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Abstract

In this paper we examine the zero and first order eigenvalue fluctuations fertHieemite ands-Laguerre ensembles, using
tridiagonal matrix models, in the limit g6 — oco. We prove that the fluctuations are described by multivariate Gaussians of
covariance @QL/8), centered at the roots of a corresponding Hermite (Laguerre) polynomial. The covariance matrix itself is
expressed as combinations of Hermite or Laguerre polynomials respectively.

We show that the approximations are of real value even for sgnale can use them to approximate the true functions even
for the traditionalg = 1, 2, 4 values.

0 2005 Elsevier SAS. All rights reserved.

Résumé

Dans cet article on examine les fluctutations d’ordre zéro et du premier ordre pour les valeurs propres des ensembles
B-Hermite etg-Laguerre, en utilisant les modeles de matrices tridiagonales, dans la imiteco. Nous prouvons que les
fluctuations suivent des distributions gaussiennes multivariées de covariatiggh ,@entrées sur les zéros des polyndmes
correspondants. Les matrices de covariances elles mémes s’expriment en termes de polyndmes d’Hermite ou de Laguerre.

Nous montrons que les approximations sont trés bonnes, méme pour les petites vabe@s geut les utiliser méme pour
les valeurs traditionnelles g&: 1, 2, 3, 4.
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1. Introduction

This paper provides insight into the shape of random matrix laws such as the finite semi-circle law, the finite
guarter-circle law and its generalization. We investigate, in a completely rigorous and mathematical fashion, the
zero and first order fluctuations for tiseHermite ands-Laguerre ensembles at large

We begin with a simple example. Supposés a randonk x k£ complex matrix with real and imaginary parts all
i.i.d. standard normals. Leét= (A + A)/2 be the Hermitian part of. The matrix$ has a distribution commonly
known as the Gaussian Unitary Ensemble; this matrix distribution and the joint distribution of its (real) eigenvalues
have been well studied. For a good reference on the subject, see Mehta [10].

We draw below histograms of normalized eigenvalues taken from this distribution, the known theoretical distri-
bution (see [10, page 93]), and the semicircle limit correspondikg-tooc. For the histograms, we have chosen
40000 samples from the GUE with= 4 andk = 6.

Notice, for k finite, thek “bumps” in the distribution that wiggle above and below the semi-circle. A nat-
ural question to many engineers, physicists, mathematicians, and other scientists who have seen these pictures
whether they can be well approximated by the sum appropriately chosen Gaussians. (Of course wherl,
this is exactly true.) The answer, as proved in this paper, is yes. We give a sum of Gaussians approximation that is
asymptotically correct for thg — oo limit but useful even for small values .

For those well versed in random matrix theory, the GUE isghe 2 case of a Hermite matrix ensemble [10].

Had we started withd real (quaternion), we would have the Gaussian Orthogonal (Symplectic) Ensemble corre-
spondingtgd =1 (8 =4).

The joint eigenvalue densitﬁﬁ” (A1, ..., M) defined orR¥ for thek eigenvalues for an arbitragy > 0 is given
in the formula below.

k

- F'a+8/2) _yk a2
H — k/2 B e XimAi/2
f50a . ) = (2m) J|=|1F(1+jﬂ/2) 1<i|<]|4<k|x, Aj|P e Liahi/2, (@)

Note the “repulsion” facto\ (A) = A(A1, ..., ) = H1<i<j<k [Ai — Al

Similarly, for thek x k Laguerre ensembles of statistics (Wishart matrix theory), the joint eigenvalues density
F},‘}L,a is defined on[0, co)¥ for arbitrary 8 and parametes > (k — 1)8/2 (for thek x n Wishart ensembles of
B=124,a=npB/2). Once again note the repulsion facitA):

k
—(k=1B/2—1 __ Sk :
fhaGar o =ch, [ =P [[am PP e Tiatir2, 2)
1<i<j<k i=1
where
k
_ r(1+8/2)

cpa=2"]]

i1 LA+ jB/AT(a— (k= j)B/2)

In [5], we have found (real) tridiagonal matrix models whose eigenvalue distributions are given by (1) and (2);
we depict the distributions in Table 1. Note that the variables have either standard normal distributign or a
distribution (sometimes scaled &2 ).

For generating efficiently eigenvalues for tjfeensemble distributions, we recommend using the tridiago-
nal/bidiagonal model above.

The marginal density of a single eigenvalue (known as the level density) can be computed exactly as a function
of x in the case of the Hermite ensembles foan even integer (with the help of a formula found by Baker and
Forrester [2]), using the MOP3/ultivariate Orthogonal Polynomials symbolica)lgoftware [6]. For generas
no closed-form formula is known, but it is likely that computational (approximation, if not symbolical) techniques
are not far out of reach.
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Table 1
Tridiagonal matrix models for thg-Hermite and8-Laguerre ensembles with agy> 0
Hermite matrix N©,2) xu-1p
keN Xk-1p NO2) xXk-2p
~ L . .
Aﬂ 7 . .
x2p  N©2)  xp
xg  N@©2
Laguerre matrix Lg=Bg Bg, where
keN
aelR X2a
as %(k _1 By ~ XB(k—=1) X2a—p

X8 X2a—B(k—1)

k=4, =2 k=6,B =2

1t 1 1+
. _..nll ““ || Ilu.._ , .n |““” “"lll n._
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Fig. 1. Histograms of eigenvalues, finite< 4, 6) exact level densities, and semicircle law-¢ oo) for matrices of the GUE ensemble.

For fixedk and generaB one finds that foB getting larger, the bumps of Fig. 1 get “bumpier”. To be precise,
for the Hermite ensembles, we prove here thags at oo the bumps become delta functions at the roots of the
kth Hermite polynomial, while fop large, the bumps behave like Gaussians centered at these roots with variance
O(1/B).

The model of8 as an inverse temperature is apparent from (1)Ages to 0, the strength of the repulsion
factor A(A) decreases until annihilation; the interdependence among eigenvalues disappears, and the randomness
increases (each eigenvalue behaves like an independent Gaussian). In the frozgh=stat® (ve can imagine
the k eigenvalues fixed at the roots of the Hermite polynomial. Warming the system agitélery large but not
infinite) gives the particles a little energy, and the eigenvalues have Gaussian distribution to first order around the
Hermite polynomial roots.

Similarly, in the Laguerre case, At= 0, the eigenvalues become i.i.d. variables with distribub@l As B
grows the eigenvalues have Gaussian distribution to first order around the Laguerre polynomial roots, while at
B = oo we reach the freezing point when the eigenvalues are fixed at those roots.

In the following, we use first order eigenvalue perturbation theory and the tridiagonal ensembles in [5] to rig-
orously investigate this phenomenon mathematically obtaining precisely the asymptotic variance along with the
mean.

These results draw a parallel to the Tracy—Widom laws [13,14] forgthel, 2, 4-Hermite ensembles, later
extended tg = 1, 2-Laguerre ensembles by Johansson [8] and Johnstone [9].
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The Tracy—Widom laws compute the fluctuation in the distribution of the largest eigenvalug-bfeamite
ensemble withg = 1, 2, 4, ask — oo, and obtain it in terms of the solution to a Painleve differential equation.
From the semicircle law, we know that as— oo, regardless o8, the largest eigenvalue (scaled H2k8) goes
to 1. From Theorem 3.1, constrainedite- 1, with the help of [11] and [1, page 450], we obtain Corollary 3.4,
which gives an intuition of how thg = 1, 2, 4 Tracy—Widom distributions evolve towards a normal distribution at
B = oo (as we state in Remark 3.5, we strongly believe that the limits in Corollary 3.4 are interchangeable).

The theoretical results of Section 5 are similar to the “Central Limit Theorems”, i.e. the computation of the
global fluctuations from the semicircle and semicircle-type laws done by Johansson in [7] for Hermite-like ensem-
bles of anyg and by Silverstein and Bai [12] for a class of Laguerre-like ensembles with real or complex entries
(B =1, 2). Roughly said, the eigenvalues can be thought of as fluctuating (like Gaussians) around the roots of
the corresponding orthogonal polynomial sigrows large; if one leta grow large, too, the global eigenvalue
fluctuation becomes a Gaussian process. The larggrthe “warmer” it gets, and the larger the “vibration”. The
largerg, the “cooler” it gets, and the eigenvalues “freeze” into place.

At the end of Section 5 we perform computational experiments to see how gogdidinge approximation is
even for relatively smalt andg.

Before we delve into the main part of this paper, we thought it appropriate to mention one more possible
connection. Similar to thg-Hermite ensemble, we have the circular ensembles defined by the joint eigerValue e
(with 6; € [0, 1]") density proportional to

faee T] 1% -anp.
1<j<I<k

The g = 2 circular ensemble is also known as the Haar measure on the unitary gyodje eigenvalues of
U, appear to be almost uniformly distributed on the unit circle (see the experimenkwith00 in Diaconis’
paper [4]). For any fixed, asg — oo, the eigenvalues freeze into place uniformly at title roots of unity. We
believe that the same Gaussian phenomenon will hold, and the fluctuation of eigerwilibehave like a normal
centered at théth root of the unity, with variance depending of51

2. Eigenvalue perturbation and y asymptotics

In this section we present two lemmas we need in the proofs of our main results (Theorems 3.1 and 4.1).
The first lemma involves perturbation theory; for a good reference on Perturbation theory and a more general
form of the result below, see Demmel’s book [3, Section 4.3].

Lemma 2.1.Let A and B ber x n symmetric matrices, and let> 0. Assumed has all distinct eigenvalues. Let
M = A + €B + 0o(¢), where byo(e) we mean a matrix in which every entry goesltéaster thane. Let 1, (X)
denote theth eigenvalue ok, for 1 <i < n. Finally, let O be an eigenvector matrix fot. Then

1
lim = (% (M) — %:(A)) = Q. i) BO(:. i),

e—>0¢€

where, following MATLAB notatiorQ (:, i) represents théth column ofQ.

Remark 2.2.Equivalently, for every K i < n,

Li(M)=21;(A)+€0C, )T BOC, i)+ o(e).

The second result is an approximation lemma forgheélistribution as- grows large.
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Lemma 2.3.Letr > 0, and letX be a variable with distributiory,. Then as- — oo the p.d.f. ofX — ,/r converges
uniformlyon any fixed intervato the p.d.f. of a normal distribution of me&rand variancel/2.

Proof. We prove this lemma by looking at the density functionypfwhenr — oco. Recall that the p.d.f. of a
variable withy, distribution is
21—r/2
fr)= e

I'(r/2)
Using the Stirling approximation formula

z— —2Z 1 1
I'(z) ~ 7z Y2e @<1+E+O<;)>, ©))

for r large, we obtain

E[X]= ﬁir((;;/lz))/z) =7 (1+0(r7Y)).

LetY := X — /r,the p.d.f. ofY is
1—r/2
T TC/2

We examine this p.d.f. in a “small” neighborhood of 0, such thato(%/?). With the help of the Stirling
approximation (3), we obtain

1 t\ —12/2—\/rt -1
f)=——(14+— e/ (1+0(r 1)),

F@ (t+ ) L 2,

VIV
and so
f)= %e_’2<1+ o(%)) @)

Thus, on any fixed interval, the p.d.f. Bfconverges to the p.d.f. of a centered normal of varian@ 10

3. B-Hermite: zero and first-order approximations

Letk be fixed, and Ieh(lk), ...,h,(f) be the roots of théth univariate Hermite polynomiaty .

Recall that the Hermite polynomialHy(x), H1(x), ... are orthonormal with respect to the Weightxze on
(—o00, ), i.e.

/ Hi()Hj(x) e dv =8, Vi, j>0,
R
and degH;) =i and[x']H;(x) =1, for alli > 0.
Let Ag be a random matrix from th@-Hermite ensemble of size scaled by 1./2kg. For the remainder of

this section, we think o as a parameter.
We state and prove the following theorem.

Theorem 3.1.Letx; (Apg) be theith largest eigenvalue ofg, for any fixedl < i < k. Then, a8 — oo,

1
ri(Ag) > —=h",

2k
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and, asg — oo,

) 1w 1 (k)) 1
M(Ag) — —h; ', A(Ag) — —h>"', ..., \i(Ag) — —h - —0G
ﬁ(“’”ml 2(4p) = zha KAp) = el 2k

whereG = (G1, G, ..., Gy) is ak-variate Gaussian with covariance matrix
1=o HEh{YHRWD) + X128 Hia () Hy(h{*) Hy 1 () Hy ()
(X0 HE ) (XZg HE(R )

The convergence here is of p.d.f’s, uniformly on any fixed interv&fin

Cov(G;, Gj) =

Proof. Let H be thek x k symmetric tridiagonal matrix
0 k—1
Vk—1 0 k—2
k—2 0
®)

N

0 V1
Vi o0

This matrix is the tridiagonal matrix corresponding to the 3-term recurrence for Hermite polynomials (see, for
example, [11, pages 105-106]). It is a well-known and easily verified fact that its eigenvalues are the rodithof the

Hermite polynomialH, (x) (recall that we denoted them W), ,h,((k)), and that the eigenvector corresponding
to theith eigenvalue: " is

Hi_1(h")

Hi_2(h")
v = :
Hi(h{)
Ho(h")

Lemma 3.2.Let Ag be as defined in the beginning of this section. Then
Jim V2kBAs — /BH = Z,
—00

whereZ is a tridiagonal matrix with standard normal variables on the diagonal and normal variables of mean
0 and variancel/4 on the subdiagonal. All normal variables i are mutually independent, subject only to the
symmetry.

Convergence here is a convergence of p.d.f.s, uniformly on any fixed product of intervals.

From now on we use the notation

My Nraa
N1 Myp-1 Nio
N2 Mi_>
Z= ) , (6)
M N1
N1 My

with Z as above.
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Lemma 3.2 follows immediately from Lemma 2.3, since we are dealing with a finite nurkberl] of x
variables on the sub-diagonal dfg, each converging in p.d.f. to a Gaussian variable, uniformly on any fixed
interval.

Hence we have that, entry by entry,

1 1
Ag~——H 4 —=—7,
P2 T kB

the p.d.f.'s converging uniformly on any fixed product of intervalgas oo.
Thus all zero- and first-order properties4f are the same as for the random matfix/2k)H + (1//2kB) Z,
whereZ is as above. In particular, for any<li <k,

Xi(Ag) ~ A (\/%H + %Z)
and with the help of Lemma 2.1, for any<li <k,
1 1 vl'Zy
V& V2B T
with the p.d.f.s converging uniformly on any fixed interval, s> oco.
Hence, using the notation (6),
\/E(;w.( Ap— L h@) 1 SR GO M+ 2 ma) Haa N
NFI V2 K3 H2(M)
with the p.d.f.'s converging uniformly on any fixed interval, fis> oc.
The statement of Theorem 3.1 followsO

ri(Ag) ~ —=h" +

Remark 3.3.There is an alternative way to look at this problem which is reminiscent of what is sometimes known
in applied mathematics as the “saddle point” method. The method involves finding the maximum of the potential
function V(1) (defined by writing the p.d.f. as&®), which for this case is

V) =VOa,.... ) == Y loglh — 1|+ 2Z/2
i=1

1<i<j<n

The fact that the maximum of the potential function is achieved at the Hermite ponnomialhlf.@o(scaIed by
+/2kB) has a well known electrostatic interpretation (see [11]).

Once the maximum is found, it is used to approximate (locally, around the maximum point) the potential func-
tion by a quadratic function (just as in the univariate case) given by the Hessian MaHiQGZV(A)/BAiaxj)i,j,
which is the inverse of the covariance matrix we computed in Theorem 3.1. Bireexo, this should provide
zero and first order asymptotics for the eigenvalues, i.e. the equivalent of Theorem 3.1. One could ¢6rapdte
manipulate it to show that it matches our covariance matrix; Brian Sutton from MIT has confirmed this by verifying
a few small cases (up to= 6).

Lettingk — oo in Theorem 3.1, we obtain the Corollary below.

Corollary 3.4. Let Ag be a matrix from thé& x k g-Hermite ensemble, scaled ty./2k8, and leti1(Ag) be the
largest eigenvalue ol g. Then

lim lim k=23(a1(Ap) — 1) > 2 + 062G,

k— 00 f—00 2
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wherea; = —2.33810... is the largest root of the AinAi function(see[1]), and
2 o Jo A 4(x 4 ag) dx

= ~0.41050....
(Jo© Al 2(x + ap) dx)?

Proof. The corollary follows by using the special properties of the Hermite polynomial roots and the Airy function
asin [1] and [11]. We sketch the proof here.

The fact that
ik) ~1+ ﬂ
/2k 2k2/3

is a special functions result that can be found in [11, pages 131-132]. All we need to prove is that the corresponding
eigenvectow; is going to a normalized version of the functiéitx + ag) with stepsize 1k1/3. This we can do as
follows: let D = %HZ, i.e. D is the pentadiagonal matrix

k—1 0 JE=1Dk —-2)
0 2% —3 0 Jk=2)(k=3)
Sk =1k —-2) 0 2% —5 0
1 0 JE=2)*k -3 0 2% —7
b=u
5 0 6
0 3 0
V6 0 1

Note thaty/(k —i)(k — (i +1))/k =1—i,/k for somei, € [i, i + 1]. Ask — oo, the diagonal of the matri®
is roughly a discretization of the funct@(l — z) from O tok, with stepsize 1. Similarly, the off-diagonal term
can roughly be identified with a discretization of the functhﬂ — %), once again with stepsiz¢ &, from 0O tok.
Since we know that

2
ao aop
D'Ul"" <l+ W) v~ <l+ m)l)]_,
if follows that v; must be a (normalized) discretization with stetk¥2, from 0 tok%2, of a functionF; which
solves

F — xFy = aoFy.

Since the equatiorf” — xf = 0 has 2 independent solution&, andBi (see [1, page 446]), it follows that
F = (1—cp)A (x +ap) + cxBi (x + ap). Due to the interlacing property of the Hermite polynomial eigenvalues,
h§k) is larger than any root of a polynomial; (x) with j < k; hencev; has all positive entriesOn the other hand,
Al (x +ag) > 0forx > 0andBi (ag) <0, whileAi (x +ag) — 0 andBi (x + ag) — oo asx — oo. Hence it must
be thatc, — 0 ask — oo (otherwisev; would not have strictly positive entries).

Thus,v1/||v1]|2 tends to a (normalized to norm 1) discretization with stepsjZe-# (from 0 to k%/3) of the
functionAi (x + ag), and the calculations follow. O

Remark 3.5.Note that the limit in Corollary 3.4 is taken first with respecptahen with respect té. We believe
(and experimental evidence strongly supports this) that the limits are interchangeable.

As a final illustration of Theorem 3.1, we include Fig. 2, where we have meshed the covariance matrix for
k = 20 andk = 50; note that a% increases, the covariance matrix becomes more and more diagonally dominant
(atk = 0o, the matrix becomes diagonal, as the eigenvalues become independent).
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Mesh of the Hermite Covariance matrix for k = 20 Mesh of the Hermite Covariance matrix for k = 50

Fig. 2. Meshes of the covariance matrixkat 20 andk = 50.
4. B-Laguerre: zero and first-order approximations

Let k£ be fixed. Given a fixeg > 0, Ietlik), cee, l,ik) be the roots of théth Laguerre polynomial of parameter
y —1, szl.

Recall that for anyy > —1, the Laguerre polynomials;, L{, ... are orthonormal with respect to the weight
xY e * on|[0, c0):

/ Lg'(x)L; ()x’ e dv=4;;, Vi, j=0,
[0,00)

and degL)) =i and[x]L} (x) = (1)’ forall i > 0.

Let By be a random matrix from thg-Laguerre ensemble of sizeand parametetg, scaled by 1k5. For the
remainder of this section, we think gfas a parameter. Suppose thatgagows large,

im 2 - 2xiy 1)

Note that the requiremeng > (k — 1)8/2 constraing to be positive.
Theorem 4.1.Let); (Bg) be theith largest eigenvalue aBg, for any fixedl <i < k. Then, ag8 — oo,
1
i (Bg) — %1}").

Moreover, a8 — oo,
1 1 1 1
\/E<x1(3,5) - El}’”, r2(Bg) — ;zgo, o M (Bg) — zz,ﬁ")) -G

whereG = (G, G2, ..., Gy) is a centered-variate Gaussian of covariance matrix
v+ k= DL GONALL_ N2+ AL, j) + Beli. j) + Cii, j) + DeGi. )
(Cho @] NIy @y @2y

COV(G,’,G]‘)ZZ s
where
k—1

A, =y +20k =1 = 1) (L], ()2, ()%,
=1
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k-1
Bt ) = 3+ 26~ D)L )L () 0L 00,
=1

k-1
Culis )= Y Vy k= INVE= (L] () L] A )Ly, (1)
=1
+(LZ—Z—l(l;‘k)))ZLZ—I—l(li(k))LZ—l(li(k)))’ and
k-1
Di(i. )=y +k—1vk=I((L] (li(k)))ZLZ#fl(l;'k))LI):—l 1)
=1

2
()LL) ).

The convergence here is of p.d.fs, uniformly on any fixed product of intervgls-aso.

Proof. The proof follows in the footsteps of that of Theorem 3.1.
Let L, be thek x k (symmetric) positive definite matrix

y+k—1 Jy+k—1k—1
Y +k=1Vk=1 2k-2+y+1 Jy+k—2JVk-2
JYy+k=—2Jk—2 2k—-3)+y+1

L,= - - (M
Vv ¥242
VY242 3+y Sy +IVl
Vy+1v1 1+y
We can writeL,, = B, B, with
Jy+k=1
VE—1 Sy Tk=2
B, = . " @)
V2 Jy+1
vi oy

Using the Laguerre differential recurrence and a 3-term recurrence which relates the Laguerre polynomials of
parametery andy — 1 (see, for example, [11, (5.1.13, 5.1.14)]), together with elementary linear algebra, it is
easy to check that the matrix, has as eigenvalues the roots of #ik Laguerre polynomial of parametgr— 1,

Lz_l(x) (recall that we have denoted themlléfi), cee, l,gk)), and an eigenvector corresponding tottieeigenvalue
ll.(k) is
14 (k)
L)
14 (k)
Ly o(G™)
w; =
k
Ly a®)
k
Ly a®)
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We definep; = w; /||w;||2 to be a length 1 eigenvector corresponding toithesigenvalué;.
Lemma 4.2.Let Bg be as in the statement of Theordm. Then
1
lim kgBg — BLY = — (B, zT + ZBT),
00 BBg — B ﬁ( 12 y)

with the p.d.f’s converging uniformly on any fixed product of intervalg} as co. Here Z is a lower bidiagonal
matrix with standard normal variables on the diagonal and on the subdiagonal. All normal variablésame
mutually independent, subject only to the symmetry constraint.

We use the notation
M
Ne-1 Mi-1
7z = . . . 9)
N2 M3
N1 M;
Once again, the proof for this lemma follows from the construction of the Laguerre matrix as a lower bidiagonal

random matrix times its transpose, and from Lemma 2.3.
Just as in the Hermite case, Lemma 4.2 allows us to write that, entry by entry,

Bg ~ }Ly+ (Byz" +ZB)).

N

and so

i (Bg) ~ A (B,,ZT-|-ZB$)),

-<1L N 1
"\ k2B
equivalently,
1 1 wl(B,ZT + ZB)w;
1i(Bp) ~ 1Y + e
ky/28 w; w;
with the p.d.f.s converging uniformly on any fixed interval.
Sincew! B, ZTw; = wiTZB;wi, asp — oo,
1l(k) V2 w/ B, Z wi +o<i>
kvB — wlw;

Ai(Bg) ~ NG

with the p.d.f.'s converging uniformly on any fixed interval.
Thus, using notation (9),

(k) V2 v a))? + Sum + Sump

with

~
[uny

sum = (v + (L] ()P 4 VILL ()] 4 0%)) Mrsa, - and

T
I

sum =3 (vy +1L] (1)L (1) + VLI, (7))

-~
[N
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Mesh of the Laguerre Covariance matrix for k = 20, y = 0.01 Mesh of the Laguerre Covariance matrix for k = 20, y = 0.99

Mesh of the Laguerre Covariance matrix for k = 50, y=0.01 Mesh of the Laguerre Covariance matrix for k = 50, y=0.99

Fig. 3. Meshes of the covariance matrixyat 0.01 andy = 0.99, withk = 20 andk = 50.

with the p.d.f.'s converging uniformly on any fixed product of intervalsgas oo.
The statement of the theorem follows

As in the Hermite case, we include a final illustration of Theorem 4.1 in Fig. 3, where we have meshed the
covariance matrix fok = 20 andk = 50, for bothy = 0.01 andy = 0.99; note that a% increases, the covariance
matrix becomes more and more diagonally dominank (@toco, the matrix should be diagonal). Also note that
sincek is relatively large, the plot is almost independenj-of

5. Applications: level densities

We can compare the large asymptotics to the theoretical answer for the distribution of a randomly chosen
eigenvalue. For large, this is the well-know semicircle law (for the Hermite ensembles) or equivalent thereof (for
Laguerre ensembles), but we are interested in finite

We found that even fo small, the approximation can be quite reasonable.

We summarize the large answer as a sum of Gaussians in Corollaries 5.1 and 5.2.

Corollary 5.1. Letk be fixed, andfy g be the level density of the scal@uy 1/./2k8) k x k -Hermite ensemble.
Letgi g be as below

e (—n)?/@oP)

1& 1
X)=— E —_—
8ep() k ) V2no;
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whereu; = hlfk)/«/ﬂ ando; = (1//2kB )/Var(G;), with h; andVar(G;) as in Sectior8. Then for any,
Jm_ B (fip () = grp(x) =0

Corollary 5.2. Letk andy > 0 be fixed, andf; g,,, be the level density of the scal@ay 1/(k8)) k x k p-Laguerre
ensemble of parametar= é(k —1+y). Letg g, be as below

—(x—m-)z/(zfr,-z)’

8k.p.y(X) = Z \/—G

wherew; =1 /k ando; = (1/k+/B)/Var(Gy), with 1 andVar(G;) as in Sectior. Then for anyr,
ﬂl@mﬂ (fr.p.y @) — gr.py (x)) =0

While these approximations are simple enough (a sum of Gaussians is an easily recognizable shape that is also
easy to work with), one may wonder how kfighas to be in order for these approximations to become “accurate”
(for example, in order tappearaccurate in a plot, the approximations have to be accurate to about 2—3 digits). We
have found that, in either of the two cases, the answer is surprisingly low.

In the following two subsections, we have used only even integer valyg$asfour plots, because (in addition
to B8 = 1) those are the only ones for which (to the best of our knowledge) there are exact formulas for the level
densities. The plots were obtained with the help of our Maple LibM@Ps (Multivariate Orthogonal Polynomi-
als (symbolically), which was used for computing the orthogonal and Jack polynomial quantities involved; these
were translated into polynomials which were then plotteM&AILAB . For a reference oMOPSs see [6].

5.1. Level density plots: the Hermite case

In the following, we illustrate the accuracy of the sum of Gaussians approximatignfom Corollary 5.1)
for g relatively small (4 to 10) by plotting it against the true level densfiyd from Corollary 5.1).

Fig. 4 plots the level density and approximation for the 4 Hermite case.

In Fig. 4, we letk = 4, and gradually increagg (from 4 to 10) to show how the approximation approaches the
exact level density. Fg8 = 10, the dots fall right on the curve.

If we plot the densities fok = 7 (as in Fig. 5), for8 = 6 the approximation is already very close to the exact
level density.

We can conclude that the approximation works well for low value8,éfi the Hermite case.

5.2. Level densities: the Laguerre case

In the Laguerre case, we cut the parameter cube with two different slices, as explained below. For plotting
purposes we have consideriee: 4 in both.

In this story, there are two Laguerre densities: one for the eigenvalue p.d.f., that is, in the Laguerre ensemble
density, and a second (different!) one for the Laguerre polynomial corresponding to the limiting level density, as
B — oco. We call the first ong and the second one, and we hold each of them constantigas> oo, while varying
the other one, as depicted in the table below. To further emphasize which of the two parameteps,we are
keeping constant, we have used bold fonts.

Case(a). This case holdg (and therefore the limiting Laguerre polynomial, whose roots are the limits of the
scaled eigenvalues) constantdas> oc.

Note that both the Laguerre ensemble parameter% (k +y — 1) and the powep = y% — 1 are increasing
functions ofp.
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k=4,p=6

Fig. 5. Hermite case: sum of Gaussians approximation to the level densities (dots) and exact level densities {ires) &mds = 2, 4, 6.
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Table 2
Fixed Variable  Other Eigenvalue Limiting
quantities quantities p.d.f. Laguerre
polynomial
By-1
B—o0 a= %(k-‘ry—l) clalB ]_[;(:1)»1.27 e i/2 inl(x)
p=§y—1
Booo a=p+hk-1 AP 2Pe i/ Lt
y=5§0+D

k=4,=4,y=1,p=1,a=8

25F

05

k=4,p=6,y=1,p=2,a=12

1
05

1
25

3

35

k=4,=8,y=1,p=3,a=16

25F

05

0

I I I I I »
0.5 1 1.5 2 2.5 3 35 4

k=4,B=10,y=1,p=4,a=20

0

1
05

1

1
1.5

2

1
2.5

3

35

4

0

I I ! I I I 4
0.5 1 1.5 2 2.5 3 35 4

Fig. 6. Laguerre case (a): sum of Gaussians approximation to the level densities (dots) and exact level densities fliaek))for 1, and

B =4,86,8, 10.

By prescribingy, in the limit asg — oo the plot should become a sum of delta functions at the roots of the
Laguerre polynomiaLZ’l(x).

InFig. 6 wetakek =4,y =1,8=4,6,8,10, anda = 8, 12, 16, 20 (equivalentlyp =1, 2, 3, 4). Note that the
approximation is very good fg8 = 10.
Case(b). This case holds the power constant in the weighita(A)|? [T-_; A7 e*1/2, thereby changing the
parametef and the Laguerre polynomial. In this second tess as oo, y = %(p +1)— 0.

Thus as8 — oo, the plot should become a sum of delta functions at the roots of the polynpgat).
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k=4,=6,p=1,y=2/3,a=11

35

k=4 B=4,p=1,y=1,a=8

o5 25

05 051

L L L L L L L L I L L
0 05 1 15 2 25 3 35 4 0 05 1 15 2 25 3 35 4

k=4,=10,p=1,y=2/5,a=17

k=4,p=8p=1,vy=12,a=14

5.5

451 q

351 q

251 q

0 L I I I & -
0 0.5 1 15 2 25 3 35 4 [¢] 0.5 1 1.5 2 2.5 3 35 4

Fig. 7. Laguerre case (b): sum of Gaussians approximation to the level densities (dots) and exact level densities kliaes) foe 1, and
B=4,6,8,10.

The approximation works, once again, surprisingly well, as demonstrated by Fig. 7, whetep =1, 8 =
4,6,8,10,andy =1,2/3,1/2,2/5 (ora = 8,11, 14, 17).
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Remark 5.3.Note that case (b), the smallest eigenvalue converges to 0 (which is the smallest root of the Laguerre
ponnomiaIL;l(x)), and the presence of the delta function at 0 in the sum of Gaussians (Fig. 7) is very clearly
visible.

Thus we can conclude that in both cases, a good approximation is obtained egeefatively small.
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