (#;) of
[0, 1]. It follows from the Markov property ok that the discrete martingale (4.0.1) has the fofm= 12 (1, Xy)
for a bounded function? defined ona x M. Moreover, fors ands’ in A, it follows from the Markov properties
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of Definition 4.1.1 that, o2 x £2 and undeiP*-"-¢"x)  the sequences? (i Vv s, X;,) andh? (4 v 5', X},) are
the discrete martingales with final valug&X1) andg(X?). By applying (4.0.2), we obtain

8(hA(s,x), hA(s", x')) SEC D [5(g(X1), g(X7)]-

We deduce from (4.1.7) that® (¢, x) is uniformly continuous om\ x M, and this is uniform inA. Since M is
separable, there exists a sequence of dyadic subdivigipssich that: (¢, x) converges for dyadic andx € M;
moreover, the limita(z, x) is uniformly continuous and can therefore be extendefD{d] x M. The process

Y; = h(zt, X,;) is continuous, with valug(X1) at time 1; it is transformed into a submartingale by any convex
function f because the proceg4Y;) is the limit of the uniformly bounded discrete submartingat€s;), soY;

is a bounded martingale.o

Corollary 4.1.8. Suppose tha#.1.5)holds true, and consider a coalescent coupling satisf{dnt.3) Then(4.1.6)
holds true, and consequently, the conclusion of Theardmdis valid.

Proof. By applying (4.1.5) and the triangle inequality on one hand, and the coalescence on the other hand, we
obtain

EX [d(X;, X)) A 1] < min(d(x, x) + 2¢1(1), P*¥ [0 > 1]).
Fix somerg > 0; in the right-hand side, we use the first term # g, and the second oneif> 1y, SO

SUPE™* [d(X,, X)) A1] <d(x,x") + 2 supps(t) + P** [0 > 10].
t

t<to

Consequently, from (4.1.3),

limsup sup ”'[d(X,, X)) A1) < 2suppa(r)

d(x,x)—>0 1t t<tg

for anysp > 0, and is therefore 0. Thus (4.1.6) is satisfied

Remark 4.1.9.In Theorem 4.1.4 and Corollary 4.1.8, the conditions were uniform with respechtmwever, what
we need is that each point 8 has a neighbourhood satisfying (4.1.7). The functibfisare indeed uniformly
continuous on these neighbourhoods, and we again deduce the convergence and the continuity of the limit.

Example 4.1.10.For the real Wiener process, there are two classical couplings satisfying the assumptions of
Theorem 4.1.4. Firstly, the two processes can stay at a fixed distance from eactxpthef,(= x’ — x). Secondly,

we can consider the coalescent coupling for whiGht+ X; = x 4+ x up to the first meeting time (the processis
obtained fromX by reflection). Actually, for any coupling for which the processes coincide after their first meeting
time, the procesgX; — X;| is a martingale, so all these couplings are similar for the estimatidjxf — X;| =

|x” — x| (this is of course false in dimension greater than 1).

Example 4.1.11.If X is the solution of a stochastic differential equation driven by a Wiener process, we can
consider the flow associated to this equation, an&land X’ be the images of andx’ by this flow. We obtain a

non coalescent coupling. This can be applied to Brownian motions on Riemannian manifolds; it is also possible but
more technical to construct a coalescent coupling, see [19] where a stronger coupling property is actually proved.

Example 4.1.12We will see in Section 7 that a coalescent coupling satisfying (4.1.6) can be constructed for Walsh
processes off‘; more general trees and graphs can also be considered. Of course, the one-dimensional structure
of these spaces makes the construction much easier.
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Corollary 4.1.13. Consider a diffusionX, satisfying the assumptions of Theordrh.4 and a probabilityP” for
some initial lawv. Then anyN-valued integrable variable is the limit of a unique martingale of cld3s

Proof. Corollary 3.3.13 is used at each of the following steps (except the second one). The existence of the martin-
galeY; with final valueg(X1) is first extended to any bounded Borel mapy approximating them by uniformly
continuous functions (real functions can be approximated by uniformly continuous functions from a functional
monotone class theorem, and the result is easily extend&¥evalued maps). In a second step, we consider final
variables of typeg (X4, ..., X;) and construct the martingale on each time intefyalt;,1]. In a third step, by
approximating general variables by such variables, we deduce that any bounded variable is the limit of a unique
bounded martingale; the result is then easily extended to integrable variables and martingales of class (D).

Remark 4.1.14.Under the conditions of Theorem 4.1.4, it is clear that continuous martingales of class (D) with
prescribed integrable limit exist in particular & This means that real martingales are continuous. Thus we are
in a case where the existence result of [3] concerning smooth manifolds can be applied.

4.2. Feller property of the semigroup

We have solved the existence problem for the filtratioiXgfif ¢ is bounded, the initial value of the bounded
martingale with final valug (X;) is denoted by, g(x). It is classical to check tha®, is a semigroup; this is the
(non linear) heat semigrou@, acting on bounded -valued maps. Then the martingale with final valyg X,)
is (Q;—sg(X;); s <1). The coupling method also implies a Feller property on this semigroup.

Proposition 4.2.1.Under the assumptions of Theordni .4 the semigroup); is Feller continuous in the sense
that if g: M — N is a bounded continuous function, théhg is continuous for any and Q,g(x) converges to
g(x) ast | 0. If the coupling is coalescent and satisf{dsl.3) then Q; is regularising, or strongly Fellerthis
means that for > 0, it maps bounded Borel functions to bounded continuous functions.

Proof. From Proposition 3.3.11, one has

8(0ig(x), Qrg(x")) <E*[5(3(X)., 8(X))].

and from (4.1.6),(X;, X;) converges in law tqX,, X;) asx’ — x. We deduce thap,¢ is continuous ifg is
continuous. Similarly

8(g(x). Qrg(x)) <E*[8(g(x). g(X))]
tendsto O as | O from (4.1.5). In the coalescent case, we use

5(0ig(x), Qrg(x)) <2suplgM|P** [0 >1]. O
y

In the coalescent case, if for instance the probability of non coupling (4.1.3) is dominatés,by), thenQ; g
is Lipschitz.

Corollary 4.1.13 also enables to solve the Dirichlet problemMgbe an open subset 81 and letr be the first
exit time of Mg for X;. If t is finite and ifg: M — N is bounded, we can consider the bounded martingale with
limit g¢(X;) underP*, and leth(x) be its initial value; then the martingale A$X, ). We say that: is harmonic
on Mo.

Proposition 4.2.2.Under the assumptions of Theordm .4 if the coupling is coalescent and satisf(dsl.3) and
if h: M — N is bounded and harmonic on an open sub¥egt thent is continuous oM.
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Proof. If x andx’ are in Mo, we consider the coupled procesé;, X;) and the exit times andt’ of Mp; from
Proposition 3.3.11,

8(h(x), h(x")) SEXY [R(Xine)s h(X, 0]

< Zsup\h(y)]}P’x’xl[o >tATAT]
y

< 2suplh()| (P[0 > 11+ P [t AT/ <1]) (4.2.3)
y

for anyt. Fix x in Mp and consider a neighbourhoddof x which is at a positive distance from the complement
of Mp. The first probability in (4.2.3) tends to 0 a5— x for ¢ > 0O fixed, and the second one tends to G 3
uniformly for x” in V (apply (4.1.5)). Thug&(x’) tends toh(x). O

4.3. Stars and hyperbolic geometry

Another result can be worked out under the framework of Theorem 4.1.4; this result sajs\vhated mar-
tingales can be approximated by hyperbolic martingales, and it comes from the fact that a hyperbolic plane with
highly negative curvature looks like a star.

Consider the plan®?; it can be endowed with a hyperbolic metfig with curvature—« by putting

sinh(/k|y])?

pE luz)?, (4.3.1)

Jul? = lusl® +
whereu is a vector based ate R?, andu; andu> are its radial and angular partg |, = |u«| if y = 0). We denote
by §, the corresponding distance so tlﬂﬁi = (R?,5,) becomes a hyperbolic plane with curvature. Notice
that the Euclidean distandg is dominated by the hyperbolic distange Notice also that we can construct in
H2 continuous martingales with prescribed final value (see Remark 4.1.14). Now choose an embedding (2.0.1) of
N =Y* in R?; this is also an isometric embedding i .

Proposition 4.3.2.Under the assumptions of Theoretri.4 let (Y/;0 <r < 1) be the bounded martingale in
H2 = (R?, 8,) with final valueg(X1). Then

lim sup 8o(¥Y),Y:)=0 (4.3.3)
ktoopgr<l

in probability for a proces¥;, andY; is the boundedv-valued martingale with final valug(X1).

Proof. It is sufficient to prove that for any sequence of curvatures tending to infinity, there exists a subsequence
such that (4.3.3) holds almost surely, aridis a martingale. The martingalg“ has the forma, (¢, X;). The
technique used in Theorem 4.1.4 shows the uniform continuiky d6r the hyperbolic metric, uniformly ir, and
therefore also for the Euclidean metric. Thus we can consider a subsequence convergifgyadieed functiort:,

so thatY/ converges td; = h(t, X,). Moreover, the convergence is uniform on compact subsefs, &t x M,

so on{(z, X;(w)); 0< ¢ < 1}, and (4.3.3) holds almost surely. On the other haifdljives in the convex hulN, of

N in H2; we see from (4.3.1) that

8ev/VK, 2/K) =81(y, 2)/ VK,

S0y — y//k is an isometry fromR?, §1/./k) onto H,% = (R?, 8,). The starN is invariant for this isometry, so
Ny = N1/4/x. This implies that
1

1
sup{8c(y, N); y € N} = T sup{1(y, N);y € N1} = —=

%Q
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for a finite C1 (C1 is also the distance ad to the complement oWy). In particular,

80(Y[, N) <8 (Y[, N) < C1/k, (4.3.4)
and at the limit,y; is in N. We have to prove that it is a martingale. I&} be the scalar product ef ande; (the
vectors describing the embedding (2.0.1)), and’léte the maximal value af;; for j #i, so thatC < 1. If y and
z are in two different rayR; andR; of N, then we can write ifR2

|z = yI? =1y + 127 — 2C3jlyllz] > |y + |z1* — 2C]yllz]

> A-O)(IyP +12) > A= O)(Iyl + 121)? /2> (1= €)8c (v, 2)%/2
o]

8c(y,2) < C'8o(y, 2) (4.3.5)
for someC’ > 1. This inequality also holds whenandz are in the same ray, so it holds &hx N. Now let Z¥
be a point inV which minimises the hyperbolic distance¥. By using (4.3.4) and (4.3.5), one has that

Se (Y[, Y) <8 (Y[, ZP) + 8 (Z(, Y1)

<8 (Y[, Z) + Cldo(Zf, Yy)

<8(YS,Z) + C'8o(ZF, Y)) + C'8o(Y)S, Yy)

<A+ CNS (Y, N)+ C'80(Y/, Y1)

<A+ C)C1/VK + C'8(YS, Yy),
which converges to 0. Finally, for each r&y consider the hyperbolic Busemann function
(SK(y, rej) — r).

It is convex soy/ (Y/) is a (bounded) submartingale. The convergenck @f/, Y;) to 0 implies the convergence
of y/(Y/) — y/(¥;) to 0, andy/ converges tg; on N. Thusy/ (Y/) converges t; (Y;), andy; (Y;) is therefore
a submartingale. We conclude with Proposition 3.3.4.

v () =

lim
r—>0o00

5. Martingales and energy minimisation

Let us now describe another framework in which one can prove the existence of the martingale with prescribed
limit; this will relate our problem (as in [28] for the smooth case) with a variational problem, namely energy
minimisation; this technique is particularly useful for symmetric diffusions for which a coupling seems difficult to
construct.

5.1. The Dirichlet space

The aim of this subsection is to define and study the notion of Dirichlet space for tree-valued maps. In the case
of more general spaces with nonpositive curvature, a definition using the heat semigroup is proposed in [17]; here,
we propose another one for the particular case of trees.

On a separable locally compact spadeendowed with a Radon measuxe consider a symmetric diffusion
(X;,0< 1 < ¢) with lifetime ¢ associated to a regular strongly local Dirichlet fafnon L2(), under the lawPH.

The strong locality means tha, is continuous and is not killed inside. The domain of is the Dirichlet space
D, and&E(f) = E(f, f) is a semi-norm on it; its elements can be chosen quasicontinuous. We refer to [14] for
definitions and properties of these spaces and diffusions.
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For some purposes, the spdgeés too restrictive and we have to enlarge it; for instance, the spasestable
with respect to Lipschitz transformatiossuch thaty (0) = 0, but generally not with respect to all Lipschitz
transformations (constant functions are not alway®)nthis causes some trouble because for tree-valued func-
tions, there is generally not a canonical point which could replace the role of the poifit.(0Fof this reason, we
are going to consider the spaB¥° of functions which are locally i (on each relatively compact open subset
of M there exists a function db which coincides withf). In D, we can consider energy measufgs,,) and
IL(fy = I(s, ) SO thate(f) is the total masg( ) (M). These measures can also be defined for functioms%f
one indeed deduces from the locality thatfifand g coincide on an open set, then s and ) also coincide
on this set. Thus one can define the enefgy) = () (M) (finite or infinite) onD'°C. We will be particularly
interested by the subspaB# consisting of bounded functions Bf° with finite energy. In the transient case, this
space coincides with the space of bounded functions of the reflected Dirichlet space, see [6].

Constant functions are i’ (and have zero energy), 8 is stable with respect to all Lipschitz functions. Let
us give some other useful facts.

Lemma 5.1.1.For any functionf of D?, one has

win{f=0p=0. (5.1.2)
For any f andg in D? such thatfg = 0, one has

K(f+g) = I(f) T Ig)> (5.1.3)
SO

Ef+)=E)+E). (5.1.4)
For any f andg in D?, the energy measures s, and () coincide on{ f = g}.

Proof. These properties can be localised so it is sufficient to prove them for functidhsfe has
igof) (dx) = (@' 0 [)(X) (5 (dx)
for any function® of classC}, so if @ (0) = 0 and®’(0) = 1,

pinls =0 < [@' 0 ey o =@ o p) (5.L.5)
We apply this relation to
@, (z) = arctarinz)/n.

Then®] — @], tends to 0 ag: andn tend to infinity, so(®, o f) is a&£-Cauchy sequence; moreover it converges
to 0in L2, so a standard argument shows &b, o f) converges to 0. Thus (5.1.2) follows from (5.1.5). On the
other hand, we deduce from the nonnegativity.f, that

2
(.0 (A < peip) (A g (A),

Sr?lum =0on{f=0}U{g=0}. Thus, if fg =0, thenu s is 0 and consequently (5.1.3) holds. We also have
that

|y (A) = i) ()| = | g 1460 (D] < iy ) (A Y211 (AY2 =0
it AC{f =g}, souy)=non{f=g}l O

Remark 5.1.6. One can replacd f = 0} by {f = ¢} in (5.1.2). Similarly, (5.1.3) and (5.1.4) hold true if
(f —o)(g—c)=0.
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Let Mg be a relatively compact open subset\df and let
T = inf{t >0; X, ¢ Mo}

be the first exit time ofMp. We suppose that < ¢ (¢ is the lifetime ofX) P*-almost surely.

Let Do, ]D)'(‘,’C and]]])’(’J be the spaces of functions bf D'°¢ andD? having a quasicontinuous modificatigrsuch
that f = 0 quasi everywhere outsidéy. Then(IDg, £) is a regular Dirichlet form oy (called the part of on
Mp) and it is associated to the procesilled atr. The conditiont < ¢ implies that it is transient, so (see [14])

/ | f @) |vidx) <E(HY? (5.1.7)

for f in Dg andv a measure such thatandv are mutually absolutely continuous. Sink& is relatively compact
in M, the spacé))'(‘)’c is equal taDo, soID)’(’) is the space of bounded functionslaj.

If ¢ is a quasicontinuous function @, we IetD? be the set of functions db® having a quasicontinuous
modification f such thatf = g quasi everywhere outsidé.

Lemma 5.1.8.Let ¢ be a quasicontinuous function Bf satisfying€(f, g) > 0 for any nonnegative functiogi
of ]D)g. Theng(X; ;) is alP*-supermartingale.
Proof. The function

h(x) =E*[g(X)]

is quasicontinuous and &orthogonal tdDg, so that€( f, h) = 0 for any f of DZ; this was proved in Section 4.3
of [14] wheng is in the Dirichlet space, but can be extendeg in D” by modifying g outside the closure d¥f.
The proces#(X; ;) is the bounded real martingale with final valgi€X ;). The functiong — 4 is in Dg and our
assumption implies that(g — &, f) is nonnegative for any nonnegatiyeof Dg; thusg — & is superharmonic for
the process killed at, and(g — ) (X, A;) is alP#-supermartingale. O

Let us now extend the notion of Dirichlet space to maps with valu@éaY*.

Definition 5.1.9. The setD?(N) is the space oN-valued functionsf such tha o f is in D? for any Lipschitz
function¢: N — R. For f in this space, we put

E(f) =sup|E(¢ o f); ¢ nonexpandingy

Lemma 5.1.10A functionf is in D?(N) if and only if its componentg are inD’. In this case, one has

LY =E(f) =) Efi). (5.1.11)

Proof. Itis clear thatf; € D” is necessary fof € D?(N). Conversely, we check that it is sufficient by using the
decomposition

PN =¢(0)+ Y _($:i(yi) — $(0)) (5.1.12)

of any Lipschitz functiorp into Lipschitz functions; (r) = ¢ (re;) on each rayR;. The second equality in (5.1.11)
follows from (5.1.4). We have to prove th&(f) = £(|f]). The inequality€(f) > £(| f]) follows easily from
Definition 5.1.9. On the other hand,dfis non expanding, we can suppase0) = 0, we use (5.1.12) and again
(5.1.4) to obtain

E@of)=) E@iof) <Y EU)
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SoE(f) <E(fD. O
Remark 5.1.13.0ne also has (f) = £(y; o f) for any Busemann functiop,.

One can define the energy measure diy
H(fy = KD = Zﬂ(ﬁ)v
where the second equality follows from (5.1.3). TBUY) is the total mass of ).

Lemma 5.1.14 Let f, be a sequence iB”(N) which converges almost everywhere to a functiorBuppose that
£, andE(f,) are uniformly bounded. Thefiis in D?(N) and

E) <liminf E(f).

Proof. This is deduced from Lemma 5.1.10 and the similar propertyDfrwhich itself is deduced from the
property forD and a localisation. O

5.2. Energy minimising maps

Let ¢ be a quasicontinuous map B (N); we are going to prove the existence of the bounded continuous
martingale with final valuez(X;). The spac@g(N) is defined in an evident way as in the real case, and the
martingale will have the form (X, ..) for A energy minimising in this space.

The existence of can be worked out with the method used for general smooth manifolds in [28], but we
will take advantage of the nonpositive curvature of our space to apply a more elementary method with slightly
weaker assumptions. The following result is an adaptation of a general analytical theory to our framework, see
Theorem 2.2 of [20]. Notice that the Poincaré inequality which is classically used in this method is here replaced
by the transience of the killed process and (5.1.7). We begin with a preliminary result.

Lemma 5.2.1.Letu and v be quasicontinuous functions Bf (N), and letw(x) be the midpoint between(x)
andv(x). Thenw is in D?(N), and

E(w) < %5(u) + %5(1}) - %5(5(14, V). (5.2.2)

Proof. We deduce from
1 _
w; (x) = E(Vi ou(x)+y;ov(x)) (5.2.3)

thatw is a quasicontinuous function B (N). Its energy measure satisfies

1 1 1 1
Moy < 2 tioutyion) = SHiyou) + S1kiyiov) = ZH(yiou=yiov)-

Onthe setd; = {u € R;} U{v € R;}, one has
S(u,v) =|yiou—yiovl,

SO

1 1 1
Mw;) < 5 M) + SH )~ 70w (5.2.4)
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on A;. In particular, since the union of the subsdisis M, the right-hand side is a nonnegative measur@fon
Moreover, the measures,,,) are supported by the disjoint sgis; > 0}, so

1 1 1
H(w) = ZM(wﬁ < E#(u) + S0 (8 (u,v)) (5.2.5)
i

2" g
by applying (5.2.4) ojw; > 0} C A;. Then (5.2.2) follows by integration.

Proposition 5.2.6.Consider the above framework with a strongly local regular Dirichlet fgfin€) on the locally
compact separable spaadé¢ with diffusionX;, a relatively compact open subsét such thatX, quits Mg during
its lifetime, and a quasicontinuous functigrof D?(N). Then there exists a unig@eithin a modificatiol  which
minimises the energy(#) among functions d])ii (N).

Proof. Choose a minimising sequence consisting of quasicontinuous fun@f?oufsﬂ)g(N); one applies (5.2.2)
to two element&™ andh” of the sequence; the midpoiht-" is again ian,(N), SO

1 1 1
inf &< EN™") < SEM™) + SEM") — SEBR", 1),
DY) (") < GEM™) + SEW") = ZE(BM™.H)

By letting m andn tend to infinity, one deduces th&ts (4", h™)) converges to 0. The functiodgs™, k™) are in
Do, and by applying (5.1.7), there exists a subsequende'ofwhich converges almost everywhere to a function
The subsequence will again be denotedby), and

E(8(h", my) <liminf £(8(h", h™))

converges to 0. By applying the quasicontinuity (see Theorem 2.1.4 of [14]), there exists a subsequence converging
quasi everywhere, anid has therefore a modification which is equalgtguasi everywhere outsiddy. Then we
deduce from Lemma 5.1.14 thatis energy minimising irﬂ])g(N). For the uniqueness, we see from (5.2.2) that

two energy minimising maps® and/? should satishe (§(h1, h?)) = 0, soht = h? from (5.1.7). O

Now, we want to prove that(X,) is alP* martingale. In the case of smooth Riemannian manifolds studied
in [28], one notices that sindeis solution of a minimisation problem, then

ié‘(hg) =0 (5.2.7)
de e=0

for any smooth family:® such that:® = 4. Actually, when one is givelf, one can use the perturbatibh= 7 o,
where(7°?) is the flow of diffeomorphisms oW defined by the ordinary equation

d
0 _ £ _ £
T°(») =y, d—gT(y)—f(T »)-

The relation (5.2.7) can be written (roughly speaking) as

/ (fx), Lyh(x))du(x) =0,
M

where L yh is the tension field oh. Since this can be obtained for a large class of functipnae can deduce
that Lyh = 0 (in a weak sense) and thiatX,) is a martingale. Here, this method cannot be immediately applied
because one cannot define flows for all reale except if the pointO is fixed (roughly speaking (0) = 0); this

is because all homeomorphisms Bfmust letO fixed. Thus we will only consider a semi-flog@ ¢, ¢ > 0) of
transformations, and the fact thiats energy minimising will imply that the derivative of (5.2.7) is nonnegative.
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Theorem 5.2.8.Under the assumptions of Propositibr2.§ if 4 is the energy minimising quasicontinuous map of
]D>§(N), theni (X, »;) is aP* martingale with limitg (X ).

Proof. FixarayR;, its associated Busemann functignlet p be a nonnegative function ﬁfg andletZ7?:N — N
be the translation of stegp (x) in the direction ofR;. The perturbation of(x) is defined as

he(x)=T; (h(x)).

One has
(Yi o h®)(x) = (v o h)(x) — ep(x),
SO
d(y; o h®) _
de ee0

The functionk® is in the Dirichlet spac@Dg(N) and satisfies
EWioh® ) =EM®) = EM)=E(y; oh).

By differentiating ate = 0, we obtain tha€(y; o 4, p) <0, so, from Lemma 5.1.8y;(h(X;A;)) is a P*-sub-
martingale (for any). Thush(X;.;) is a martingale. O

Corollaries 5.2.9 and 5.2.11 are similar to [27]Mfis a Riemannian manifold (or a Riemannian polyhedron),
an analytical technique can actually provide the Holder continuity, ske [20,9,31].

Corollary 5.2.9. Assume the absolute continuity condition

VxeM >0 PY[X,edz]l<Kuldz). (5.2.10)
Then one can choose the modificatiork @o that for anyx, the proces& (X; ;) is underP* the bounded martin-
gale with limitg (X ;).

Proof. We obtain from Theorem 5.2.8 and the condition (5.2.18) anartingaleh (X, ».) indexed byt > 0; it has
alimit asr | 0 because; (h(X;A;)) are bounded submartingales and have therefore limitsid(ah be the limit.

If o is any stopping time, the quasicontinuity/oshows that (X, ) is the limit of 4(X,,), SO we can deduce that
ho = h outside a polar set. Then satisfies our requirements

Corollary 5.2.11. Assume the absolute continuity conditi(m2.10)and suppose moreover that bounded real
functions which are harmonic on an open subsetVbfare continuous on this subset. Then the functioof
Corollary 5.2.9is continuous orMg.

Proof. Fix a pointx of Mg and a nondecreasing family,),~o of open neighbourhoods efsuch thaf\ V, = {x}.
Let o, be the first exit time oW, for X,. Thenh(X,,) converge$* almost surely td:(x) asr | 0, so fore > O,
we can choose so that

EX[8(h(x), h(Xo,))] <e.

On the other hand, the function
x> BY[8(h(x), h(X,,))]

is harmonic onV,; it is continuous from our assumption, so
8(h(x), h(x")) SEY [8(h(x), h(X,,))] < 2¢

if x"isclosetar. O
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Corollary 5.2.12. Assume the conditions of Propositiér2.6 except thatM is not supposed to be relatively
compact. Then again there exists a functionf D?(N) such thati (X, ..) is alP* martingale with limitg(X-),
and one hag (h) < £(g). The results of Corollarie5.2.9and5.2.11can also be extended.

Proof. Let M, be the intersection a¥/p with a sequence of relatively compact open subseld @fhich increases
to M. Then we obtain a minimising maig. If t” is the first exit time ofM,,, thenh” (X;.») is the bounded
martingale with limitg(X»). The sequenc&(h") is nonincreasing and therefore converges!if* is the midpoint
betweem™ andh”, one has

ER™™) = min(E(R™), E(h™))

becausé™" coincides withg outsideM,,,.,,, and€ (h"™") is dominated with (5.2.2). Thus we can use the technique
of Proposition 5.2.6, deduce the existence of a subsequence converging almost everywhere to & featisiying
E(h) < &(g), andh(X; ;) is a martingale as a limit of martingales. By using a probab#ityfor v a probability
equivalent tqu, the probability of{z” # t} tends to 0, sg (X ) converges t@(X,). Thus the procesds(X, ;) is

the martingale with limitg(X;). O

5.3. Martingales for symmetric diffusions

We are now going to prove the existence of martingales for probability spaces generated by symmetric diffu-
sions.

Theorem 5.3.1.Consider like previously a strongly local regular Dirichlet form on a separable locally compact
spaceM, associated to a diffusiol; defined on a canonical probability spaczwith measuré?*. Suppose that
the form is conservative so that the lifetimef the process is infinite. Then, for any integrablevalued variable,
there exists a uniqu&’-valued martingale of clag®) converging to this variable.

Proof. As in Corollary 4.1.13, it is sufficient to consider final variables of the ty(¥1). We will suppose thag

is continuous and i’ (N) (this is possible since the form is regular). By taking the produc®afith a Wiener
space2y, we introduce an independent real Wiener prod&son this space, we also consider a honnegative
process satisfying

dUf = —dt + JedW, + dA?,
whereA? is the reflection term at 0. The diffusidif is the symmetric process which is associated to the Dirichlet
space(Dy,, &) on (R4, uy,), where

_ &
ppli =& dufe, E5(H =5 [ 5w @,
Ry
andDy, is the completion fo£;, + |.|i2w£) of the space of smooth functions @& with compact support. The
U
processX;, Uf), which can be defined of? x 2y, is then associated to the product Dirichlet spdag £¢) on
(M xRy, ® ug,), with

() = / E(f (o)) (du) + / €5 (f (x. ) ().

This is a regular form (this is becauBe Dy, is dense ifDg, see Section V.2.1 of [5]). Let(s) be the first exit
time of M x (0, o0), SO

t(¢) =inf{r > 0; U =0}.
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Consider the functio (x, u) = g(x), so that€¢(g) = £(g). We deduce from Corollary 5.2.12 the existence of a
martingaley; with final valueg (X ,)). By proceeding as in Corollary 5.2.9, we can tédkg= 1 as an initial con-

dition since(U;) satisfies the absolute continuity condition (weXgtbe distributed according t@). Whene | 0,

the exit timer (¢) and the final variablg (X (¢)) converge respectively to 1 agdX,); thus, from Corollary 3.3.13,

the martingaleg’? must converge to the martingale with final valueg(X1). However, this martingale is defined

on the enlarged spaage x 2y, and we want a martingale a2. We can apply the Yamada—Watanabe method

of which is classically used for stochastic differential equations, see for instance Theorem IX.1.7 of [29]. On the
space2 x 2w x 2w with product measures, we consider the processes

Y/ (0,0, 0") =Y (0,0, Y/ (0,0, 0") =Y (0, 0").

ThenY/ andY,” are two bounded martingales with the same final vgl(%; (»)), so they are identical. Thug
can be definedor. O

Similarly to Corollary 5.2.9, we can deduce the following result.

Corollary 5.3.2. The result of Theorerd.3.1holds under the probabilitieB* if the symmetric diffusion satisfies
the absolute continuity conditigs.2.10)

The initial value of theP* martingale with final value (X;) is written asQ,g(x). We obtain as in Section 4
the nonlinear heat semigroug . It is well known that the energy is non increasing along the heat semigroup for
smooth manifolds (in the case of maps with values in nonpositively curved manifolds, this is actually the classical
method for proving the existence of a harmonic map in a prescribed homotopy class). Here, this property also holds
true.

Proposition 5.3.3.Assume the conditions of Theor&n3.1and the absolute continuity conditidf.2.10) Let g
be inD?(N). ThenQ, g is also inD?(N), andr — £(Q;g) is nonincreasing.

Proof. We return to the proof of Theorem 5.3.1. We have a functibsuch that:® (X, U/) is a martingale up to
the first hitting time of 0 byU;, and

e ¢]

/ £ (1 () a5y (du) < E2(1°) < E(8) = £(»). (5.3.4)
0
Put

cg(x)=h"(u,x).

In particular,Q¢ g converges t@2, g. Consider nonnegativeandv; after a translation, the diffusiati] starting at
u + v and stopped when it hits has the same law than the same diffusion startingaatd stopped when it hits O.
We can deduce from this fact th@f, is a semigroup, and (5.3.4) is written as

/ (05 )il (du) < £(g).

If we consider(uf,)@ = uf, » u¢, (the convolution product), then

/ £(Q58) ()P (du) = / / E(QF 4, @) (dv)fy (du) < / E(QE )l (du) < E(g)

and more generally

6( / Qf,g(ufj)(”)(du)) < / E(QE) (1) ™ (du) < E(g) (5.3.5)
0 0
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where the left-hand side is computedii. By takingn ~ /e, we can let the measurg:,)™ (which is a
convolution of exponential distributions with meaytend to a Dirac mass atMoreover, the function which maps
u to the hitting time of 0 byU? when it starts fromx is continuous in probability, uniformly ia for 0 < ¢ < 1; we
deduce tha; g(x) is continuous with respect to, uniformly in . Thus the integral in left-hand side of (5.3.5)
converges taD; g, so we deduce from the lower semicontinuity of the energy fiét; g) < £(g). SinceQ; is a
semigroup, the proof is complete

Remark 5.3.6.0ne can proceed as in Corollary 5.2.11 for the continuitye§. This means that a continuity
property forP, f (x) is transferred ta), g(x).

Numerous examples of Dirichlet spaces are of course known. If we restrict to trees, we can consider the diffusion
on the continuum tree constructed in [21]. Here is a simpler example.

Example 5.3.7.Consider a spac#/ which is the union of a countable number of segmefits- [0, A;] with
length¢; > 0, such that the intersection of two different segments is reduced to the(oifie suppose thax_ ¢;
is finite. Then we put

E(f) = %Z / £ ()
i

for the Lebesgue measuke on S;, where f is a Lipschitz function which is smooth on each segm$rdnd is
constant on all but a finite number of segments. After taking the closure, we obtain a regular Dirichlet form. Notice
that in this example (and also for more general trees), elemefitsacd automatically Holder continuous with rate

1/2, so this implies a regularity on harmonic map&if(N).

6. Generalisation to trees

Up to now, we have focussed on our baby ti#e Our aim is now to generalise the results of previous sections
to other trees.

6.1. The geometry of trees

The simplest generalisation is the family of complete finite metric trees. They consist of a finite nutber
edges which are isometric to closed interval®psome endpoints of which are glued, and which yield a connected
and simply connected space (there is no loop). The endpoints of the edges are the vertices of the tree; a particula
class of vertices are those which belong to only one edge; they are the leaves of the treé.cEmeloe embedded
in R? by letting theith edge being parallel to thiéh axis. More generally, we can considettrees, see for instance
the definition in [13].

Definition 6.1.1.A R-tree is a metric spadgV, §) satisfying the two following properties for any andy» in N.

1. There is one and only one isometry from the intef@ab (y1, y2)] into N mapping 0 toy; ands(y1, y2) to y».
2. If ¢:[0,1] — N is injective,¢(0) = y1, ¢ (1) = y2, then¢ ([0, 1]) is isometric to[0, §(y1, y2)] (it is the arc
joining y1 andy»).

Since onlyR-trees will be considered, we will simply call them ‘trees’. We say tNais a measurable tree if
moreover it is endowed with @-algebra containing the balls. Whénis separable, it will be implicitly endowed
with its Borelo -algebra.



660 J. Picard / Ann. |. H. Poincaré — PR 41 (2005) 631-683

The unigue arc between two pointsifis a geodesic, and as in Definition 2.1.1, a function is said to be convex
when it is convex on geodesics parameterised by arc length. For instance, the distance féig@tiorare convex.

The trees that we will consider will often be assumed to be completeisit point of N and if the number of
connected components of\ {y} is different from two, thery is a vertex of the tree; in particular, if this number
is one, thery is a leaf. A ray is a subset @f which is isometric tdR,, and an end ol is an equivalence class
of rays, where two rays are equivalent if their intersection is a ray. Then if one fixes an Origfrd an end with
some parametrisatiof§;; ¢t € R), one can define the associated Busemann function by

ve(y) = l[}”&}@(%‘t, y) =85, 0)) (6.1.2)

where the limit does not depend on the parametrisation and is actually stationary (ch@ragifygadds a constant).
This is a convex function. I is an end and a point, we can consider the ray, £) with origin y and equivalent
to &; its elements are called the ancestorsydfelatively to&); if y andy’ are two points, their first common
ancestow A y’ is the origin of the rayy, &) N [y, &); itis in the arc[y, y’], and

S V) =8.yAY)+SOAY Y)Y =ve() + v (V) =20 (y A Y. (6.1.3)

Contrary toY*¢, Busemann functions will not be sufficient for the characterisation of continuous martingales;
for instance, a bounded tree has no end. We also have to consider leayds.dfpoint of N, we define

¥yo(x) = 8(y0, ¥) —8(yo. O). (6.1.4)

The set of ancestors gfare in this case defined to be the gyg, y], the endpoints ofyg, y] N [yo, y'] areyp and
the first common ancestorA y’, and (6.1.3) is again satisfied. The functigaswhené is an end, ang,, when
yo is a leaf, will be called the basic convex functions.

There are relations between these functions.dahd¢’ are two different ends, we can consider the liggt’)
joining them, which can be parameterised(by ¢ € R); we can apply

S Y)+8(n. YN =80y +25(y. [y, y"D
toy =&, y" =&, letr tend to+oco, and deduce that

ye () + v () = 28(y, (£,8)) — 25(0, (£, £)). (6.1.5)

There are similar relations with functions,, involving rays[yo, &), or segmentsyo. y,].
In previous sections, we have used the embeddint‘ointo R¢. Separable complete trees have a similar
property.

Lemma 6.1.6.Consider the Banach spa¢é of absolutely convergent real series and its subiéreof convergent
nonnegative series. Lej be the canonical series havirigat the kth row andO elsewhere. On the other hand,
let N be a separable complete tree. Then there is an isometric embedding whichvraps a closed subset of
Z}r containing0 and which is the closure of a set of the folrfizx, zx + axer], for zx € Z}L anday > 0. Then the
distances(y, z) in N is equal to the norniz — y| in ¢1.

Proof. Let (yx)r>0 be a dense subset of. Let N, be the convex hull ofy; 0 < k < n}. ThenN, is a finite

tree with at mosk edges. We can consider the embeddingvgfin R’ as follows; we letNg = {0} and we let

N; \ N;j-1, if not empty, be a segment of type;, z; +aje;] for z; in N;_1 ande; > 0. These embeddings are
compatible, sd_J N, can be embedded in the subsetZof consisting of nonnegative sequences such that only a
finite number of terms is positive. The distanceMrtorresponds to thé! distance on this space, so by taking the
closure,N is embedded in the Banach spdée O

Example 6.1.7 The starY" with countably many rays is an example of separable tree. The star of Example 5.3.7
is a subtree of’N,
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Fig. 5. An example of oriented distance functigiiyg, .).

The situation is more complicated with nonseparable trees. In this case, thesBalgdbra is generally too
large, so that the number &f-valued measurable variables is too small. Thus we have to endaith another
o-algebra, and this is why we have introduced in Definition 6.1.1 the notion of measurable tree; the minimal
admissibles -algebra corresponds to the Baire topology (which is generated by open balls). Notice that continuous
functions are not necessarily measurable for thestgebras, so, when dealing for instance with convex functions,
we will have to restrict to measurable ones. Though stochastic calculus can be worked out on nonseparable trees
(see the results below), the problem of finding a martingale with given limit has generally no solution. However,
we mention these spaces because there are classical examples of them, they are a simple description of what ca
happen on a non separable space, and some classical diffusions are defined on the following examples.

Example 6.1.8.Consider the spade? as a star with origin 0; this is the metric spade= YS" where the rays are
indexed by the circl&!. Let Y be a Borel measurablE-valued variable; then the angular coordinétey) e St
should be measurable for thealgebra of all subsets 6f (because any union of rayg is open); thus it should be
supported by a countable subset, &hdhould therefore be supported by a countable number of rays. This shows
that if we want to consider more general variables, we have to choose ane#tigebra satisfying the conditions

of Definition 6.1.1. We can for instance use the Beretlgebra associated to the classical topologR&f

Example 6.1.9.Consider the spacg of paths with birth and death times described as follows; the elements of
G are triplesy = (wy, Sy, Ty), with S, < T, and(w,(u); u € R) is a cadlag path with values in the disconnected
union of R and a poin{a}, such that

oyw)eR & §, <u<Ty, wy(Sy)=0 if S, <T,.
The distance off is defined by
8, y) =Ty + Ty = 2(influ; wyw) #wy @)} ATy ATy). (6.1.10)

ThenG is a nonseparable tree. If we consider the end associated to the rayT, < 0}, the Busemann function
isy(y) =Ty, if y#y’, their first common ancestgrA y’ consists of the paths andy’ killed when they begin to
diverge, and the arcs joiningor y’ to y A y’ are obtained by erasingor y’ progressively up to the divergence
time. If we endowG with the o-algebra generated by the functions> w, (1), it is a measurable tree. We can
also consider the subtré consisting of the elemenissuch that the path, is continuous oSy, 7).

The basic geometric properties Bf can be extended to more general trees. We first need to verify that the
basic functions which were used in Section 2 are measurable, even if the tree is not separable.

Lemma 6.1.11.Let N be a measurable tree. The distance functiéfs, .) and the Busemann functio(8.1.2)
are measurable. Moreover, j§ is a connected component 8f\ {yo}, then the oriented distance functi¢h2.3)
is measurable.

Proof. The assertion concerning distance and Busemann functions is trivial since balls are measurable. For the
oriented distance function, we have to check i§ails measurable. Choose an interggj, y1) in yg and a sequence
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y(n) in this interval converging tgo; theny is in yg if and only if y(n) belongs to the argyo, y] for n large, so
we can write

38 =y 8G0.9) =8(30. y) + 8(y(m). y) .

n

and this set is measurabled
The following result will also be useful later.

Lemma 6.1.12.Let N be a complete tree, let be a distance or Busemann function, and (gt + > 0) be a
continuous path iV such thaty (y;) converges iR ast 1 co. Theny, converges inv.

Proof. Fix ¢ > 0. Fort large enough, we have

suply () — ¥ ()| <e.

s>t

Moreover, we deduce from the continuity of the path that y, belongs to{y,; t <u < s}, so

YO —yQsAy)<e
for s > t. Thus, from (6.1.3),

8(ys, y) =y (s) + v () — 27 (s A yr)
=) —vO)) +2(y () —y (s Ayr) < 3e
for s > ¢, and the convergence follows from the completenesg.of O

One can consider as in Definition 2.2.1 the barycentre for square integrable variables, then for integrable vari-
ables, and it is not difficult to extend the results of Section 2.

Proposition 6.1.13.The results of Propositiora.2.4, 2.3.5and 2.3.7hold true for measurable tre€for Proposi-
tion 2.3.50ne has to restrict to measurable functiofis

6.2. Stochastic calculus on a tree

As in Definition 3.1.1, an adapted cadlag procEs#s a measurable tree is said to be a semimartingafélf)
is a semimartingale for any measurable Lipschitz convex functiolm the general case, it does not seem easy to
find a characterisation, but in the continuous case, a single function is again sufficient for testing the semimartingale
property (as in Proposition 3.1.4).

Proposition 6.2.1.Fix a root O in the measurable tre®&/, and let|y| be the distancé (0, y). Then an adapted
continuous procesg, is a semimartingale if and only j¥;| is a semimartingale.

Proof. Suppose thatY;| is a semimartingale. Iff is a measurable nonexpanding convex function, we have to
prove thatf (Y;) is a semimartingale. By a standard stopping argument, we can suppogé thatd the variation

of its finite variation part are bounded by some cons@nBuppose also that is nonnegative ang (0) = 0 (the
general case immediately follows by adding fiaa constant and a multiple of the distanceQd. Let us study
f(Yy) conditionally onFy for some fixedYp = yg (this is possible because conditional probabilities existn

and we choosegg so that|Y;| is conditionally a semimartingale satisfying the above boundedness conditions). Fix
somen > 0. The functionf is convex on the arp0, yol; its right derivativef’ is a right continuous non decreasing



J. Picard / Ann. |. H. Poincaré — PR 41 (2005) 631-683 663

function, and we can choose a subdivisioa: (zx; 0 < k < K) of the arc[ O, yo] such that the oscillation of’ on
each ardz;, zx+1) is at mosty. The piecewise affine function defined on this arc by interpolation ffooan be
written as

K-1 K-1
G () =Y (F @) + 2820 ) L a1 0 = Y Pk ) Lyl ()
k=0 k=0

wherep; = A — Ax—1 > 0 (puti_1 =0), and
@) < e < fze) + .

ForO<k<K-1, Ietz,? be the connected component?®f, {z;} containingyo, and putz% = (. Theng, coincides
on[O0, yo] with the function

K-1 K-1
Fe =Y (f @)+ M )L (=D pid(er. »)Lo(y) (6.2.2)
k=0 k=0

which is convex onV. Moreover, fory in z{ \ z{ ; such thaty| < C, one has

FO) = f@)+ @)z, y) = fz) + O — m)8(zk, )
= fe(y) =nd(zk, y) = fe (y) — 2nC. (6.2.3)
On the other hand, from Lemma 3.1.5, the process

t
1
6<Zk,Y,>1zg(Yt)=8<zk,yo>+/1zg(Ys>d|Ys|+5Lf‘
0

is a semimartingale, so, by applying (6.2.2),

! /K-1
fe (YD) = fr (o) +/<Z Pklzg(Ys)) dIYs| + A
0 k=0

for a nondecreasing proceds. One has

k-1
S o=k 1= f(ZK) — fzk-1) <1
o (zk-1,2K)

(recall thatf is nonexpanding), so
t
f: o) —E[f: () | Fo] < E[/ |d Vs] | fo},
0
whereV; is the finite variation part ofY;|, and where the conditional probability is taken for our fiXeo= yo.
From (6.2.3) and sincg; (yo) = f (yo), we have
o) = F(¥) < fr (o) — fr (Yy) + 2nC, (6.2.4)

SO
t

FOo) —E[f(Y) | Fo] < E[ / Vs I}'o} +2C.

0
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We can letp tend to 0, and allowy to vary, so

F(Yo) —E[f(Y) | Fo] < EU ldVs] | f0:|-
0

If we write a similar inequality for any time interval, and by summing these inequalities for the intgrvals 1]
of a subdivision 010, ¢], we obtain

t
BY () - B[ (0,0 1 7,) T <E [lavi<c.
J 0

This implies as in the proof of Proposition 3.2.3 thé&tY;) is a quasimartingale, and therefore a semimartin-
gale. O

In particular, we see that the semimartingale propertydf=35(0, Y;) does not depend on the choice®f
Corollary 6.2.5. In Proposition6.2.1, we can replacéY;| by y (Y;), wherey is any Busemann functid6.1.2)

Proof. Suppose thay (Y;) is a semimartingale, where is the Busemann function associated to a RayVe can
again assume that lives in a bounded subsafy of N. Let O be a point in the unbounded connected component
of R\ No. Then|Y;| =48(0, Y;) is equal toy (Y;) modulo an additive constant, and is therefore a semimartingale.
Thus we can apply Proposition 6.2.10

Example 6.2.6.Consider the measurable stat of Example 6.1.8. Walsh processEscan be constructed simi-
larly to Example 3.0.1 on this space by choosing a probahilign the circle, see [34]. As it was the case 1o,
they behave like a Brownian motion on each ray, and when they arrige #tey choose a ray according to
Then|X;| is a reflected Brownian motion, %, is a semimartingale.

Example 6.2.7 Consider the measurable tt@ef Example 6.1.9, and the subtr&g = {y; S, = 0}. The Brownian
snake [22,23] and the Poisson snake (see for instance [1]) are two diffusiamsGg such that the lifetim&’y,
(the height of the snake) is a reflected Brownian motion. If we recalljtlia} = T, is a Busemann function, we
deduce from Corollary 6.2.5 that these snakes are semimartingales.

Example 6.2.8.By a slight modification of the construction, we can also consider Brownian and Poisson snakes
in G with real Brownian height (the snake becomes a worm). More preciseky, i§ a Brownian or Poisson
snake inGo with initial value X, = O defined bySp = Tp =0, a snakeX; in G with initial value Xo = x can be
constructed as follows. The heighy. is a reflected Brownian motion that we write as

Ty, =B; — s”%ft B
for a standard real Brownian motid®), andX, is defined by
Tx, =T + By, Sx, =Sy Ainf{Tx ;0<s <1},
and
wx, (Sx, +u) = wx ().

These diffusions are again semimartingales and will be further studied later. Notice that the Brownian snake lives
in the subtreds of x such thatw, is continuous onS,, Ty).
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Example 6.2.9 Consider a complete separable tree without leaves, choose gnamdilety; be the corresponding
Busemann function (6.1.2). Evans has constructed in [13] a family of diffusigms this space, so that (X;) is
a real Brownian motion. They are semimartingales.

In the above examples, the trees had no leaf. On the other hand, when the tree has many leaves, the semimartin
gale property is seldom satisfied by diffusions. Let us give an example.

Example 6.2.10.Consider the star and the diffusidfy of Example 5.3.7. Fix a point # O and letX, start at

O and stop at the first hitting timey of A (the process is recurrent ang is almost surely finite). We are going
to prove thatX, is not a semimartingale by checking that the local tim&6f at pointO and timet4 should be
infinite. The local time aD on the segment containingis some positive variable 4 . If Ny is a subtree consisting

of n segments and containing the trace ofX on Ny is the Walsh process with isotropic choicaaand reflection

at the endpoints. In particular, the local timestabn the different segments are equal, so the total local time is
equaltonL 4. By lettingn 1 oo, we see that the total local time should be infinite.

6.3. Quasimartingales

Quasimartingales can be defined as in Definition 3.2.1, and one can wonder whether the first two conditions of
Proposition 3.2.3 are again equivalent. One can indeed prove similarly that quasimartingales are transformed into
real quasimartingales by measurable Lipschitz convex functions (in particular they are semimartingales). However,
the converse is true for finite trees, but is not evident on infinite trees; we can actually describe a counterexample
for a nonseparable tree. This shows that quasimartingales are probably difficult to handle on general nonpositively
curved spaces.

Example 6.3.1.Consider the Brownian snakg, in G of Example 6.2.8. LefXg = xo and let us look for the
barycentreB[X;]. Consider the end associated to the ra)§, = T, < 0} and its Busemann function(y) = T;

the first common ancestor A y’ for this end has been described in Example 6.1.9.4.be some point of;

the pathwy, has a part which is common with,,, and the other part is governed by the Wiener measure, so has
almost surely no interval common with, . This implies that the only intervals whe#g andwy, can coincide are
those wherew, andw,, coincide, sox A xq is in the arc joininge andX,, and

S(x, X;) =08(x,x Axo) +8(x Axp, X;).

We want to minimise the quadratic mean of the left-hand side, and it is clear that we must Bave\ xg, SO
x = B[X;] should be an ancestor of. We have to comput&,, and we know tha¥, < T,,. The fact thatx is an
ancestor ofcg implies thatxg A X; is in the ardx, X;], so we have

O(x, Xy) =0(x,x0 AN X¢) +8(xo A Xy, Xy)
=|T, — inf TX; | 4+ TX; —inf Ty,.
st st
Moreover, we havdy, = Ty, + B, for a Brownian motionB,, so
8(x, X;) = |Ty — Ty — inf By| + B, — inf By.
st st

The differences (xo, x) = T, — T is obtained by minimising the quadratic mean of this variable, and the scaling
property of the Brownian motion shows thito, x) = c+/t. More generally,

8(XSa B[X; | fr]) =ct—S,
S0 X, is not a quasimartingale. However(X,) = Tk, is a real Brownian motion, and
y(x) +8(A, x) =25([A,§),x) + y(A)
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for any pointA. The process([A, &), X;) is from Lemma 3.1.5 a submartingale, &0, X,) is also a submartin-
gale. The method used in Proposition 6.2.1 enables to deducg tiat is a quasimartingale for any Lipschitz
convex function, so Proposition 3.2.3 does not hold true for this space.

6.4. Continuous martingales

Continuous martingales are defined as in Definition 3.3.3 (one has to restrict to measurable fufictions
Proposition 3.3.10 again holds true (a limit in probability of martingales is a martingale). The analogue of Propo-
sition 3.3.4 is given as follows.

Proposition 6.4.1.In a measurable complete trée, a continuous adapted procegsis a martingale if and only
if ¥ (Y;) is a local submartingale for any basic convex functjoof type(6.1.2)for an end or(6.1.4)for a leaf.

Proof. We have to prove that the condition is sufficient. Fix some p6in& connected componeit of N \ {0},
and let us first prove thal;|1x,(Y;) is a local submartingale. We suppose tiais not a leaf (otherwise this is
included in the assumption), we choose an end or a leaf which is also an end or leaf &¥ \ Ng, and we lety
be the basic convex function associated to this end or leaf. By applying Lemma 3.1.5, we have

t

|Yt|1No(Yt)=|YO|1N0(YO)+/1N0(Ys)dy(ys)+%,
0
so the left-hand side is a local submartingale. By adding expressions of this type, we can consider fyfactions
of type (6.2.2) and deduce thdt (Y;) is a local submartingale. Now consider a measurable Lipschitz convex
function f and let us studyf (¥;). We can restrict ourselves to the case whgréves in a bounded part o¥,
and by modifyingf outside this part, we can suppose tliags minimal at some poin®. We apply the method of
Proposition 6.2.1 and in particular (6.2.4) wiih, 0 to deduce that

f(Yo) <E[f (Y1) | Fo)-
A similar inequality for more general time intervals shows tfi@Y;) is a submartingale. O

Example 6.4.2.As in Proposition 3.3.4, on a finite tree, a continuous martingale is a process which is a local
martingale on edges and which, when hitting a vertex, chooses no edge with probability greate®tfiartle
sense of (3.3.5)).

Corollary 6.4.3. Let Y; be a continuous adapted processylfY;) is a local martingale for some basic convex
functiony, thenY; is a martingale.

Proof. Suppose for instance that= y¢ for some end, and let us check that (Y;) is a local submartingale for
other end€’ (the case of leaves is dealt with similarly). Consider the (ine&’). By applying Lemma 3.1.5, we
check thaB ((¢, ¢'), Y;) is a local submartingale, and we conclude by means of (6.115).

Example 6.4.4.The Evans processes (Example 6.2.9) are clearly martingales from Corollary 6.4.3.

Example 6.4.5.In G, if we use the Busemann functign(y) = 7, (see Example 6.1.9), Corollary 6.4.3 shows

that Brownian and Poisson snakes (Example 6.2.8) are martingales. On the other hand, if we consider the snake:
X, in Go (Example 6.2.7), the procegy, is a reflected Brownian motion, so we have to study more carefully

the behaviour ofX; when it is at the poinD defined byTy = 0. It appears that the Brownian snake is again a
martingale, but not the Poisson snake.
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Proposition 6.4.6.If (Y;; ¢t > 0) is a continuous martingale of clagb) on a complete tre&/, thenY; has almost
sure limits ag | 0 andt 4 oo, and(Y;; 0<t < 0o) is a martingale of clas§D).

Proof. If y is a distance or Busemann function, thef¥;) is a submartingale of class (D), so converges. Thus
Y; converges from Lemma 6.1.12. The extension of the martingale property to the compact iiftervais not
difficult. O

6.5. Martingales with prescribed limit

The uniqueness of a martingale of class (D) with prescribed limit is stated in the following result which is proved
like the results it refers to.

Proposition 6.5.1.1f § is measurable onv x N, the statements of Propositidh3.11and Corollaries3.3.12
and3.3.13hold true for measurable tre€for Corollary 3.3.13we suppose that the tree is complete and sepayable

For the existence, we have to extend the results of Sections 4 and 5. However, this can be done only for separable
trees.

Theorem 6.5.2The results of Sectiods1and4.2 (Theoren¥.1.4 Corollaries4.1.8and4.1.13 Propositionst.2.1
and4.2.2)hold true whenV is a separable complete tree.

Proof. We only consider Theorem 4.1.4. M is compact, the proof is similar. Otherwise, one considers a dense
sequencegy;) and the compact subtre@éy generated byyx; k < K). There exist martingales converging to
the projectionsy X of Y., on Nk, and at the limit, we solve the problem avi by applying the analogue of
Corollary 3.3.13. O

However, this result cannot be extended to non separable measurable trees.

Example 6.5.3.Consider the stalV = YS* of Example 6.1.8, and let us look for a martingale converging to a
variableY. If N is endowed with its Boreb-algebra, we have seen thAtmust be supported by a separable
subtree, so we are reduced to the above result. On the other hand, if we use Borel measurability for the Euclidean
topology, the existence of a continuous martingale does not always hold; suppose for instaticis thatvalue

at time 1 of a 2-dimensional Brownian motion; then

PlO(Y;)=0©(Y)]=0

for any adapted process and anyr < 1; thusY; cannot converge t& asr 1 1 (for the tree metric) because this
probability should converge to 1; this means that there does not exist any adapted continuous process With value
at time 1.

One can also adapt the Dirichlet form technique to separable complete trees. ThBS@éres defined as in
Definition 5.1.9. and we have the following analogue of Lemma 5.1.10.

Lemma 6.5.4.Let N be a separable complete tree which is embeddedéhts in Lemmas.1.6 Then a function
f:M — N isinD?(N) if and only if its componentg are inD” and the seried_ £(f;) converges. In this case,
(5.1.11)holds true.
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Proof. Use the notations of Lemma 6.1.6. Lemma 5.1.10 is easily extended to finite trees, so in particular to the
finite subtreesv,, of N. Define

gn(x)=)_ fix)

i=1

which is the projection off (x) on N,.. If f isinD(N), it is clear from the definition of this space thatshould
be inD?, g, should be iM?(N), and€(g,) < E(f). Sinceg, is N,-valued, we have

Egn) =Y _E(f),

i=1

so > &(f;) converges and is dominated Byf). Conversely, suppose that £( f;) converges, and les: N — R
be a nonexpanding function. Ther g, is in D? and

E(pogn) <ER) <Y EUD).

The sequencép o g,) converges t@ o f, so this function is i? and&(¢ o f) is dominated by E(fi). Thus
the definition ofD?(N) shows thatf is in this space and(f) is dominated by} £(f;). To complete the proof,
we have to studyf|. We have

E(1f1 = Ignl) =5<Zﬁ) < Iimminfé’( > ﬁ) =Y &)
i>n i=n+1 i>n
which converges to 0, anl(|g,|) is >_1 £(fi); we easily deduce th&l(| f|) is Y} E(f;). O

In particular, projection on the finite subtre®ds defines an approximation procedure for element®iv)
(they can be approximated for tBeseminorm).

Lemma 6.5.5.Lemmab.2.1holds true for separable trees.

Proof. Write again the tree as in Lemma 6.1.6, and let us check formula (5.2.2) for the finite\jre€onsider
an edgqz;, z; + aje;] with o; > 0, and the oriented functiog; of (2.2.3) associated to the connected component
of N, \ {z;} containingz; + «;e;. Then, ifw is the midpoint oft andv, we have

wi =min((Yi ou+ ¥ ov)T/2, ;).
This is the analogue of (5.2.3). Then one proceeds as in Lemma 5.2.#miitstead ofy;, and
Ai = {x € M; [u(x), v ] N [zi, 2 + aie;] # B}

The measure.,,) is supported by the disjoint sef® < w; < «;}, and each of these sets is includeddin We
deduce (5.2.5) and (5.2.2) fav,,, and extend the result v by approximating: and v in £-norm with their
projections orw,. O

Theorem 6.5.6 All the results stated in SectioB2 and 5.3 hold true for separable complete trees.
Proof. Proposition 5.2.6 is proved similarly. For the martingale property of Theorem 5.2.8, we have to prove

that (y o h)(X;r7) iS @ submartingale for any basic convex functipnlf y is a Busemann function, we use a
perturbatiom:¢ as in Theorem 5.2.8; by using the embeddingvaihto ¢! (Lemma 6.1.6), we have

y() =) i
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for somex; = +1, SOE(f) = E(y o f) for any f of D?(N), and we conclude as in Theorem 5.2.8y I Yy, for

some leafyy, it is difficult to use the same perturbatiaf (it will not be well defined ifz is too close to the leaf).
However, we can append a ray A at the pointyo; the functiony,, becomes a Busemann function for the new
tree; the functiork is also energy minimising with respect to the new tree, so we again deduce the submartingale
property, and the extension of Theorem 5.2.8 is checked. For Corollary 5.2.9, the limjtGss obtained from
Lemma 6.1.12. The other results are proved as in Section’5.

Remark 6.5.7.1f now we consider connected spadésvhich look locally like trees (namely graphs), the definition

of continuous martingales can be localised similarly to manifolds. The uniqueness result (Corollary 3.3.12) does not
hold any more since there can exist loops, and therefore closed geodegi¢s; ® < ¢ < 1) isaloop and ifB; is a

real Brownian motion stopped when it hits 1, thén= g(B;) andY, = g(0) are two different bounded martingales

with limit g(0). For the existence, we can use a method similar to Riemannian manifolds with nonpositive sectional
curvature, namely use the universal cover. Here we associate a tree to thevgrapine precisely, we fix a point

O and the treeV is the set of geodesiqg(¢); 0 < ¢ < L) with unit speed and origig(0) = O, endowed with a
distance similar to (6.1.10); the map: No — N defined byr(g) = g(L) is a projection. IfY, is an integrable
N-valued variable, we can find an integralVg -valued variableyY such thatr (Y] ) = Y, and construct the
No-valued martingal&, of class (D) with limitY/; thenY; = = (Y/) is aN-valued martingale with limi¥s.

7. Coupling of diffusions on trees

In Section 4, we have seen that when the probability space is generated by a diffusion on a separable metric
space(M, d), then the construction a¥-valued continuous martingales and the properties of the semigdoup
can be deduced from coupling properties of the diffusion. We now explain how one can couple some diffusions
when M is a tree (or more generally a graph) so that (4.1.6) is satisfied ((4.1.5) is generally easy to get); notice
however that! will not always be the tree distance (we have to use another one Whera nonseparable tree).

7.1. Coupling of spiders

As a first example, suppose thitis our baby treér’, and let us construct a couplititj-* for Walsh processes
(Example 3.0.1); let be the first meeting time, and suppose that the two proce§sead X; coincide after .
If L; andL] are the total local times a®, then, in the isotropic casg; = 1/¢, by applying the method used in
Proposition 3.3.11, it is possible to prove (see Lemma 3.3 of [33]) the equality modulo martingales

d(X,, X' ) L
0 Xp) Z—E( the + Ling)-

In particular, if we want the expectation of this expression to be small, then the processes should meet before or
shortly after the first one hit®; one cannot use a non coalescent coupling. Thus we have to construct a coupling
so that the probability ofo > ¢} is small. There are several possibilities; we can use independent processes, or try
to adapt Kendall's technique. We will describe a simple coupling for which the probabilities are easily estimated.
To simplify the notation, we will subsequently omit the superscrigiri .

Proposition 7.1.1.If X, is a Walsh process oM = Y*, then there exists an admissible coalescent coupling so that
the meeting time satisfies
d(x,x")

Nezik
In particular, we can apply Theoreth1.4and other results of SectiahwhenX; is a Walsh process. The nonlinear
semigroupQ; is regularising(Q; g is Lipschitz for any > 0 and any bounded mag).

]P’x’x/[o >1]<3

(7.1.2)
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Proof. We consider separately three cases according to the position of the initial jp@intb’,
1. one of the initial points i©,
2. the initial points are not in the same ray,
3. the initial points are in the same ray.

In all the proof, we will denote by, the law of the first hitting time of by a standard Brownian motion. Notice

that
1 ; 2 2
—x</(21) /
[2) dx <a,/ —. 7.1.3
Vet / wt ( )

—a

P[T, > t] =

First case.Suppose for instance that= O andx’ = ae; for a > 0 (Fig. 6). In a first step, we construct the
processes up to the first hitting timee of ae1/2 by X;; notice that this time is distributed liKE, ». Up to oy, we
wantd(x, X;) andd(x’, X;) to be identical reflected Brownian motions, so, for each excursion of this process, we
have to choose the side &f on R1 with respect tor’, and the ray in whiclk, evolves. This can be done from a
Walsh process, on a stary?¢ with raysRl.jE by putting, up too,

X, =l&lei, X;=(axl&l)er on{&eR’}).
The Walsh process is determined by the probc";lbilitiq'z;‘E of RijE which should satisfy

pr+pi=pi, Y_pi=) p=1/2
This means that we are reduced to find a coupling between a variafdle in, ¢} with law (p;), and a variable in
{+, —} with law (1/2,1/2). Then

o1 = inf{t 20; & efae; /2,1<i < E}},

and the processes, and X; meet at this time i,, = ae; /2; this happens with probability
PIXoy= Xy, =p1 [ Y b =2p7.

If the processeX andX’ do not meet a1, then at this time both of them are at a distan¢2 from the origin, but
on two different rayskR; and, sayR». In this case, we extend the coupling afterby using a standard coalescent
Brownian coupling on the geodesiy U R, (Example 4.1.10), namely

a a
X = <§+Bt _Bdl)elv X;: <§+Bl _Bdl)ez

Fig. 6. An example of coupling om3,



J. Picard / Ann. |. H. Poincaré — PR 41 (2005) 631-683 671

for a Brownian motionB;; the processes meet at the first hitting timeof O by X, which is distributed like7,.
Thuso is o1 or oo With o1 < o2 ~ T, SO

Plo >t]<P[T, >t]<a % (7.1.4)
with a = d(x, x"), and (7.1.2) is proved.

Second casé.et x andx’ be in two different rays, sag andR’, and suppose for instance that < |x’|. Then
we consider the usual coalescent Brownian couplingg@nR’ up to the first timesg at which X; hits O, and the
coupling of the first case after this time. The meeting time is again dominated by the first hitting tonieyok,
so (7.1.4) holds witlx replaced byx'| < d(x, x’), and (7.1.2) is again proved.

Third caselLet x andx’ be in the same ray, sa§, and suppose for instance that < |x’|. We consider the
coalescent Brownian coupling aty up to the first timesg at which either the processes meetXorhits O; in the
latter case, which happens with probability

x| — x| d(x,x")
I IR
we use afteby the coupling of the first case with= |x| + |x'|. The timeog is dominated in law by, /2, SO

P[X,o = O] =

Plo > t] < Plog > t/2] + Plo — 00 > t/2]

d(x,x")
SP[Tyc o> 1/2] 4+ 22 PIT o > 1/2
[Tax,xny2>t/2]1+ ] [Tixj ) > 1/2]
<d(x,x/) d(x,x') x|+ x| d(x,x")

+ = .
VTt x|+ |x| N/t Nt

Remark 7.1.5.In order to minimiser in the first case, it seems reasonable to maxirpiseFor instance, in the
isotropic casey; = 1/3 (for £ = 3), the probabilitiespl.i can be specified by

1] 2| 3
0 |1/4]1/4
—|1/3[1/12|1/12

+

The same procedure can be applied to the¥stawith countably many rays. If now we consider Walsh processes

onM =YS (Example 6.2.6), we cannot use the tree distaficéthe space is not separable), so we idengify
with R? and use the Euclidean distante

Proposition 7.1.6.ConsiderM = YS" and a Walsh process on it. M is endowed with the Euclidean distance
of R2, one can construct a coupling satisfying the requirements of Theéred:in particular, the semigrou,
exists. Moreover, if is bounded and > 0, thenQ, g is Lipschitz for the tree distance.

Proof. We use the coupling of Proposition 7.1.1. Then (7.1.2) holds for the tree distgrimg not fords, because

x andx’ can be close to each other i@ but not fords; this happens when they are not in the same ray (second
case of the above proof). So suppose that the initial points arée andx’ = £’¢’ with |e| = |¢/| =1, e # ¢’ and

0 < £ < &’; then, up to the first hitting timeg of O by X;, one has

da(X;, X7) = (€' + Br)e' — (5 + Be| <& =&+ (5 + Byle' —el.
The last term is a martingale so
E[d2(Xiro0: Xinop) | <& — & +&le’ —e| < Cda(x, x).
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S0 (4.1.6) holds forl, if we restrict the expectation tg > ¢}. On the other hand, ofvg < ¢}, we can estimate
the meeting timer as in (7.1.4) to get

2
!/ < / _
Plo >t Fol<(§ —§) e
and by proceeding as in Corollary 4.1.8, we obtain
E[d2(X:, X)) A 1] 7-'[,/0] <PE — &) < ¢(da(x, x)

with limg ¢ = 0. We deduce (4.1.6) and the conclusion of Theorem 4.1.4. The regularising propé&tyafthe
tree distance is obtained from (7.1.2) which holds fai. O

Then we can consider finite grapi where each point has a neighbourhood which is isometric to a neigh-
bourhood of the origin in a star. The coupling method of Proposition 7.1.1 can be localised in order to study Walsh
processes oM. It is sufficient to consider the case wharandx’ are close to each other; in this case, there is at
most one vertex between them, and there is a vepte¥hich minimises the distance 10 We consider the subset
of M consisting of the edges starting@t and apply the coupling of Proposition 7.1.1 on this subset; this can be
done up to the first time at which one of the processes hits a vertex differentrdine probability that this occurs
before the meeting time is small, so the requirements of Theorem 4.1.4 are again fulfilled.

7.2. Coupling of snakes

Let us describe a coupling technique which can be used for some diffusions on trees, including the Brownian
snake (Examples 6.2.7 and 6.2.8) and the Evans process (Example 6.2.9).

Fix a measurable tre® (recall Definition 6.1.1) and a height functignwhich is either a Busemann function
(6.1.2) or a distance function (6.1.4).4fis a process, we will denote k¥, the restricted proces¥,; s < u <1).

Definition 7.2.1. A continuous diffusionX; on M will be called a snake process with heighit= y (X;) If,
underP*, the relations between conditional laws
L(Too | Tor) = L(Too | IT7) (7.2.2)
and
L(Xst | Xos, Tooo) = L(Xsr | X, Tt) (7.2.3)
hold fors < t.
Condition (7.2.2) means that the procé$ss a Markov process for its natural filtration; condition (7.2.3) means

that the conditional law oX given I" is Markovian, and that estimating(; s < t) from I" only uses the values
of I' up to timer (write (7.2.3) fors = 0).

Lemma 7.2.4.If X, is a snake with height;, thenl; and X, are Markov processes for the filtration &f.

Proof. We have, fors <t and bounded measurabfeand¢,

E[f (I1o0)® (X0 | = E[ f (o) E[¢ (Xor) | Tosc]]
E[f(INoo)E[¢(Xo) | Tor]]
E[E[f (Ie0) | I7]¢(Xor)]
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where we have used (7.2.3) fo= 0 in the second line, and (7.2.2) in the third line. We deducefthetMarkovian
for the filtration of X. On the other hand,
E[f(Xs0) | Xos] = E[E[f (X5) | Xos, Tooo] | Xos]
=E[E[f(Xs0) | Xy, Tst] | Xos]
=E[f(Xs0) | Xs]

where we have used (7.2.3) in the second line and the Markov propeftyrothe third line. O

Notice that when; decreases, theX, is forced to follow the branch of its ancestors; on the other hand, when
I; increases, thei,; has a choice of branches at each vertex, and this is where the conditional Xagivén I”
is involved.

Example 7.2.5.0n the staii’*, Walsh processeX; are snakes for the height functiéno, .), and[; is a reflected
Brownian motion. One can also choose for the height function any of the Busemann fungtiand in this case
I is a skew Brownian motion. Coupling for these diffusions have already been studied in Proposition 7.1.1.

Example 7.2.6.0n a separable complete tree without leaves, Evans processes (Example 6.2.9) are snakes for the
Busemann functiog:, and; is a real Brownian motion.

Example 7.2.7.The Brownian and Poisson snakes@r{Example 6.2.8) are snakes for the Busemann function
associated to the er{d, = T, < 0}, andl; = Ty, is a real Brownian motion.

Example 7.2.8.The Brownian and Poisson snakes @p (Example 6.2.7) are snakes for the height function
y =68(0,.) where0 is the pointSp = Tp =0, andl; = Ty, is a reflected Brownian motion.

Proposition 7.2.9.Consider an Evans process on a separable complete tree without leaves. Then there exists a
coalescent coupling such that the meeting tamgatisfies

C
Plo > 1] < 7d(x,x’)(1+ log" (V/d(x,x"))). (7.2.10)
t
In particular, we obtain a regularising semigroup; such thatQ; ¢ is Holder continuous for > 0.

Proof. The idea is to use a standard Brownian coalescent coupling of the height profeased”, (notice that
I and I’/ have the same filtration), and then to use a conditionally independent couplifggiod X’ defined by
ESY[F(X0g(X) | T =E*[f(X) | B [g(X') | ]

Let us prove that this is an admissible coupling such tkatX’) is Markovian, and that the first meeting time
o satisfies (7.2.10); then we will modif¢X, X’) aftero so that they coincide. It is clear that and X’ have the
correct law. From the conditional independence and (7.2.3),

E[f(th)g(X;z) | Xos, Xé)s, FOoo] ZE[f(XS;) | Xos, FOOO]E[g(X;t) | Xé)s’ FOoo]
=E[f(Xs) | X5, T JE[g (X)) | X5, T, ]
=E[f(Xs)8(X;) | X5, X}, Ty, T, (7.2.11)

so(X, X') satisfies a relation similar to (7.2.3). By proceeding as in Lemma 7.2.4, we chedk,thaand(X, X’)
are Markovian for the filtration ofX, X’). Moreover
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E[f(Xs0) | Xos, Xo,] = E[E[ f (Xs1) | Xos. Xgg. Tooo] | Xos. X ]
=E[E[f (X)) | X, Tt ] | Xos, X ]
=E[f(Xs) | X,]
where we have used (7.2.11) in the second line and
LTy | Xog, X)) = LT | Iy) = LTy | Xy)

in the third line, saX is Markovian for the filtration of X, X’). The same property of course holds 6, so the
coupling is admissible. If (x) > u, denote bylT, (x) the ancestor ok at heightu. Notice thatX, = ITr, (x) at
each time at whicll; = inf,«, I';. Moreover, the first meeting time of X and X’ is the first time at which

Li=1)=f I3 A L) Ay (x AxD.

Let us estimate this time. By adding a constany tave can suppose for instance that
y)y=a, y)=-a, yxnrx)=-b,

forO<a <b=d(x,x")/2. The process; is a Brownian motion starting at the first hitting timeog of 0 is also
the meeting time of” and I’ and is distributed likeT,, (the hitting time ofa by a standard Brownian motion).
Then let

I'* =suply; s <og} =—inf{I}; s < oo}
which is F,,-measurable. The meeting timreis

o=inf{t >00; —I[; >T*VDb}. (7.2.12)
One has

Plo > t] < Plog > t/2] + Plo — og > t/2].

The first probability is estimated from (7.1.3) sineg ~ T, and for the second one, notice that conditionally
on F,, the variabler — og is distributed like the first hitting time of™* v b by an independent Brownian motion,
so

I'*vb
Plo —og>1/2| Fyl= / e/ dz.
Tt
0

il

On the other hand, for > a, saying thatl"* > z means that the Brownian process— I quits the interval
[—a, z — a] at the pointz — a, SO

P>z =2
Z

Thus

+

o0

Plo — o0 > 1/2] = PII™* Vb >zle s/ dz

2
Nt

o0

I

S+ O

2 b
e/t 2
dz + /e_zz/tdz
Z Nt
0
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+00

b

2a / e—zzd N 2 /‘ —y

= z ' z

ATt Z ATt
b/\J1 0

(1+log" (V1/b)) +

C C
< —a
t

—b
Vit NG
C/ / —+ /
< —ﬁd(x,x )(1+logt (Vi/d(x, x))).
We can deduce (7.2.10).0

Proposition 7.2.13.Consider the Brownian snakg; in G¢ of Example6.2.8 and denote the tree distance by
di1. There exists another distandge which make$:“ separable, and for whiclX, is continuous, measurable and
satisfies the assumptions of Theorérh.4 If Q, is the resulting semigroup, ¢ is Holder continuous for the
distanceds for g bounded and > 0.

Proof. The distancel, is defined by

b6, x) =Ty =T +1S¢ = e+ sup |op() — o). (7.2.14)
Sy VS SuKTi ATy

ThenG¢ is separable, and it is not difficult to check thtis continuous and measurable. We have to construct a
coupling satisfying (4.1.6) fad,. Consider

G. ={yeG S, <0}

This set acts ofs¢ as follows; ifx € G andy € G, we definez = y x x in G° by

T,=T,+T,,  S.=S8A(Tx+Sy).
@ wy (1) for Sy <u<T:+S,,
P 0n (T + ) + oy —T) for Ty + Sy <u < Ty + T,

if Sy <Tx+S,,and
o) =wyu—-T,) forT,+S, <u<T,+T,

otherwise. Intuitively, the action of consists in erasing the path betweerT, 4 S, and7,, and then in completing
this path betweefd + S, and7, + T, by usingw, as increments. In particular, @ is the pointSp = Tp =0,
thenO x x = x. Notice also that

T, =Ty = do(y*x,yxx") <do(x,x'). (7.2.15)

If Z, is a Brownian snake with initial valugy = O, thenZ; lives inG_ and we can check that; » x is a Brownian
snake with initial valuer (the Brownian snake can be viewed as a Lévy process). The coﬂPﬁH’ﬁgjs then defined
as follows; by viewingX, as a snake, we first use the coupling of Proposition 7.2.9 up to thestiofg7.2.12);

after that time, we consider an independent Brownian siakeith Zo = O, and put

Xi=Zi—o*Xg, X, =Zi—o%X,.
This is an admissible coupling, and (7.2.15) enables to show that
do(X;, X)) < do(Xg, X)) <do(x, x')

on {¢t > o}. The probability of{c > ¢} is estimated by (7.2.10), and an adaptation of Corollary 4.1.8 enables to
obtain (4.1.6). The regularising property @f is obtained with the method of Proposition 7.2.91
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Remark 7.2.16.A modification of the method enables to study the Brownian snak&in

Remark 7.2.17.The Poisson snake is more delicate to study. It lives in the subgetvath piecewise constant
integer-valued paths, but (7.2.14) does not make this space separable. We can use the distance

T AT

do(x,x") =Ty — Ty |+ |Sy — Sx| + / Ly )y du.
SXVSX/
However, the above proof cannot be directly extended because (7.2.15) is false for this distance.

8. Stochastic calculus with jumps

Let us now study cadlag processes in trees. We have already considered cadlag semimartingales, so let us focu
on martingales. The case of smooth manifolds has been considered in [26]. For trees, we look for a definition
generalising the notion of discrete martingale used in (4.0.1) or [32].

8.1. Martingales with jumps

We have seen in Section 2.3 that the barycentre of a variable is not characterised by the Jensen inequality, but
by its semi-localised version. The idea is to define cadlag martingales by means of this inequality and by using
partially convex functions, similarly to the definition of continuous martingales using globally convex functions.
We again consider a measurable thee

Definition 8.1.1.A cadlag adapted proce%sis said to be a martingale if the following condition is satisfied; for
any connected open subsgtof N, for anye > 0, for any Lipschitz measurable functigh and for any stopping
timestg < 11, if f is convex on all the geodesics intersect@@nd if§(Y;, G¢) > ¢ for 1o <t < 11, thenf(Y;) is

a local submartingale on the intervad, 71].

Example 8.1.2.Continuous martingales of Definition 3.3.3 are also martingales in this sense because one can
modify f outsideG in order to obtain a function which is convex éh

Example 8.1.3.If (Y,;; n € N) is a discrete martingale in the sense that it is integrableYand B[Y, 1 | .1,
then it follows from Proposition 2.3.5 that the piecewise constant process which is eqiabtdn, n + 1) is a
martingale for the piecewise constant filtration.

Remark 8.1.4.In Definition 8.1.1, we can use

Ty = inf{t > 10;8(Y;, G) < 5}
and we obtain the stopped procéss= VACORDY which is a local submartingale for> . If we lete | 0, we
obtain a limiting local submartingalg, but V; is not aIwaysf(me). Itisequaltof(Y;) on{rog <t < rf}, and
on{r> rf}, itis f(YTf) if er_ isin G, and it isf(YTf_) otherwise.

Martingales are of course semimartingales, and by uging = |y|, we see that they are locally of class (D).
If f is a Lipschitz measurable function which is a difference of convex functions, fGEn is a semimartingale
which is the sum of a local martingale and a predictable proiz,';:efswith finite variation, and iff is convex on the
geodesics intersecting, then Definition 8.1.1 says that/ should not decrease g¢iii_ € G}.

Similarly to Proposition 6.4.1, we are going to check that it is sufficient to consider some fungtions
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Proposition 8.1.5.In a complete measurable tree, lBtbe a cadlag adapted process which is locally of cld3s
and suppose that the condition of DefinitiBri.1 holds true for oriented functiong = v (yg..) and G = yg
(recall (2.2.3)) Theny; is a martingale.

Proof. By a stopping argument, we can suppose thas of class (D). We first check as in Proposition 6.4.1 that
if O is a point and ifNg is a connected component df\ {0}, then

Vi = 1Y 1ny (Y1) (8.1.6)
is a submartingale. Notice that this process is the positive patf; 6t v (No, Y;). We follow the method of
Lemma 3.1.5 and introducg = 0,

T = inf{z ‘L',;,l; Vi <e/2},

>
. =inf{t > 7; V, > ¢}

Our assumption implies thdi, is a submartingale ohr,éfl, 7 ]; we deduce thaV; v e = U; v ¢ is also a sub-
martingale on these intervals. On the interjals 7/ ], the proces#; Vv ¢ is nondecreasing (it is up tor; and can
have a positive jump at this time), so this process is a submartingale on the whole time interval. By l¢tfing
we deduce thav; is a submartingale. Now consider a functigna subsetG as in Definition 8.1.1, and stop
when it is at a distance less thaifrom the complement of;. We suppose thak is bounded, thatg is in G, and
we want to prove that

E[f(Y)) | Fo] = f(yo) (8.1.7)

for Yo = yo (other time intervals are dealt with similarly). There are two cases.

First case.If the restriction of f to G is minimal at some poin© of G, we can consider the af©, yo] and
introduce the functiory; of (6.2.2) associated to a subdivision of the arc. The fact fhiatconvex on geodesics
containingO implies that (6.2.3) and (6.2.4) again hold. The proce8sas Y,)lzg(Y,) are of type (8.1.6), so are
submartingales. Thug (Y;) is a submartingale, and by lettimg| 0 in (6.2.4), we obtain (8.1.7).

Second cas®therwise, the infimum of on G is obtained at some poiii2 on the boundary. We again consider
the arc[ O, yol and a functionf; similar to (6.2.2), but the first termpd (zo, y)lzg (y) (wherezop=0 andzg is the

connected component @f \ {O} containingyp) has to be replaced bymp(zg, y). Then (6.2.3) holds with this
change. The proceﬂs(zg, Y;) is a submartingale from our assumption,50Y;) is again a submartingale, and we
conclude as in the first case

Remark 8.1.8.Not all the pointsyp have to be considered in Proposition 8.1.5 because some fungtiogs.)
are obtained by translation from each other; in the case of a finite tre€ withes, we only need 2unctions; for
the starY?, we need the functionsy;.

Proposition 3.3.10 (the limit in probability of a sequence of martingales is a martingale) cannot be extended to
cadlag processes without additional integrability conditions, but this is not surprising since it is already false for
real martingales (considéf’ = Z!' — r where Z} is a Poisson process with intensityrland jumps of sizer,
which converges t&; = —t).

The analogue of Proposition 6.4.6 is the following one.

Proposition 8.1.9.If (¥;; 0 <1 < o0) is a cadlag martingale of clag®) in a separable complete tre¥, theny;
has almost sure limits as| 0 and ast 1 co.
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Proof. Contrary to the continuous case (where it was sufficient to apply Lemma 6.1.12 for the two convergences),
we need separate proofs.

Convergence as/, 0. We use the embedding of into ¢! of Lemma 6.1.6, and the subtrels. The projection
onto N, is defined byiT,(y) = "1 yi. Fore > 0, we have

o0
E§(Y1, Ny) =E8(Y1, IT,(Yn)) =E Y |¥i|<e.
i=n+1

if n large enough. On the other hand, the proé&¥s, N,,) is a submartingale of class (D), so

P[ sup 8(Y;, [T, (Y)) > Ve ] < Ve.

0<r<1

We deduce that there exists a subsequence sucliffidt) converges almost surely uniformly 9. But for n
fixed, the components dff, (Y;) are submartingales of class (D), so they converge|ad and we can conclude.

Convergence as? co. Let y be a Busemann function (we can append a ray tid it has no end). Fixc > 0,
let Z, be the ancestor df; at height

y(Z) =y(¥;) —e,
let Z,O be the connected component®f\ {Z;} containingY;, and put
t=t(@t)=inf{s >1; Y, ¢ Zto}.

Consider som@ < ¢ which will be chosen later (it will be a function e). We know thaty (Y;) is a submartingale
of class (D), so it converges almost surely, and

P[A]<n with A, = {sgp|y(m —y(¥p| =n} (8.1.10)
s>t

if ¢ is large enough. We consider the oriented distance funoﬁi(ﬂ‘t?, .) which is convex on geodesics intersect-
ing Z,O. By applying Remark 8.1.4, we obtain a procéss; s > ¢t) which is a submartingale of class (D); we
have

W(ZO, Y,) forr<s<r,
Vi=1 929 v, fors>tandY,_ #Z, (8.1.11)
0 fors >t andY,_ = Z;.
We know thatV, converges to &, and
e=V,=EV,<EV,. (8.1.12)

SinceY is of class (D), the family of all possible variabl&s is uniformly integrable; by applying (8.1.10), we
deduce that

E[|V: [1a,] <o) (8.1.13)
with limg ¢ = 0. On the other hand, on the evettt, the third case of (8.1.11) cannot happen, so
Ve=y(Z. V) = —8(Zi. Yo) =y(Z) —y(Yo) =y (Y) —y(Yr) —e<n—e¢ (8.1.14)

on A N{r < oo}. On A N {r = oo}, we have
Ve =8(Z:,Ys)=y(Xs) —y(Z)=yXs) —yX)+e<n+e

fors >1¢, so
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Visn+e. (8.1.15)
By using (8.1.12) and (8.1.13) ofy, (8.1.14) onA{ N {r < oo}, (8.1.15) onA¢ N {t = oo}, we obtain

e KE[V: 14,1+ E[V; 1A§'ﬁ{r<oo}] +E[V: 1A;'ﬁ{r=oo}]
<P — (e —MP[A] N{z <00} +e+7
SO
n ¢ +n
&E—n
for ¢ large enough. We can choogeso that the right-hand side is boundedsbyhus the eveni¢ N {r = oo} has
probability at least 1 &, and on this event, one has

8(Yr,Yy) SO(Zs, Yy) +6(Zs, Yy) S 26+ 1< 3,

P[A; U{r < oo} =P[A{ N{r < 0o}] +P[A]1 <7

SO
P[sups(Y;, Yy) > 3¢] <e

s>t

for ¢ large enough. The completeness\doEnables to conclude.o

Remark 8.1.16.For the convergence ag, 0, the procesg; has not to fully satisfy the conditions in the definition
of martingales; it is sufficient to assume that it is transformed into submartingales by convex Lipschitz functions.

8.2. Martingales with prescribed limit
We first extend the uniqueness result.

Proposition 8.2.1.Proposition3.3.11and Corollaries3.3.12and 3.3.13hold true for cadlag martingales in mea-
surable treegthe tree has to be complete for Corolla3y3.13)

Proof. Let us first prove the extension of Proposition 3.3.11, namelyfhat §(Y;, Z;) is a local submartingale

for martingalest; and Z;; we can suppose that they are of class (D). With the notations of Proposition 3.3.11, if
D, <¢&/2,thenD, v ¢ is nondecreasing ofy. Otherwise, we again take the midpoiiand we notice thal’ and

Z do not crossA on I except perhaps at timg 1. Let A% and A? be respectively the connected components of
N \ {A} containingY,, andZ,,, and consider the oriented distance functjon= V¥ (AP, ). Then we have

D 2 Yp(Zy) — yp(Yr) (8.2.2)

with equality fort; <t < 7x41. The functiomyg is convex on geodesics intersectiag, and concave on geodesics
intersectingA®, so our definition of martingales implies that the right-hand side of (8.2.2) is a submartingate on
thusD, andD; v ¢ are submartingales di. We can deduce by letting| 0 thatD, is a submartingale on the whole
time interval. The proof of Corollary 3.3.12 is straightforward. For Corollary 3.3.13, we prove like previously that
Y" has a limitY, and thatY; is of class (D) and transformed into a submartingale by any measurable Lipschitz
convex functionf. However we have to localise this property and prove the condition of Definition 8.1.1. So we
let f andG be as in this definition, and consider

t=inf{r > 0;8(Y;, G°) <&},

" =inf{r > 0;8(Y/", G°) <e/2}.
Then f (Yp) is the limit of f(Y{)),

fOG) SE[f (Vs nen) | Fo) (8.2.4)

(8.2.3)
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and

E|f (Y] open) = fXind) | S CES(Y 4 pn Yinenen) + CES(Yinznen, Yine).

The variables involved in the right-hand side are uniformly integrable, the first term tends to 0 from the convergence
of Y" to Y, and the second term tends to O becdBig¢ < ] tends to 0. Thus this expression tends to 0, and by
taking the limitin (8.2.4), we obtain

F(Yo) <E[f(Yinr) | Fo.

We can replace 0 by another stopping time and deducé/ttestisfies the condition of Definition 8.1.10
For the existence, like previously, we consider successively the coupling and energy methods.

Theorem 8.2.5The results of Sectioh(Theoren#.1.4 Corollaries4.1.8and4.1.13 Propositionst.2.1and4.2.2)
hold true for cadlag Markov processes and provide cadlag martingales in separable complete trees.

Proof. Let us look at Theorem 4.1.4 (the proof of other results is straightforward). We use as in Section 4 the

discrete martingale®;, = h4 (1, X;,) and obtain at the limit a continuous functiarand a process; = (¢, X;)

which is transformed into submartingales by Lipschitz convex functions. We have to check the condition of Defi-

nition 8.1.1. This is done as in the last part of Proposition 8.2.1 but we have to take into account the fact that the
approximations’* = h“# (¢, X,) are not defined for all time but only on the subdivisiotis. We definer andt”

asin (8.2.3), let" be the first time aftet in A,, take a dyadic time, and replace (8.2.4) by

FYG) SE[f(Y]sgnnen) | Fo)-
Moreover,
E‘f(Y[n/\o-"Ar") - f(YIAT)| < CES(Y[nAO-”ATVM Yt/\(f”/\‘[") + CEB(YI/\(T”/\‘["a Yt/\o") + CE(S(YI‘/\Unv Yt/\T)'

The first term tends to 0 from the convergencedf to i uniformly in ¢, the second term tends to 0 because
P[e" > "] tends to O (this also follows from the convergencé 6f), and the third one tends to 0 from the right
continuity of Y. O

Example 8.2.6.The proces; can be the solution of a stochastic differential equations with jumps; we obtain the
existence of martingales with prescribed limit on Wiener—Poisson spaces. However, we do not know coalescent
couplings in this setting.

We now apply the energy method and extend the results of Section 5. We consider a Dirichlet form which is
defined through its Beurling—Deny decomposition (see Section 3.2 of [14]). We have

1
ENH=EWN+ Ef |f(x1)—f(X2)’2J(dx1,dxz) (8.2.7)

where&¢ is a strongly local Dirichlet form and is a symmetric jump measure (we suppose that there is no killing
inside M). We can consider the energy measufc;> associated to the local paft so that&c(f) = u§f>(M). It

can be extended to functionsof D'°, and the spacB” is the set of bounded functions of D'° such that the
energy&e(f) defined by (8.2.7) is finite. IMy is a relatively compact open subsetMf we define like previously
the spacé))g. We suppose that for each compact sulisgtthere exists another compact subset> K such that
J(K1 x K5) = 0. With this condition, one can extend the proof of Lemma 5.1.8.

The form¢& is associated to a Hunt process Its jumps are described by the measdirén particular, the above
condition says that i, is in K1, thenX, must be inK>.
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If we now consider our tre&/, we can consider the spaB¥¢(N) of functions f such thaw o f is in D'°¢ for
any Lipschitz functionf. The energy£¢( f) can be defined on this space as in the local caseD4ad) is defined
as the space of bounded function®f D'°°(N) such that

1
EN=EN+5 / 82(f (x1), f(x2))J (dx1, dx) < 00, (8.2.8)

Theorem 8.2.9.Consider a nonlocal Dirichlet form of typg@®.2.7)satisfying the above conditions and a separable
complete treeV. Assume the absolute continuity conditi@2.10)and suppose that suppose that bounded real
functions which are harmonic on an open subseMofire continuous on this subset. ThenM§ is a relatively
compact open subset 8f and if g is in D?(N), there exists a unique energy minimising niajn ID)g(N); this
map has a continuous modification, ahdX,..) is a martingale. Moreover, cadlag martingales with prescribed
limit exist if the form is conservatiy@heorenb.3.1) and the semigrou®, does not increase the ener{Bropo-
sition 5.3.3)

Proof. The proofs of the statements of Theorem 5.3.1 and Proposition 5.3.3 are similar to the continuous case, so
let us prove the first part of the theorem. By considering separately the local and jump parts, the inequality (5.2.2)
holds for energies of two functions and their middle function; it indeed holds for the local hahd for the jump

part, we use

1 1
8% (w(x1), w(x2)) < 552(u<x1), u(x2)) + Esz(v(xl), v(x2))

- %(a (). v@p) — 8(u(x2). v(x2)))?

which is a consequence of the non positivity of the curvature (see for instance Corollary 2.1.3 of [20]). We deduce
as in Proposition 5.2.6 the existence of a minimising functiand of the corresponding procegs= i (X;). We

can also prove with the method of Theorem 5.2.8 or 6.5.6 fli&#}) is a submartingale for any Lipschitz convex
function f. This is not sufficient to prove thdf, is a martingale, but this is sufficient to apply the method of
Corollary 5.2.11 and prove the existence of a continuous modificatian(apply Remark 8.1.16 to obtain(x)

as the limit of2(X;) underP*). Now (see Proposition 8.1.5), we have to consider an oriented distance function
¥ =¥ (y§,.) Which is convex on geodesics intersecting the open sulisetyg. For e > 0, consider the open

sets

Ge={y: 8(y.G) > ¢},
M, = {x € Mo; h(x) € G.}.

Let p be a nonnegative function @?” which is 0 outsideM,. Then we can defing,’ as the translation of step
ne(x) in the direction ofyq (it is well defined ifn is small enough), and the corresponding perturbaiitin) =
T (h(x)). We apply (8.2.8) to express(f), (8.2.7) to expresg (¥ o h), and notice that¢(h) = E°(¥ o h).
Thus

1 1
E)=EWoh)+ > / 82(v o h(x1), ¥ 0 h(x2))J (dx1, dx2) — > /(%ﬁ oh(x2) =y o h(Xl))ZJ(dXL dx2)

1
=EWoh +3 / ¥ (h(x1), h(x2))W (h(x2), h(x1))J (dx1, dx2) (8.2.10)
with
Y (y1, y2) =8(y1, y2) + ¥ (y2) = ¥ (D).

Notice that¥ is nonnegative, and the produgt(yi, y2)¥ (y2, y1) is nonzero only wheny, y1 and y, are not
aligned. Ifyg, h(x1) andh(x2) are aligned, then the perturbation keeps them aligned so does not modify the term
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in the integral of (8.2.10). If they are not aligned, then after the perturbation, either they become aligned, or the
perturbation on? (h(x1), h(x2)) is —2np(x2) for n small. Thus it appears that the perturbation cannot increase the
integral of (8.2.10). Since it cannot decre@i@), it cannot decreasé(y o h). We deduce as in Theorem 5.2.8
thatE(y o h, p) is nonpositive, s@y o h)(X;) is from the analogue of Lemma 5.1.8 a submartingale up to the first
exit time of M. Thush(X,) is a martingale. O
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