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Abstract

In this paper we examine the zero and first order eigenvalue fluctuations for theβ-Hermite andβ-Laguerre ensembles, usin
tridiagonal matrix models, in the limit asβ → ∞. We prove that the fluctuations are described by multivariate Gaussia
covariance O(1/β), centered at the roots of a corresponding Hermite (Laguerre) polynomial. The covariance matrix
expressed as combinations of Hermite or Laguerre polynomials respectively.

We show that the approximations are of real value even for smallβ; we can use them to approximate the true functions e
for the traditionalβ = 1,2,4 values.
 2005 Elsevier SAS. All rights reserved.

Résumé

Dans cet article on examine les fluctutations d’ordre zéro et du premier ordre pour les valeurs propres des e
β-Hermite etβ-Laguerre, en utilisant les modèles de matrices tridiagonales, dans la limiteβ → ∞. Nous prouvons que le
fluctuations suivent des distributions gaussiennes multivariées de covariances O(1/β), centrées sur les zéros des polynôm
correspondants. Les matrices de covariances elles mêmes s’expriment en termes de polynômes d’Hermite ou de Lag

Nous montrons que les approximations sont très bonnes, même pour les petites valeurs deβ. On peut les utiliser même pou
les valeurs traditionnelles deβ : 1,2,3,4.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

This paper provides insight into the shape of random matrix laws such as the finite semi-circle law, th
quarter-circle law and its generalization. We investigate, in a completely rigorous and mathematical fash
zero and first order fluctuations for theβ-Hermite andβ-Laguerre ensembles at largeβ.

We begin with a simple example. SupposeA is a randomk × k complex matrix with real and imaginary parts
i.i.d. standard normals. LetS = (A+AH )/2 be the Hermitian part ofA. The matrixS has a distribution commonl
known as the Gaussian Unitary Ensemble; this matrix distribution and the joint distribution of its (real) eigen
have been well studied. For a good reference on the subject, see Mehta [10].

We draw below histograms of normalized eigenvalues taken from this distribution, the known theoretica
bution (see [10, page 93]), and the semicircle limit corresponding tok → ∞. For the histograms, we have chos
40 000 samples from the GUE withk = 4 andk = 6.

Notice, for k finite, the k “bumps” in the distribution that wiggle above and below the semi-circle. A
ural question to many engineers, physicists, mathematicians, and other scientists who have seen these
whether they can be well approximated by the sum ofk appropriately chosen Gaussians. (Of course whenk = 1,
this is exactly true.) The answer, as proved in this paper, is yes. We give a sum of Gaussians approximati
asymptotically correct for theβ → ∞ limit but useful even for small values ofβ.

For those well versed in random matrix theory, the GUE is theβ = 2 case of a Hermite matrix ensemble [1
Had we started withA real (quaternion), we would have the Gaussian Orthogonal (Symplectic) Ensemble
sponding toβ = 1 (β = 4).

The joint eigenvalue densityf H
β (λ1, . . . , λk) defined onRk for thek eigenvalues for an arbitraryβ > 0 is given

in the formula below.

f H
β (λ1, . . . , λk) = (2π)−k/2

k∏
j=1

�(1+ β/2)

�(1+ jβ/2)

∏
1�i<j�k

|λi − λj |β e−∑k
i=1 λ2

i /2. (1)

Note the “repulsion” factor∆(Λ) ≡ ∆(λ1, . . . , λk) ≡ ∏
1�i<j�k |λi − λj |.

Similarly, for thek × k Laguerre ensembles of statistics (Wishart matrix theory), the joint eigenvalues d
FL

β,a is defined on[0,∞)k for arbitraryβ and parametera > (k − 1)β/2 (for thek × n Wishart ensembles o
β = 1,2,4, a = nβ/2). Once again note the repulsion factor∆(Λ):

f L
β,a(λ1, . . . , λk) = cL

β,a

∏
1�i<j�k

|λi − λj |β
k∏

i=1

λ
a−(k−1)β/2−1
i e−∑k

i=1 λi/2, (2)

where

cβ,a = 2−ka

k∏
j=1

�(1+ β/2)

�(1+ jβ/2)�(a − (k − j)β/2)
.

In [5], we have found (real) tridiagonal matrix models whose eigenvalue distributions are given by (1) a
we depict the distributions in Table 1. Note that the variables have either standard normal distributionχ

distribution (sometimes scaled by
√

2 ).
For generating efficiently eigenvalues for theβ-ensemble distributions, we recommend using the tridia

nal/bidiagonal model above.
The marginal density of a single eigenvalue (known as the level density) can be computed exactly as a

of x in the case of the Hermite ensembles forβ an even integer (with the help of a formula found by Baker
Forrester [2]), using the MOPS (Multivariate Orthogonal Polynomials symbolically) software [6]. For generalβ
no closed-form formula is known, but it is likely that computational (approximation, if not symbolical) techn
are not far out of reach.
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Table 1
Tridiagonal matrix models for theβ-Hermite andβ-Laguerre ensembles with anyβ > 0

Hermite matrix
k ∈ N

Aβ ∼ 1√
2




N(0,2) χ(k−1)β

χ(k−1)β N(0,2) χ(k−2)β

. . .
. . .

. . .

χ2β N(0,2) χβ

χβ N(0,2)




Laguerre matrix
k ∈ N

a ∈ R

a >
β
2 (k − 1)

Lβ = BβBT
β , where

Bβ ∼




χ2a

χβ(k−1) χ2a−β

. . .
. . .

χβ χ2a−β(k−1)




Fig. 1. Histograms of eigenvalues, finite (k = 4,6) exact level densities, and semicircle law (k → ∞) for matrices of the GUE ensemble.

For fixedk and generalβ one finds that forβ getting larger, the bumps of Fig. 1 get “bumpier”. To be prec
for the Hermite ensembles, we prove here that atβ = ∞ the bumps become delta functions at the roots of
kth Hermite polynomial, while forβ large, the bumps behave like Gaussians centered at these roots with va
O(1/β).

The model ofβ as an inverse temperature is apparent from (1). Asβ goes to 0, the strength of the repulsi
factor∆(Λ) decreases until annihilation; the interdependence among eigenvalues disappears, and the ran
increases (each eigenvalue behaves like an independent Gaussian). In the frozen state (β = ∞), we can imagine
thek eigenvalues fixed at the roots of the Hermite polynomial. Warming the system a little (β very large but not
infinite) gives the particles a little energy, and the eigenvalues have Gaussian distribution to first order aro
Hermite polynomial roots.

Similarly, in the Laguerre case, atβ = 0, the eigenvalues become i.i.d. variables with distributionχ2
2a . As β

grows the eigenvalues have Gaussian distribution to first order around the Laguerre polynomial roots,
β = ∞ we reach the freezing point when the eigenvalues are fixed at those roots.

In the following, we use first order eigenvalue perturbation theory and the tridiagonal ensembles in [5]
orously investigate this phenomenon mathematically obtaining precisely the asymptotic variance along
mean.

These results draw a parallel to the Tracy–Widom laws [13,14] for theβ = 1,2,4-Hermite ensembles, late
extended toβ = 1,2-Laguerre ensembles by Johansson [8] and Johnstone [9].
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The Tracy–Widom laws compute the fluctuation in the distribution of the largest eigenvalue of aβ-Hermite
ensemble withβ = 1,2,4, ask → ∞, and obtain it in terms of the solution to a Painleve differential equa
From the semicircle law, we know that asn → ∞, regardless ofβ, the largest eigenvalue (scaled by

√
2kβ ) goes

to 1. From Theorem 3.1, constrained toi = 1, with the help of [11] and [1, page 450], we obtain Corollary 3
which gives an intuition of how theβ = 1,2,4 Tracy–Widom distributions evolve towards a normal distributio
β = ∞ (as we state in Remark 3.5, we strongly believe that the limits in Corollary 3.4 are interchangeable)

The theoretical results of Section 5 are similar to the “Central Limit Theorems”, i.e. the computation
global fluctuations from the semicircle and semicircle-type laws done by Johansson in [7] for Hermite-like
bles of anyβ and by Silverstein and Bai [12] for a class of Laguerre-like ensembles with real or complex e
(β = 1,2). Roughly said, the eigenvalues can be thought of as fluctuating (like Gaussians) around the
the corresponding orthogonal polynomial asβ grows large; if one letsn grow large, too, the global eigenvalu
fluctuation becomes a Gaussian process. The larger 1/β, the “warmer” it gets, and the larger the “vibration”. Th
largerβ, the “cooler” it gets, and the eigenvalues “freeze” into place.

At the end of Section 5 we perform computational experiments to see how good theβ large approximation is
even for relatively smallk andβ.

Before we delve into the main part of this paper, we thought it appropriate to mention one more p
connection. Similar to theβ-Hermite ensemble, we have the circular ensembles defined by the joint eigenvaliθj

(with θj ∈ [0,1]n) density proportional to

fβ ∝
∏

1�j<l�k

∣∣eiθj − eiθl
∣∣β.

Theβ = 2 circular ensemble is also known as the Haar measure on the unitary groupUn. The eigenvalues o
Un appear to be almost uniformly distributed on the unit circle (see the experiment withk = 100 in Diaconis’
paper [4]). For any fixedk, asβ → ∞, the eigenvalues freeze into place uniformly at thekth roots of unity. We
believe that the same Gaussian phenomenon will hold, and the fluctuation of eigenvaluei will behave like a norma
centered at theith root of the unity, with variance depending on 1/β.

2. Eigenvalue perturbation andχ asymptotics

In this section we present two lemmas we need in the proofs of our main results (Theorems 3.1 and 4.1
The first lemma involves perturbation theory; for a good reference on Perturbation theory and a more

form of the result below, see Demmel’s book [3, Section 4.3].

Lemma 2.1.Let A andB ben × n symmetric matrices, and letε > 0. AssumeA has all distinct eigenvalues. Le
M = A + εB + o(ε), where byo(ε) we mean a matrix in which every entry goes to0 faster thanε. Let λi(X)

denote theith eigenvalue ofX, for 1� i � n. Finally, letQ be an eigenvector matrix forA. Then

lim
ε→0

1

ε

(
λi(M) − λi(A)

) = Q(:, i)T BQ(:, i),

where, following MATLAB notation,Q(:, i) represents theith column ofQ.

Remark 2.2.Equivalently, for every 1� i � n,

λi(M) = λi(A) + εQ(:, i)T BQ(:, i) + o(ε).

The second result is an approximation lemma for theχr distribution asr grows large.
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Lemma 2.3.Letr > 0, and letX be a variable with distributionχr . Then asr → ∞ the p.d.f. ofX−√
r converges

uniformlyon any fixed intervalto the p.d.f. of a normal distribution of mean0 and variance1/2.

Proof. We prove this lemma by looking at the density function ofχr when r → ∞. Recall that the p.d.f. of a
variable withχr distribution is

fr(x) = 21−r/2

�(r/2)
xr−1 e−x2/2.

Using the Stirling approximation formula

�(z) ∼ zz−1/2 e−z
√

2π

(
1+ 1

12z
+ O

(
1

z2

))
, (3)

for r large, we obtain

E[X] = √
2
�((r + 1)/2)

�(r/2)
= √

r
(
1+ O

(
r−1)).

Let Y := X − √
r , the p.d.f. ofY is

f (t) = 21−r/2

�(r/2)
(t + √

r )r−1 e−(t+√
r )2/2.

We examine this p.d.f. in a “small” neighborhood of 0, such thatt = o(r1/2). With the help of the Stirling
approximation (3), we obtain

f (t) = 1√
π

(
1+ t√

r

)r−1

e−t2/2−√
rt

(
1+ O

(
r−1)),

and so

f (t) = 1√
π

e−t2
(

1+ O

(
t√
r

))
. (4)

Thus, on any fixed interval, the p.d.f. ofY converges to the p.d.f. of a centered normal of variance 1/2. �

3. β-Hermite: zero and first-order approximations

Let k be fixed, and leth(k)
1 , . . . , h

(k)
k be the roots of thekth univariate Hermite polynomialHk .

Recall that the Hermite polynomialsH0(x),H1(x), . . . are orthonormal with respect to the weight e−x2
on

(−∞,∞), i.e.∫
R

Hi(x)Hj (x)e−x2
dx = δij , ∀i, j � 0,

and deg(Hi) = i and[xi]Hi(x) = 1, for all i � 0.
Let Aβ be a random matrix from theβ-Hermite ensemble of sizek, scaled by 1/

√
2kβ. For the remainder o

this section, we think ofβ as a parameter.
We state and prove the following theorem.

Theorem 3.1.Letλi(Aβ) be theith largest eigenvalue ofAβ , for any fixed1� i � k. Then, asβ → ∞,

λi(Aβ) → 1√ h
(k)
i ,
2k
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√

β

(
λ1(Aβ) − 1√

2k
h

(k)
1 , λ2(Aβ) − 1√

2k
h

(k)
2 , . . . , λk(Aβ) − 1√

2k
h

(k)
k

)
→ 1√

2k
G

whereG ≡ (G1,G2, . . . ,Gk) is a k-variate Gaussian with covariance matrix

Cov(Gi,Gj ) =
∑k−1

l=0 H 2
l (h

(k)
i )H 2

l (h
(k)
j ) + ∑k−2

l=0 Hl+1(h
(k)
i )Hl(h

(k)
i )Hl+1(h

(k)
j )Hl(h

(k)
j )

(
∑k−1

l=0 H 2
l (h

(k)
i ))(

∑k−1
l=0 H 2

l (h
(k)
j ))

.

The convergence here is of p.d.f.’s, uniformly on any fixed interval inR
k .

Proof. Let H be thek × k symmetric tridiagonal matrix

H = 1√
2




0
√

k − 1√
k − 1 0

√
k − 2√

k − 2 0
. . .

0
√

1√
1 0




. (5)

This matrix is the tridiagonal matrix corresponding to the 3-term recurrence for Hermite polynomials (s
example, [11, pages 105–106]). It is a well-known and easily verified fact that its eigenvalues are the roots okth
Hermite polynomialHk(x) (recall that we denoted them byh(k)

1 , . . . , h
(k)
k ), and that the eigenvector correspond

to theith eigenvalueh(k)
i is

vi =




Hk−1(h
(k)
i )

Hk−2(h
(k)
i )

...

H1(h
(k)
i )

H0(h
(k)
i )




.

Lemma 3.2.LetAβ be as defined in the beginning of this section. Then

lim
β→∞

√
2kβAβ − √

βH = Z,

whereZ is a tridiagonal matrix with standard normal variables on the diagonal and normal variables of m
0 and variance1/4 on the subdiagonal. All normal variables inZ are mutually independent, subject only to t
symmetry.

Convergence here is a convergence of p.d.f.s, uniformly on any fixed product of intervals.

From now on we use the notation

Z =




Mk Nk−1
Nk−1 Mk−1 Nk−2

Nk−2 Mk−2
. . .

M2 N1
N1 M1




, (6)

with Z as above.
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Lemma 3.2 follows immediately from Lemma 2.3, since we are dealing with a finite number (k − 1) of χ

variables on the sub-diagonal ofAβ , each converging in p.d.f. to a Gaussian variable, uniformly on any fi
interval.

Hence we have that, entry by entry,

Aβ ∼ 1√
2k

H + 1√
2kβ

Z,

the p.d.f.’s converging uniformly on any fixed product of intervals asβ → ∞.
Thus all zero- and first-order properties ofAβ are the same as for the random matrix(1/

√
2k)H + (1/

√
2kβ)Z,

whereZ is as above. In particular, for any 1� i � k,

λi(Aβ) ∼ λi

(
1√
2k

H + 1√
2kβ

Z

)
,

and with the help of Lemma 2.1, for any 1� i � k,

λi(Aβ) ∼ 1√
2k

h
(k)
i + 1√

2kβ

vT
i Zvi

vT
i vi

,

with the p.d.f.’s converging uniformly on any fixed interval, asβ → ∞.
Hence, using the notation (6),

√
β

(
λi(Aβ) − 1√

2k
h

(k)
i

)
∼ 1√

2k

∑k−1
l=0 H 2

l (h
(k)
i )Ml+1 + 2

∑k−1
l=1 Hl(h

(k)
i )Hl−1(h

(k)
i )Nl∑k−1

l=0 H 2
l (h

(k)
i )

,

with the p.d.f.’s converging uniformly on any fixed interval, asβ → ∞.
The statement of Theorem 3.1 follows.�

Remark 3.3.There is an alternative way to look at this problem which is reminiscent of what is sometimes
in applied mathematics as the “saddle point” method. The method involves finding the maximum of the p
functionV (λ) (defined by writing the p.d.f. as e−V (λ)), which for this case is

V (λ) := V (λ1, . . . , λk) = −β
∑

1�i<j�n

log|λi − λj | +
n∑

i=1

λ2
i /2.

The fact that the maximum of the potential function is achieved at the Hermite polynomial rootsh
(k)
i (scaled by√

2kβ) has a well known electrostatic interpretation (see [11]).
Once the maximum is found, it is used to approximate (locally, around the maximum point) the potentia

tion by a quadratic function (just as in the univariate case) given by the Hessian matrixH = (∂2V (λ)/∂λi∂λj )i,j ,
which is the inverse of the covariance matrix we computed in Theorem 3.1. Sinceβ → ∞, this should provide
zero and first order asymptotics for the eigenvalues, i.e. the equivalent of Theorem 3.1. One could computH, and
manipulate it to show that it matches our covariance matrix; Brian Sutton from MIT has confirmed this by ve
a few small cases (up tok = 6).

Letting k → ∞ in Theorem 3.1, we obtain the Corollary below.

Corollary 3.4. Let Aβ be a matrix from thek × k β-Hermite ensemble, scaled by1/
√

2kβ, and letλ1(Aβ) be the
largest eigenvalue ofAβ . Then

lim lim k−2/3(λ1(Aβ) − 1
) → a1 + σ 2G,
k→∞ β→∞ 2
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wherea1 = −2.33810. . . is the largest root of the AiryAi function(see[1]), and

σ 2 = 2

∫ ∞
0 Ai4(x + a0)dx

(
∫ ∞

0 Ai2(x + a0)dx)2
∼ 0.41050. . . .

Proof. The corollary follows by using the special properties of the Hermite polynomial roots and the Airy fun
as in [1] and [11]. We sketch the proof here.

The fact that

h
(k)
1√
2k

∼ 1+ a0

2k2/3

is a special functions result that can be found in [11, pages 131–132]. All we need to prove is that the corres
eigenvectorv1 is going to a normalized version of the functionAi(x + a0) with stepsize 1/k1/3. This we can do as
follows: letD = 1

2n
H 2, i.e.D is the pentadiagonal matrix

D = 1

4n




k − 1 0
√

(k − 1)(k − 2)

0 2k − 3 0
√

(k − 2)(k − 3)√
(k − 1)(k − 2) 0 2k − 5 0

0
√

(k − 2)(k − 3) 0 2k − 7
. . .

5 0
√

6

0 3 0√
6 0 1




.

Note that
√

(k − i)(k − (i + 1))/k = 1− i∗/k for somei∗ ∈ [i, i + 1]. As k → ∞, the diagonal of the matrixD
is roughly a discretization of the function12(1− x

k
) from 0 tok, with stepsize 1/k. Similarly, the off-diagonal term

can roughly be identified with a discretization of the function1
4(1− x

k
), once again with stepsize 1/k, from 0 tok.

Since we know that

Dv1 ∼
(

1+ a0

2k2/3

)2

v1 ∼
(

1+ a0

k2/3

)
v1,

if follows that v1 must be a (normalized) discretization with step 1/k1/3, from 0 tok2/3, of a functionFk which
solves

F ′′
k − xFk = a0Fk.

Since the equationf ′′ − xf = 0 has 2 independent solutions,Ai andBi (see [1, page 446]), it follows tha
F = (1− ck)Ai(x + a0) + ckBi(x + a0). Due to the interlacing property of the Hermite polynomial eigenval
h

(k)
i is larger than any root of a polynomialHj(x) with j < k; hencev1 has all positive entries. On the other hand
Ai(x + a0) � 0 for x � 0 andBi(a0) < 0, whileAi(x + a0) → 0 andBi(x + a0) → ∞ asx → ∞. Hence it must
be thatck → 0 ask → ∞ (otherwisev1 would not have strictly positive entries).

Thus,v1/||v1||2 tends to a (normalized to norm 1) discretization with stepsize 1/k1/3 (from 0 to k2/3) of the
functionAi(x + a0), and the calculations follow. �
Remark 3.5.Note that the limit in Corollary 3.4 is taken first with respect toβ, then with respect tok. We believe
(and experimental evidence strongly supports this) that the limits are interchangeable.

As a final illustration of Theorem 3.1, we include Fig. 2, where we have meshed the covariance ma
k = 20 andk = 50; note that ask increases, the covariance matrix becomes more and more diagonally dom
(at k = ∞, the matrix becomes diagonal, as the eigenvalues become independent).
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Fig. 2. Meshes of the covariance matrix atk = 20 andk = 50.

4. β-Laguerre: zero and first-order approximations

Let k be fixed. Given a fixedγ > 0, let l(k)
1 , . . . , l

(k)
k be the roots of thekth Laguerre polynomial of paramet

γ − 1, Lγ−1
k .

Recall that for anyγ > −1, the Laguerre polynomialsLγ

0 ,L
γ

1 , . . . are orthonormal with respect to the weig
xγ e−x on [0,∞):∫

[0,∞)

L
γ

i (x)L
γ

j (x)xγ e−x dx = δij , ∀i, j � 0,

and deg(Lγ

i ) = i and[xi]Lγ

i (x) = (−1)i for all i � 0.
Let Bβ be a random matrix from theβ-Laguerre ensemble of sizek and parameteraβ , scaled by 1/kβ. For the

remainder of this section, we think ofβ as a parameter. Suppose that, asβ grows large,

lim
β→∞

aβ

β
= 1

2
(k + γ − 1).

Note that the requirementaβ > (k − 1)β/2 constrainsγ to be positive.

Theorem 4.1.Letλi(Bβ) be theith largest eigenvalue ofBβ , for any fixed1� i � k. Then, asβ → ∞,

λi(Bβ) → 1

k
l
(k)
i .

Moreover, asβ → ∞,

√
β

(
λ1(Bβ) − 1

k
l
(k)
1 , λ2(Bβ) − 1

k
l
(k)
2 , . . . , λk(Bβ) − 1

k
l
(k)
k

)
→ 1

k
G,

whereG ≡ (G1,G2, . . . ,Gk) is a centeredk-variate Gaussian of covariance matrix

Cov(Gi,Gj ) = 2
(γ + k − 1)(L

γ

k−1(l
(k)
i ))2(L

γ

k−1(l
(k)
j ))2 + Ak(i, j) + Bk(i, j) + Ck(i, j) + Dk(i, j)

(
∑k−1

l=0 (L
γ

l (l
(k)
i ))2)(

∑k−1
l=0 (L

γ

l (l
(k)
j ))2)

,

where

Ak(i, j) =
k−1∑(

γ + 2(k − l) − 1
)(

L
γ

k−l−1

(
l
(k)
i

))2(
L

γ

k−l−1

(
l
(k)
j

))2
,

l=1
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mials of
, it is
Bk(i, j) =
k−1∑
l=1

(
γ + 2(k − l)

)
L

γ

k−l−1

(
l
(k)
i

)
L

γ

k−l−1

(
l
(k)
j

)
L

γ

k−l

(
l
(k)
i

)
L

γ

k−l

(
l
(k)
j

)
,

Ck(i, j) =
k−1∑
l=1

√
γ + k − l

√
k − l

((
L

γ

k−l−1

(
l
(k)
i

))2
L

γ

k−l−1

(
l
(k)
j

)
L

γ

k−l

(
l
(k)
j

)

+ (
L

γ

k−l−1

(
l
(k)
j

))2
L

γ

k−l−1

(
l
(k)
i

)
L

γ

k−l

(
l
(k)
i

))
, and

Dk(i, j) =
k−1∑
l=1

√
γ + k − l

√
k − l

((
L

γ

k−l

(
l
(k)
i

))2
L

γ

k−l−1

(
l
(k)
j

)
L

γ

k−l

(
l
(k)
j

)

+ (
L

γ

k−l

(
l
(k)
j

))2
L

γ

k−l−1

(
l
(k)
i

)
L

γ

k−l

(
l
(k)
i

))
.

The convergence here is of p.d.f.’s, uniformly on any fixed product of intervals asβ → ∞.

Proof. The proof follows in the footsteps of that of Theorem 3.1.
Let Lγ be thek × k (symmetric) positive definite matrix

Lγ =




γ + k − 1
√

γ + k − 1
√

k − 1√
γ + k − 1

√
k − 1 2(k − 2) + γ + 1

√
γ + k − 2

√
k − 2√

γ + k − 2
√

k − 2 2(k − 3) + γ + 1
. . . √

γ + 2
√

2√
γ + 2

√
2 3+ γ

√
γ + 1

√
1√

γ + 1
√

1 1+ γ




. (7)

We can writeLγ = Bγ BT
γ , with

Bγ =




√
γ + k − 1√

k − 1
√

γ + k − 2
. . .

. . .√
2

√
γ + 1√

1
√

γ




. (8)

Using the Laguerre differential recurrence and a 3-term recurrence which relates the Laguerre polyno
parameterγ andγ − 1 (see, for example, [11, (5.1.13, 5.1.14)]), together with elementary linear algebra
easy to check that the matrixLγ has as eigenvalues the roots of thekth Laguerre polynomial of parameterγ − 1,

L
γ−1
k (x) (recall that we have denoted them byl

(k)
1 , . . . , l

(k)
k ), and an eigenvector corresponding to theith eigenvalue

l
(k)
i is

wi =




L
γ

k−1(l
(k)
i )

L
γ

k−2(l
(k)
i )

...

L
γ

1 (l
(k)
i )

L
γ
(l

(k)
)




.

0 i
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agonal
We defineφi ≡ wi/‖wi‖2 to be a length 1 eigenvector corresponding to theith eigenvalueli .

Lemma 4.2.LetBβ be as in the statement of Theorem4.1. Then

lim
β→∞ kβBβ − βLγ = 1√

2

(
Bγ ZT + ZBT

γ

)
,

with the p.d.f.’s converging uniformly on any fixed product of intervals, asβ → ∞. HereZ is a lower bidiagonal
matrix with standard normal variables on the diagonal and on the subdiagonal. All normal variables inZ are
mutually independent, subject only to the symmetry constraint.

We use the notation

Z ≡




Mk

Nk−1 Mk−1
. . .

. . .

N2 M2
N1 M1




. (9)

Once again, the proof for this lemma follows from the construction of the Laguerre matrix as a lower bidi
random matrix times its transpose, and from Lemma 2.3.

Just as in the Hermite case, Lemma 4.2 allows us to write that, entry by entry,

Bβ ∼ 1

k
Lγ + 1

k
√

2β

(
Bγ ZT + ZBT

γ

)
,

and so

λi(Bβ) ∼ λi

(
1

k
Lγ + 1

k
√

2β

(
Bγ ZT + ZBT

γ

))
,

equivalently,

λi(Bβ) ∼ 1

k
l
(k)
i + 1

k
√

2β

wT
i (Bγ ZT + ZBT

γ )wi

wT
i wi

with the p.d.f.’s converging uniformly on any fixed interval.
SincewT

i Bγ ZT wi = wT
i ZBT

γ wi , asβ → ∞,

λi(Bβ) ∼ 1

k
l
(k)
i +

√
2

k
√

β

wT
i Bγ ZT wi

wT
i wi

+ o

(
1√
β

)

with the p.d.f.’s converging uniformly on any fixed interval.
Thus, using notation (9),

√
β

(
λi(Bβ) − 1

k
l
(k)
i

)
∼

√
2

k

√
γ (L

γ

0 (l
(k)
i ))2 + Sum1 +Sum2∑k−1
l=0 L

γ

l (l
(k)
i )2

,

with

Sum1 =
k−1∑
l=1

(√
γ + l

(
L

γ

l

(
l
(k)
i

))2 + √
lL

γ

l

(
l
(k)
i

)
L

γ

l−1

(
l
(k)
i

))
Ml+1, and

Sum2 =
k−1∑(√

γ + lL
γ

l

(
l
(k)
i

)
L

γ

l−1

(
l
(k)
i

) + √
l
(
L

γ

l−1

(
l
(k)
i

))2)
Nl,
l=1
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Fig. 3. Meshes of the covariance matrix atγ = 0.01 andγ = 0.99, withk = 20 andk = 50.

with the p.d.f.’s converging uniformly on any fixed product of intervals, asβ → ∞.
The statement of the theorem follows.�
As in the Hermite case, we include a final illustration of Theorem 4.1 in Fig. 3, where we have mesh

covariance matrix fork = 20 andk = 50, for bothγ = 0.01 andγ = 0.99; note that ask increases, the covarianc
matrix becomes more and more diagonally dominant (atk = ∞, the matrix should be diagonal). Also note th
sincek is relatively large, the plot is almost independent ofγ .

5. Applications: level densities

We can compare the largeβ asymptotics to the theoretical answer for the distribution of a randomly ch
eigenvalue. For largen, this is the well-know semicircle law (for the Hermite ensembles) or equivalent thereo
Laguerre ensembles), but we are interested in finiten.

We found that even forβ small, the approximation can be quite reasonable.
We summarize the largeβ answer as a sum of Gaussians in Corollaries 5.1 and 5.2.

Corollary 5.1. Let k be fixed, andfk,β be the level density of the scaled(by 1/
√

2kβ ) k × k β-Hermite ensemble
Letgk,β be as below:

gk,β(x) = 1

k

k∑ 1√
2πσi

e−(x−µi)
2/(2σ2

i ),
i=1
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te”

). We

level

these

he

ct

lotting

semble
ity, as

the
whereµi = h
(k)
i /

√
2k andσi = (1/

√
2kβ )

√
Var(Gi), with hi andVar(Gi) as in Section3. Then for anyx,

lim
β→∞

√
β

(
fk,β(x) − gk,β(x)

) = 0.

Corollary 5.2. Letk andγ > 0 be fixed, andfk,β,γ be the level density of the scaled(by1/(kβ)) k × k β-Laguerre

ensemble of parametera = β
2 (k − 1+ γ ). Letgk,β,γ be as below:

gk,β,γ (x) = 1

k

k∑
i=1

1√
2πσi

e−(x−µi)
2/(2σ 2

i ),

whereµi = l
(k)
i /k andσi = (1/k

√
β )

√
Var(Gi), with l

(k)
i andVar(Gi) as in Section4. Then for anyx,

lim
β→∞

√
β

(
fk,β,γ (x) − gk,β,γ (x)

) = 0.

While these approximations are simple enough (a sum of Gaussians is an easily recognizable shape th
easy to work with), one may wonder how bigβ has to be in order for these approximations to become “accu
(for example, in order toappearaccurate in a plot, the approximations have to be accurate to about 2–3 digit
have found that, in either of the two cases, the answer is surprisingly low.

In the following two subsections, we have used only even integer values ofβ for our plots, because (in additio
to β = 1) those are the only ones for which (to the best of our knowledge) there are exact formulas for th
densities. The plots were obtained with the help of our Maple Library,MOPs (Multivariate Orthogonal Polynomi
als (symbolically)), which was used for computing the orthogonal and Jack polynomial quantities involved;
were translated into polynomials which were then plotted inMATLAB . For a reference onMOPs see [6].

5.1. Level density plots: the Hermite case

In the following, we illustrate the accuracy of the sum of Gaussians approximation (gk,β from Corollary 5.1)
for β relatively small (4 to 10) by plotting it against the true level density (fk,β from Corollary 5.1).

Fig. 4 plots the level density and approximation for the 4× 4 Hermite case.
In Fig. 4, we letk = 4, and gradually increaseβ (from 4 to 10) to show how the approximation approaches

exact level density. Forβ = 10, the dots fall right on the curve.
If we plot the densities fork = 7 (as in Fig. 5), forβ = 6 the approximation is already very close to the ex

level density.
We can conclude that the approximation works well for low values ofβ, in the Hermite case.

5.2. Level densities: the Laguerre case

In the Laguerre case, we cut the parameter cube with two different slices, as explained below. For
purposes we have consideredk = 4 in both.

In this story, there are two Laguerre densities: one for the eigenvalue p.d.f., that is, in the Laguerre e
density, and a second (different!) one for the Laguerre polynomial corresponding to the limiting level den
β → ∞. We call the first onep and the second oneγ , and we hold each of them constant asβ → ∞, while varying
the other one, as depicted in the table below. To further emphasize which of the two parameters,γ or p, we are
keeping constant, we have used bold fonts.

Case(a). This case holdsγ (and therefore the limiting Laguerre polynomial, whose roots are the limits o
scaled eigenvalues) constant asβ → ∞.

Note that both the Laguerre ensemble parametera = β
2 (k + γ − 1) and the powerp = γ

β
2 − 1 are increasing

functions ofβ.
ra
s

n
e

-

t

a

p

n
s

f
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Fig. 4. Hermite case: sum of Gaussians approximation to the level densities (dots) and exact level densities (lines) fork = 4, andβ = 4,6,8,10.

Fig. 5. Hermite case: sum of Gaussians approximation to the level densities (dots) and exact level densities (lines) fork = 7, andβ = 2,4,6.
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f the

e

Table 2

Fixed
quantities

Variable Other
quantities

Eigenvalue
p.d.f.

Limiting
Laguerre
polynomial

(a) k, γ β → ∞ a = β
2 (k + γ − 1) c|∆|β ∏k

i=1 λ

β
2 γ−1
i

e−λi/2 L
γ−1
k

(x)

p = β
2 γ − 1

(b) k, p β → ∞ a = p + β
2 (k − 1) c|∆|β ∏k

i=1 λ
p
i

e−λi/2 L−1
k

(x)

γ = 2
β (p + 1)

Fig. 6. Laguerre case (a): sum of Gaussians approximation to the level densities (dots) and exact level densities (lines) fork = 4, γ = 1, and
β = 4,6,8,10.

By prescribingγ , in the limit asβ → ∞ the plot should become a sum of delta functions at the roots o
Laguerre polynomialLγ−1

k (x).
In Fig. 6 we takek = 4, γ = 1, β = 4,6,8,10, anda = 8,12,16,20 (equivalently,p = 1,2,3,4). Note that the

approximation is very good forβ = 10.
Case(b). This case holds the powerp constant in the weight|∆(Λ)|β ∏k

i=1 λ
p
i e−λi/2, thereby changing th

parameterγ and the Laguerre polynomial. In this second test, asβ → ∞, γ = 2
β
(p + 1) → 0.

Thus asβ → ∞, the plot should become a sum of delta functions at the roots of the polynomialL−1
n (x).
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Fig. 7. Laguerre case (b): sum of Gaussians approximation to the level densities (dots) and exact level densities (lines) fork = 4, p = 1, and
β = 4,6,8,10.

The approximation works, once again, surprisingly well, as demonstrated by Fig. 7, wheren = 4, p = 1, β =
4,6,8,10, andγ = 1,2/3,1/2,2/5 (ora = 8,11,14,17).
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Remark 5.3.Note that case (b), the smallest eigenvalue converges to 0 (which is the smallest root of the L
polynomialL−1

4 (x)), and the presence of the delta function at 0 in the sum of Gaussians (Fig. 7) is very
visible.

Thus we can conclude that in both cases, a good approximation is obtained even forβ relatively small.
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