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Abstract. We study the simple random walk X on the range of simple random walk on Z
3 and Z

4. In dimension four, we establish
quenched bounds for the heat kernel of X and max0≤k≤n |Xk | which require extra logarithmic correction terms to the higher-
dimensional case. In dimension three, we demonstrate anomalous behavior of X at the quenched level. In order to establish these
estimates, we obtain several asymptotic estimates for cut times of simple random walk and asymptotic estimates for loop-erased
random walk, which are of independent interest.

Résumé. Nous étudions la marche aléatoire simple sur l’ensemble des points visités par une marche aléatoire simple sur Z
3

et Z
4. En dimension quatre, nous établissons des bornes presque sûres pour le noyau de la chaleur de X et pour max0≤k≤n |Xk |

qui nécessitent des termes correctifs logarithmiques. En dimension trois, nous montrons que X à un comportement non diffusif
presque sûrement. Pour démontrer ces résultats, nous obtenons des estimées asymptotiques pour les temps de coupure de la marche
aléatoire simple et pour la marche à boucles effacées qui sont intéressantes en elles-mêmes.
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1. Introduction and main results

1.1. Introduction

The problem of the simple random walk X on the range (trace) of the simple random walk on Z
d has received attention

both in the literature of physics and mathematics (see Section 1.2, for a precise definition of this process). Recently,
several papers have studied the behavior of X [2,3]. For example, for an electrical network on a locally finite graph,
it is shown in [2] that the trace, the set of edges traversed by the associated random walk, considered as an electrical
network with unit conductances placed along each edge, is recurrent a.s.

Given the general recurrence result of [2], it is natural to study further properties of X when the original graph
is Z

d . For d ≥ 5, X behaves in a diffusive fashion similar to the simple random walk on Z. Roughly speaking, the
intersections of the original simple random walk path are sparse and give no effect on the asymptotic behavior of X.
See [3] for details. On the other hand, since the original simple random walk path intersects itself more complicatedly
for d ≤ 4, it is interesting to consider this problem when d = 3,4. (Note that when d = 1,2 the recurrence of the
original random walk easily implies that the range of the random walk is equal to the whole lattice a.s., so the law
of X is the same as the original random walk.) For d = 4, it is shown in [3] that logarithmic corrections are required
in describing the asymptotic behavior of X compared to higher dimensions. Indeed, in [3], annealed bounds for the
heat kernel of X and max0≤k≤n |Xk| are obtained and they require extra logarithmic correction terms to the higher-
dimensional case. (Here | · | denotes the Euclidean distance.)
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In this paper, we establish further properties of X for d = 4 and obtain an upper heat kernel estimate of X for d = 3.
For d = 4, we prove quenched bounds for the heat kernel of X (Theorem 1.2.1) and max0≤k≤n |Xk| (Theorem 1.2.2)
with logarithmic corrections. For d = 3, our heat kernel estimate (Theorem 1.2.3) shows anomalous behavior of X at
the quenched level. Indeed, it allows us to conclude that ds > 1, where ds denotes the quenched spectral dimension
of the random walk X (see (1.1) for definition) which contrasts with d ≥ 4 where ds = 1. Thus, in the language of
statistical mechanics, our results provide further justification for the claim of [3] that the critical dimension of the
random walk on the range of random walk is 4.

It has recently been established [1,8] that in order to obtain heat kernel bounds, it is enough to obtain estimates
on volume and effective resistance. Thus, applying these results, to obtain our conclusions, we are only required to
consider volume and resistance. To deduce upper and lower bounds for the volume, it is useful to estimate the cut-times
and loop-erasure of the original simple random walk, respectively (cf. [3]). There are many deep results regarding cut-
times and the loop-erased random walk (see, for example [9–12]), but unfortunately some of the estimates we need do
not appear in the literature. We thus establish a number of further estimates for cut-times and the loop-erased random
walk (for example Corollary 2.2.4, Proposition 4.2.4), which are of independent interest.

Throughout this paper we use c, c1, c2, . . . to denote arbitrary positive constants, depending only on dimensions,
which may change from line to line. If a constant is to depend on some other quantity, this will be made explicit. For
example, if c depends on δ, we write cδ .

If g(x), h(x) are functions we write g ∼ h if they are asymptotic, i.e.,

lim
x→∞

h(x)

g(x)
= 1.

We write g � h if there exist c1, c2 > 0 such that

c1g(x) ≤ h(x) ≤ c2g(x) for all x.

1.2. Framework and main results

Let S = (Sn)n≥0 be the simple random walk on Z
d starting from 0, built on underlying probability space (Ω, F ,P ).

Define the range of the random walk S(ω) to be the graph G(ω) = (V (G(ω)),E(G(ω))) with vertex set

V
(

G(ω)
) := {

Sn(ω): n ≥ 0
}
,

and edge set

E
(

G(ω)
) := {{

Sn(ω),Sn+1(ω)
}
: n ≥ 0

}
,

where ω is an element of Ω . (For simplicity, we often omit ω.) Let μG (x) be the number of bonds that contain x, i.e.,

μG (x) = �
{{x, y} ∈ E

(
G
)}

.

We extend μG to a measure on G by setting μG (A) = ∑
x∈A

μG (x) for A ⊂ G .

We denote the simple random walk on G(ω) by

X = (
(Xn)n≥0,P

G(ω)
x , x ∈ V

(
G(ω)

))
,

and its heat kernel (transition density) with respect to μG(ω) by h
G(ω)
n (x, y), i.e.,

hG(ω)
n (x, y) = P G(ω)

x (Xn = y)
1

μG(ω)(y)
.

To define X we introduce a second measure space (Ω, F ), and define X on the product Ω ×Ω . We write ω to denote
elements of Ω .

The following theorems are our main results in this paper.
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Theorem 1.2.1. Let d = 4. For each δ ∈ (0,1), there exist a c > 0 and Ω1 ⊂ Ω with P(Ω1) = 1 satisfying: for each
ω ∈ Ω1, there exists N1(ω) < ∞ such that

n−1/2(logn)−3/2−δ ≤ h
G(ω)
2n (0,0) ≤ cn−1/2(logn)−1/6 ∀n ≥ N1(ω).

Theorem 1.2.2. Let d = 4. For each δ ∈ (0,1), there exists Ω2 ⊂ Ω with P(Ω2) = 1 satisfying: for each ω ∈ Ω2,
there exists N2(ω,ω) with P

G(ω)
0 (N2(ω,ω) < ∞) = 1 such that

n1/4(logn)1/24−δ ≤ max
1≤k≤n

|Xk| ≤ n1/4(logn)13/12+δ ∀n ≥ N2(ω,ω),

where | · | denotes the Euclidean distance.

From the above results, we see that for d = 4 the process X and its heat kernel do not satisfy the same scaling
results as in the higher dimensional case, but exhibit logarithmic corrections to the leading polynomial order.

When d = 3, we have the following result that shows the anomalous behavior of X.

Theorem 1.2.3. Let d = 3. There exist a r > 0 and Ω3 ⊂ Ω with P(Ω3) = 1 satisfying: for each ω ∈ Ω3, there exists
N3(ω) < ∞ such that

h
G(ω)
2n (0,0) ≤ n−10/19(logn)r ∀n ≥ N3(ω).

Define the quenched spectral dimension of the random walk X by the limits

ds := lim
n→∞

2 logh
G(ω)
2n (0,0)

− logn
, (1.1)

when it exists. From Theorem 1.2.1 and Theorem 1.2.3, we conclude that ds = 1, P -a.s., for d = 4 and ds ≥ 20
19 > 1,

P -a.s., for d = 3. Thus, we see that the critical dimension of this model is 4. We cannot determine the exact value of
ds for d = 3. Numerical simulations suggest that ds ≈ 8

7 in this dimension [6].
We now begin to prove main theorems. We will give the full proofs of Theorems 1.2.1, 1.2.2 and 1.2.3 in Sec-

tions 2–4 respectively.

2. Proof of Theorem 1.2.1

2.1. Upper bound

In this subsection we will prove the upper bound of Theorem 1.2.1. By [8], Proposition 3.1, we need to estimate
the lower bound of volume. We first give some notions that are used in the proof. Recall the setting described in
Section 1.2. Let d = 4. For a finite simple random walk path λ = [λ(0), . . . , λ(m)] of length m, assign a self-avoiding
walk path Lλ in the following way. Let

σ0 = sup
{
j : λ(j) = λ(0)

}
,

and for i > 0,

σi = sup
{
j : λ(j) = λ(σi−1 + 1)

}
.

Let

l = inf{i: σi = m}.
Now define

λ̂(i) = λ(σi),
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and

Lλ = [
λ̂(0), λ̂(1), . . . , λ̂(l)

]
.

This self-avoiding path clearly satisfies (Lλ)(0) = λ(0) and (Lλ)(l) = λ(m).
We let dG (·, ·) be the shortest path graph distance on G .

Proposition 2.1.1. If d = 4, there exists c > 0 such that

P
(

max
1≤m≤n

dG (0, Sm) ≥ cn(logn)−1/3
)

= O
(
(logn)−5/3)

Proof. For each n, choose

0 = j0 < j1 < · · · < jm = n

such that (ji − ji−1) ∼ n(logn)−2, uniformly in i. (Note that this choice of {ji} is same as that used in the proof of
[9], Theorem 7.7.5.) Then m ∼ (logn)2. Erase loops on each interval [ji−1, ji] separately (i.e., take L(S[ji−1, ji])).
Let Yk be the indicator function of the event “Sk is not erased in this procedure” i.e.,

Yk = 1
{
L

(
S[ji−1, k]) ∩ S[k + 1, ji] = ∅

}
for ji−1 ≤ k < ji. (2.1)

Let 0 ≤ l ≤ n and let i be such that ji−1 ≤ l < ji . Since there is a path from 0 to Sl which does not pass the loops
arising on each interval, we see that

dG (0, Sl) ≤
ji−1∑
k=0

Yk + (ji − ji−1). (2.2)

Therefore,

max
1≤l≤n

dG (0, Sl) ≤
n∑

k=0

Yk + 2n(logn)−2. (2.3)

It follows from the proof of [9], Theorem 7.7.5 and [10], (1.2) that

E

(
n∑

k=0

Yk

)
� n(logn)−1/3,

and hence by (2.3), for c > 0 sufficiently large,

P
(

max
1≤l≤n

dG (0, Sl) ≥ cn(logn)−1/3
)

≤ P

(
n∑

k=0

Yk + 2n(logn)−2 ≥ cn(logn)−1/3

)

≤ P

(
n∑

k=0

Yk ≥ c

2
n(logn)−1/3

)

≤ P

(∣∣∣∣∣
n∑

k=0

Yk − E

(
n∑

k=0

Yk

)∣∣∣∣∣ ≥ E

(
n∑

k=0

Yk

))

≤ Var(
∑n

k=0 Yk)

E(
∑n

k=0 Yk)2
.
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Using the estimate

Var

(
n∑

k=0

Yk

)
= E

(
n∑

k=0

Yk

)
O

(
n(logn)−2),

(see proof of [9], Theorem 7.7.5), the proposition is proved. �

Let

BG (x,R) = {
y: dG (x, y) < R

}
, x ∈ G,R ∈ (0,∞).

We have the following result for the bounds on volume.

Proposition 2.1.2. Let d = 4. Then there exists c > 0 such that

P
(
μG

(
BG

(
0, cn(logn)−1/3)) ≤ n

) = O
(
(logn)−5/3). (2.4)

Proof. It follows by Proposition 2.1.1 that

P
(
μG

(
BG

(
0, cn(logn)−1/3)) ≤ rn

) ≤ P
(
μG

({Sl : 0 ≤ l ≤ n}) ≤ rn
)

+ P
(

max
1≤l≤n

dG (0, Sl) ≥ cn(logn)−1/3
)

(2.5)

≤ P
(
�{Sl : 0 ≤ l ≤ n} ≤ rn

) + O
(
(logn)−5/3).

But it follows from [4], (2.22) and [5], (4.1) that there exist p ∈ (0,1) and c̃ > 0 such that

E
(
�{Sl : 0 ≤ l ≤ n}) ∼ pn,

Var
(
�{Sl : 0 ≤ l ≤ n}) = c̃n + O

(
n1/2(logn)

)
.

So, if we choose r sufficiently small so that r <
p
2 , then the right-hand side of (2.5) is bounded above by

4 Var(�{Sl : 0 ≤ l ≤ n})
E(�{Sl : 0 ≤ l ≤ n})2

+ O
(
(logn)−5/3) = O

(
(logn)−5/3).

By a simple reparameterisation, we have (2.4). �

Using these propositions, it is now relatively straightforward to prove the second inequality of Theorem 1.2.1.

Proof of the upper bound of Theorem 1.2.1. Fix n ∈ N and we define R0 so that n = R2
0(logR0)

1/3. Then R0 ∼
n1/2(logn)−1/6. On the set{

μG
(
BG (0,R0)

) ≥ cR0(logR0)
1/3},

we have

hG
2n(0,0) ≤ c

(
R0(logR0)

1/3)−1

≤ 2c
(
n1/2(logn)1/6)−1

.

(See [8], Proposition 3.1. We apply this as v(R) = cR(logR)1/3 and r(R) = R.)
Therefore, by Proposition 2.1.2, for c sufficiently small,

P
(
hG

2n(0,0) ≤ 2c
(
n1/2(logn)1/6)−1) ≥ P

(
μG

(
BG (0,R0)

) ≥ cR0(logR0)
1/3)

= 1 − O
(
(logn)−5/3).
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Let nk = ek�. Then, since
∑

(lognk)
−5/3 < ∞, by the Borel–Cantelli lemma there exists K1(ω) with P(K1 <

∞) = 1 such that

h
G(ω)
2nk

(0,0) ≤ 2c
(
n

1/2
k (lognk)

1/6)−1 ∀k ≥ K1(ω).

This implies that the upper bound of Theorem 1.2.1 holds for the subsequence nk . The spectral decomposition gives
that h

G(ω)
2n (0,0) is monotone decreasing in n. So, if n > N1(ω) := eK1(ω) + 1, let k ≥ K1(ω) be such that nk ≤ n <

nk+1. Then

h
G(ω)
2n (0,0) ≤ h

G(ω)
2nk

(0,0)

≤ 2c
(
n

1/2
k (lognk)

1/6)−1

≤ c̃
(
n1/2(logn)1/6)−1

. �

2.2. Lower bound

In this subsection we will prove the lower bound of Theorem 1.2.1 by analysing the cut-times of S, where we call a
time k a cut-time for S if S[0, k] ∩ S(k,∞) = ∅. In four dimensions the set of cut-times

T := {
k: S[0, k] ∩ S(k,∞) = ∅

}
,

is an infinite set, P -a.s., so we can write T1 < T2 < · · · to represent the elements of the set of cut-times T . We let Jj

be the indicator function of the event “j is a cut-time” that is, Jj = 1 if S[0, j ] ∩ S(j,∞) = ∅, and write

Rn =
n∑

j=0

Jj .

We write Cn to represent the nth cut-point STn . In order to prove the lower bound of Theorem 1.2.1, we need the upper
bound of volume (see, for example, [8], Proposition 3.2). However, it is clear that μG (BG (0, n)) ≤ 8Tn. Thus, we start
by a considering the upper bound of Tn (or lower bound of Rn).

Our main estimates for the lower bound of Rn is given in Proposition 2.2.3. This can be proved by using the fact
that “short-range” and “long-range” intersections of random walks are asymptotically independent in four dimensions.
In order to establish this proposition, we need Lemmas 2.2.1 and 2.2.2. So we will show these lemmas first, and then
Proposition 2.2.3.

Fix δ ∈ (0,1). We write

ai,n = ⌊
n(logn)iδ

⌋
for i = 1,2,3. (2.6)

Lemma 2.2.1. Let d = 4. Then,

P
(
S[0, n] ∩ S[a1,n,∞) �= ∅

) = O
(
(logn)−1−δ

)
.

Proof. Let S1, S2 denote independent simple random walks starting at the origin in Z
4. It follows from the proof

of [9], Corollary 4.2.5 that

P
(
S[0, n] ∩ S[a1,n,∞) �= ∅

) = P
(
S1[0, n] ∩ S2[a1,n − n,∞) �= ∅

)

≤ c(logn)−1
n∑

i=0

∞∑
j=a1,n−n

P
(
S1

i = S2
j

)
. (2.7)
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By the local central limit theorem of [9], Theorem 1.2.1, the right-hand side of (2.7) can be bounded above by

c(logn)−1
n∑

i=0

∞∑
j=a1,n−n

1

(i + j)2
= O

(
(logn)−1−δ

)
.

�

Let

A1 := {
S[0, n] ∩ S[a1,n,∞) = ∅, S[0, a1,n] ∩ S[a2,n,∞) = ∅

}
. (2.8)

By Lemma 2.2.1, we have

P
(
Ac

1

) = O
(
(logn)−1−δ

)
. (2.9)

If we also let

J̃j =
{

1
{
S[0, j ] ∩ S(j, a1,n] = ∅

}
, 0 ≤ j ≤ n,

1
{
S[a1,n, j ] ∩ S(j,∞) = ∅

}
, a2,n ≤ j ≤ a3,n.

(2.10)

Then it is easy to see that Jj = J̃j on the event A1.

Lemma 2.2.2. Let d = 4. There exists c > 0 such that

P

(
n∑

j=0

J̃j ≤ cn(logn)−1/2

)
= O

(
log logn

logn

)
, (2.11)

P

( a3,n∑
j=a2,n

J̃j ≤ cn(logn)−1/2

)
= O

(
log logn

logn

)
. (2.12)

Proof. The proof of (2.11) and (2.12) are similar, we will only prove (2.11). Let 0 ≤ j ≤ n. It is well known that

E(Jj ) = P
(
S[0, j ] ∩ S(j,∞) = ∅

) ∼ c̃(log j)−1/2

for some c̃ > 0; see Introduction in [11], for example.
Therefore, by Lemma 2.2.1,

E(J̃j ) ≤ E(Jj ) + P
(
S[0, j ] ∩ S[a1,n,∞) �= ∅

) ∼ c̃(log j)−1/2,

and hence

E(J̃j ) ∼ c̃(log j)−1/2. (2.13)

Therefore, letting c = c̃
4 , we have

P

(
n∑

j=0

J̃j ≤ cn(logn)−1/2

)
≤ P

(
n∑

j=0

J̃j ≤ 1

2
E

(
n∑

j=0

J̃j

))

≤ P

(∣∣∣∣∣
n∑

j=0

J̃j − E

(
n∑

j=0

J̃j

)∣∣∣∣∣ ≥ 1

2
E

(
n∑

j=0

J̃j

))

≤ 4 Var(
∑n

j=0 J̃j )

E(
∑n

j=0 J̃j )2
.
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To complete the proof of (2.11) it remains to establish that

Var

(
n∑

j=0

J̃j

)
= E

(
n∑

j=0

J̃j

)2

O

(
log logn

logn

)
. (2.14)

We have

Var

(
n∑

j=0

J̃j

)
= E

((
n∑

j=0

J̃j

)2)
− E

(
n∑

j=0

J̃j

)2

=
n∑

j=0

E
(
J̃j

2) + 2
∑

0≤j<k≤n

E(J̃j J̃k)

−
n∑

j=0

E(J̃j )
2 − 2

∑
0≤j<k≤n

E(J̃j )E(J̃k),

and

n∑
j=0

E
(
J̃j

2) −
n∑

j=0

E(J̃j )
2 =

n∑
j=0

E(J̃j ) −
n∑

j=0

E(J̃j )
2 ≤ n + 1.

Therefore we only need to consider∑
0≤j<k≤n

E(J̃j J̃k) −
∑

0≤j<k≤n

E(J̃j )E(J̃k).

Let A = {(j, k): 0 ≤ j < k ≤ n} and an = n(logn)−9�. We write

A1 = {
(j, k) ∈ A: 0 ≤ j ≤ an

}
,

A2 = {
(j, k) ∈ A: an < j < k < n − an

}
,

A3 = {
(j, k) ∈ A: n − an ≤ k ≤ n

}
,

and partition A2 into two sets:

A2+ = {
(j, k) ∈ A2: k − j > 2an

}
,

A2− = {
(j, k) ∈ A2: k − j ≤ 2an

}
.

Since �A1 + �A2− + �A3 ≤ 4n2(logn)−9, the sum over A1 ∪ A2− ∪ A3 can be bounded above by

4n2(logn)−9 = E

(
n∑

j=0

J̃j

)2

O
(
(logn)−8).

For the sum over A2+, we need to be a little careful. Let (j, k) ∈ A2+. By independence,

E(J̃j J̃k) ≤ P
(
S[j − an, j ] ∩ S(j, j + an] = ∅,

S[k − an, k] ∩ S(k, k + an] = ∅
)

= P
(
S[j − an, j ] ∩ S(j, j + an] = ∅

)
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× P
(
S[k − an, k] ∩ S(k, k + an] = ∅

)
= b2

n,

where bn := P(S[0, an] ∩ S(an,2an] = ∅).
On the other hand, the following holds for an < j ≤ n,

E(J̃j ) = bn

(
1 − O

(
log logn

logn

))
. (2.15)

Indeed, let

U = {
S[0, j ] ∩ S(j,∞) = ∅

}
,

V = {
S[0, j ] ∩ S(j, a1,n] = ∅

}
,

V = {
S[j − an, j ] ∩ S(j, j + an] = ∅

}
,

so that U ⊂ V ⊂ V . Then,

1 − O

(
log logn

logn

)
= P(U)

P (V )
≤ P(V )

P (V )
,

where the first equality is due to [9], Lemma 7.7.3. This implies (2.15).
Since bn ∼ c̃(logn)−1/2 (see, for example, [9], Appendix A), we can combine this with the above results to con-

clude

∑
(j,k)∈A2+

{
E(J̃j J̃k) − E(J̃j )E(J̃k)

} ≤
∑

(j,k)∈A2+

{
b2
n − b2

n

(
1 − O

(
log logn

logn

))}

=
∑

(j,k)∈A2+

b2
nO

(
log logn

logn

)

= n2b2
nO

(
log logn

logn

)

= E

(
n∑

j=0

J̃j

)2

O

(
log logn

logn

)
.

�

The key result in four dimensions in this paper is the following proposition.

Proposition 2.2.3. Let d = 4. There exists c > 0 such that

P
(
Ra3,n

≤ cn(logn)−1/2) = O
(
(logn)−1−δ

)
. (2.16)

Proof. By (2.9), the independence of
∑n

j=0 J̃j and
∑a3,n

j=a2,n
J̃j , and Lemma 2.2.2,

P
(
Ra3,n

≤ cn(logn)−1/2) ≤ P

(
n∑

j=0

Jj +
a3,n∑

j=a2,n

Jj ≤ cn(logn)−1/2

)

≤ P

(
n∑

j=0

Jj +
a3,n∑

j=a2,n

Jj ≤ cn(logn)−1/2,A1 holds

)
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+ P(A1 does not hold)

≤ P

(
n∑

j=0

J̃j +
a3,n∑

j=a2,n

J̃j ≤ cn(logn)−1/2

)

+ O
(
(logn)−1−δ

)
≤ P

(
n∑

j=0

J̃j ≤ cn(logn)−1/2

)
P

( a3,n∑
j=a2,n

J̃j ≤ cn(logn)−1/2

)

+ O
(
(logn)−1−δ

)
= O

(
(logn)−1−δ

)
. �

The following is an immediate corollary.

Corollary 2.2.4. Let d = 4. (a) Recall Rn = ∑n
j=0 Jj is the number of cut-points on the first n points of S. We have

Var(Rn) = E(Rn)
2O

(
log logn

logn

)
.

(b) There exists c > 0 such that for each δ ∈ (0,1),

P
(
Tn ≥ cn(logn)1/2+3δ

) = O
(
(logn)−1−δ

)
. (2.17)

(c) There exists c > 0 such that for each δ ∈ (0,1),

P
(
μG

(
BG (0, n)

) ≥ cn(logn)1/2+3δ
) = O

(
(logn)−1−δ

)
. (2.18)

Proof. Part (a) can be proved in the same way as (2.14). Part (b) is readily obtained from Proposition 2.2.3. Since
μG (BG (0, n)) ≤ 8Tn, part (b) implies part (c). �

Let

τG (0, n) = inf
{
n ≥ 0: Xn /∈ BG (0, n)

}
and the function RG (·, ·) be the effective resistance on G when we suppose that a unit resistor is placed along each
edge. We are now in a position to prove the lower bound of Theorem 1.2.1. To establish it, we need the following
proposition.

Proposition 2.2.5. Let d = 4. There exist c > 0 and c̃ > 0 such that for each δ ∈ (0,1),

P
(
cn2(logn)−6δ ≤ EG

0

(
τG (0, n)

) ≤ sup
x∈BG (0,n)

EG
x

(
τG (0, n)

) ≤ c̃n2(logn)1/2+3δ
)

= 1 − O
(
(logn)−1−δ/2). (2.19)

Proof. We adapt the argument of [3], Lemma 4.3. It is easy to check that for x ∈ BG (0, n),

EG
x

(
τG (0, n)

) ≤ RG
(
x,BG (0, n)c

)
μG

(
BG (0, n)

)
≤ 2nμG

(
BG (0, n)

)
,
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and therefore the right-hand side inequality of (2.19) is a straightforward consequence of Corollary 2.2.4(c). For
left-hand side inequality, we consider the following events

A2 =
{

sup
0≤m≤T2n

dG (0, Sm) ≤ c1n(logn)1/6+3δ
}

A3 = {
μG

(
BG (0, n)

) ≥ c2n(logn)1/3}.
By Corollary 2.2.4(b), Propositions 2.1.1 and 2.1.2, it follows that for c1 sufficiently large and c2 sufficiently small,

P(A2 ∩ A3) = 1 − O
(
(logn)−1−δ/2).

But applying an argument from the proof of [3], Lemma 4.3, it is possible to deduce that on the set A2 ∩ A3, we have

EG
x

(
τG

(
0, c1n(logn)1/6+3δ

)) ≥ c3n
2(logn)1/3,

for some c3 > 0, which completes the proof. �

Proof of the lower bound of Theorem 1.2.1. Let

A4 =
{

2c3n
2(logn)−2δ ≤ EG

0

(
τG (0, n)

) ≤ sup
x∈BG (0,n)

EG
x

(
τG (0, n)

) ≤ c4n
2(logn)1/2+δ

}

A5 = {
μG

(
BG (0, n)

) ≤ c5n(logn)1/2+δ
}
.

By Corollary 2.2.4(c) and Proposition 2.2.5, we can choose c3 > 0 sufficiently small, c4 > 0 and c5 > 0 sufficiently
large so that

P(A4 ∩ A5) = 1 − O
(
(logn)−1−δ/6). (2.20)

Assume that A4 and A5 hold. Then using the Markov property, we have

2c3n
2(logn)−2δ ≤ EG

0

(
τG (0, n)

)
≤ c3n

2(logn)−2δ + P G
0

(
τG (0, n) > c3n

2(logn)−2δ
)

sup
x∈BG (0,n)

EG
x

(
τG (0, n)

)
≤ c3n

2(logn)−2δ + P G
0

(
τG (0, n) > c3n

2(logn)−2δ
)
c4n

2(logn)1/2+δ.

Therefore,

P
G
0

(
τG (0, n) > c3n

2(logn)−2δ
) ≥ c3

c4

n2(logn)−2δ

n2(logn)1/2+δ
= c6(logn)−1/2−3δ,

where c6 = c3
c4

.
By the Chapman–Kolmogorov equation and the Cauchy–Schwarz inequality,

P G
0

(
τG (0, n) > c3n

2(logn)−2δ
)2 ≤ P G

0

(
Xc3n

2(logn)−2δ� ∈ BG (0, n)
)2

≤
{ ∑

y∈BG (0,n)

hG
c3n

2(logn)−2δ�(0, y)μG
({y})}2

≤ μG
(
BG (0, n)

)
hG

2c3n
2(logn)−2δ�(0,0)

≤ c5n(logn)1/2+δhG
2c3n

2(logn)−2δ�(0,0),
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and therefore,

hG
2c3n

2(logn)−2δ�(0,0) ≥ c2
6

c5
n−1(logn)−3/2−7δ.

With a simple reparameterisation we can conclude that on the set A4 ∩ A5,

hG
2n(0,0) ≥ c7n

−1/2(logn)−3/2−8δ,

for some c7 > 0. So, using the Borel–Cantelli lemma first and then using the monotonicity of hG
2n(0,0) as in the last

part of the upper bound of Theorem 1.2.1, we deduce that there exists N1(ω) with P(N1 < ∞) such that

n−1/2(logn)−3/2−δ ≤ h
G(ω)
2n (0,0)

for all n ≥ N1(ω). This completes the proof of the lower bound of Theorem 1.2.1. �

3. Proof of Theorem 1.2.2

3.1. Lower bound

Let d = 4. In this subsection we will show the lower bound of Theorem 1.2.2. Let δ ∈ (0,1) and recall that T =
(Tn)n≥1 is the set of cut-times and Cn = STn . We define the events

Ã0 = {
τG (0, n) ≤ n2(logn)1/2+2δ

}
,

Ã1 = {{Sm: 0 ≤ m ≤ Tn(logn)−1/6−δ�} ⊂ BG (0, n)
}
,

Ã2 =
{

max
1≤k≤n(logn)−1/6−δ�

|Ck| ≥ n1/2(logn)1/6−4δ
}
,

where | · | in Ã2 denotes Euclidean distance in R
4. Then on the event Ã0 ∩ Ã1 ∩ Ã2,

max
1≤m≤n2(logn)1/2+2δ

|Xm| ≥ max
1≤m≤τG (0,n)

|Xm|

≥ max
1≤k≤n(logn)−1/6−δ�

|Ck|

≥ n1/2(logn)1/6−4δ, (3.1)

where we use the fact that any path from 0 to BG (0, n)c passes through all cut-points in BG (0, n). Therefore, by a
simple reparameterisation, we have

max
1≤m≤n

|Xm| ≥ n1/4(logn)1/24−9δ/2.

So all we need is to show that each Ãi occurs with probability which is high enough to apply the Borel–Cantelli
lemma.

First, we consider Ã2.

Lemma 3.1.1. Let d = 4 and η > 0. Then it follows that

P
(
Tn < n(logn)1/2−η

) = O
(
(logn)−1−η

)
.
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Proof. Recall that Rn denotes the number of cut-times up to time n whose expectation is estimated as E(Rn) ∼
c̃n(logn)−1/2 for some c̃ > 0 and variance is estimated in Corollary 2.2.4(a). We have

P
(
Tn < n(logn)1/2−η

) ≤ P(Rn(logn)1/2−η� ≥ n)

≤ P

(
RN ≥ 1

2
N(logN)−1/2+η

)

≤ P

(
RN − E(RN) ≥ 1

4
N(logN)−1/2+η

)

≤ 16 Var(RN)
(
N2(logN)−1+2η

)−1

= O
(
(logN)−1−2η log logN

)
,

where N = n(logn)1/2−η�. �

We have the following proposition for Ã2.

Proposition 3.1.2. Let d = 4 and δ ∈ (0,1). Then, there exists cδ > 0 depending only on δ such that

P
(
Ã2

c) ≤ cδ(logn)−1−δ2/9.

Proof. Note that

Ã2
c ⊂

{
max

n(logn)−1/6−2δ�≤k≤n(logn)−1/6−δ�
|Ck| < n1/2(logn)1/6−4δ

}
. (3.2)

Let η := δ2

3 and

ki = ⌊
n(logn)−1/6−2δ+3(i−1)η

⌋
, i = 1, . . . , j,

where j is chosen as j = 1 +  1
δ
�. Note that

δ − δ2 < 3(j − 1)η ≤ δ.

Notice that

[
ki(logki)

1/2−η, ki(logki)
1/2+η

] ∩ [
ki+1(logki+1)

1/2−η, ki+1(logki+1)
1/2+η

] = ∅

for each i. By (3.2),

P
(
Ã2

c) ≤ P
(

max
1≤i≤j

|Cki
| < n1/2(logn)1/6−4δ

)

≤ P
(
Tki

/∈ [
ki(logki)

1/2−η, ki(logki)
1/2+η

]
, for some i = 1, . . . , j

)
+ P

(
max

1≤i≤j
|Cki

| < n1/2(logn)1/6−4δ,

Tki
∈ [

ki(logki)
1/2−η, ki(logki)

1/2+η
]
, for all i = 1, . . . , j

)
. (3.3)
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By Corollary 2.2.4(b) and Lemma 3.1.1, the first term of the right-hand side of (3.3) can be bounded above by

j∑
i=1

P
(
Tki

/∈ [
ki(logki)

1/2−η, ki(logki)
1/2+η

]) ≤ c

j∑
i=1

(logki)
−1−η/3

≤ cj (logn)−1−η/3

≤ c′ 2

δ
(logn)−1−δ2/9,

where c > 0 and c′ > 0 do not depend on δ. We will explain how to bound the second term.
First by the definition of ki , this term is bounded above by

P
(

inf
ki (log ki )

1/2−η≤m≤ki (log ki )
1/2+η

|Sm| < n1/2(logn)1/6−4δ, for all i = 1, . . . , j
)

≤ P
(

inf
n(logn)1/3−2δ+(3i−4)η≤m≤n(logn)1/3−2δ+(3i−2)η

|Sm| < n1/2(logn)1/6−4δ, for all i = 1, . . . , j
)
. (3.4)

By the Markov property, for each 1 ≤ i ≤ j ,

P
(

inf
(1/2)n(logn)1/3−2δ+(3i−4)η≤m≤2n(logn)1/3−2δ+(3i−2)η

|Sm| ≥ n1/2(logn)1/6−3δ
)

≥ P
(
|S(1/2)n(logn)1/3−2δ+(3i−4)η�| ≥ n1/2(logn)1/6−2δ

)
× inf

|x|≥n1/2(logn)1/6−2δ
P x

(|Sl | ≥ n1/2(logn)1/6−3δ, for all l ≥ 0
)
. (3.5)

By using the local central limit theorem of [9], Theorem 1.2.1 and gambler’s ruin estimate, (see, for example, [9],
Proposition 1.5.10), the right-hand side of (3.5) is bounded below by(

1 − O
(
(logn)−(3/2)δ

))(
1 − O

(
(logn)−2δ

)) = 1 − O
(
(logn)−(3/2)δ

)
. (3.6)

Now we estimate (3.4) by using (3.6). Let

τi := inf
{
m ∈ [

n(logn)1/3−2δ+(3i−4)η, n(logn)1/3−2δ+(3i−2)η
]
: |Sm| < n1/2(logn)1/6−4δ

}
for each i = 1, . . . , j . Here we use the convention inf ∅ = +∞. Then by the strong Markov property at τj−1,

(3.4) = P
(
τi ∈ [

n(logn)1/3−2δ+(3i−4)η, n(logn)1/3−2δ+(3i−2)η
]
, for all i = 1, . . . , j

)
≤ P

(
τi ∈ [

n(logn)1/3−2δ+(3i−4)η, n(logn)1/3−2δ+(3i−2)η
]
, for all i = 1, . . . , j − 1

)
× max

|x|<n1/2(logn)1/6−4δ
P x

(
inf

(1/2)n(logn)1/3−2δ+(3j−4)η≤m≤2n(logn)1/3−2δ+(3j−2)η
|Sm| < n1/2(logn)1/6−4δ

)
. (3.7)

By (3.6), if |x| < n1/2(logn)1/6−4δ , then

P x
(

inf
(1/2)n(logn)1/3−2δ+(3j−4)η≤m≤2n(logn)1/3−2δ+(3j−2)η

|Sm| ≥ n1/2(logn)1/6−4δ
)

≥ P x

(
inf

(1/2)n(logn)1/3−2δ+(3j−4)η≤m≤2n(logn)1/3−2δ+(3j−2)η
|Sm| ≥ 1

2
n1/2(logn)1/6−3δ

)

≥ P x
(

inf
(1/2)n(logn)1/3−2δ+(3j−4)η≤m≤2n(logn)1/3−2δ+(3j−2)η

|Sm − x| ≥ n1/2(logn)1/6−3δ
)

= 1 − O
(
(logn)−(3/2)δ

)
.
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Therefore (3.7) is bounded above by

P
(
τi ∈ [

n(logn)1/3−2δ+(3i−4)η, n(logn)1/3−2δ+(3i−2)η
]
, for all i = 1, . . . , j − 1

)
× O

(
(logn)−3/2δ

)
.

So, by iterating this argument, we can deduce that (3.4) is bounded above by cδ(logn)−3/2. �

Next we consider Ã1.

Proposition 3.1.3. Let d = 4 and δ ∈ (0,1). We have

P(Ã1
c
) = O

(
(logn)−1−δ/6).

Proof. By Proposition 2.1.1 and Corollary 2.2.4(b), there exists c > 0 such that

P
(
Ã1

c) ≤ P
(
Tn(logn)−1/6−δ� ≥ cn(logn)1/3−δ/2)

+ P
(

max
0≤m≤cn(logn)1/3−δ/2

dG (0, Sm) ≥ n
)

= O
(
(logn)−1−δ/6). �

Finally, we will consider Ã0. Denote

F :=
{

max
x∈BG (0,n)

EG
x

(
τG (0, n)

) ≤ n2(logn)1/2+δ
}
.

Note that by (2.20),

P(F) = 1 − O
(
(logn)−1−δ/7). (3.8)

Proposition 3.1.4. Let d = 4. For ω ∈ F , we have

P
G(ω)
0

(
Ã0

c) ≤ cδ(logn)−2,

where cδ > 0 is a constant depending only on δ.

Proof. By applying the Markov property at  δ
2 ( 2

δ
− 1)n2(logn)1/2+2δ�,

P G
0

(
Ã0

c) = P G
0

(
τG (0, n) >

⌊
δ

2

(
2

δ
− 1

)
n2(logn)1/2+2δ

⌋
, τG (0, n) > n2(logn)1/2+2δ

)

≤ P G
0

(
τG (0, n) >

⌊
δ

2

(
2

δ
− 1

)
n2(logn)1/2+2δ

⌋)

× max
x∈BG (0,n)

P G
x

(
τG (0, n) >

δ

2
n2(logn)1/2+2δ

)
.

On the set F , we have

P G
x

(
τG (0, n) >

δ

2
n2(logn)1/2+2δ

)
≤

(
δ

2
n2(logn)1/2+2δ

)−1

EG
x

(
τG (0, n)

) ≤ 2

δ
(logn)−δ,

for each x ∈ BG (0, n). So, by iterating this argument, we deduce the claim. �

Now we finish the proof of the lower bound of Theorem 1.2.2.
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Proof of the lower bound of Theorem 1.2.2. Let δ ∈ (0,1) and cδ > 0 be the constant depending only on δ as
described in the above argument. We sketch the proof (see the proof of [8], Theorem 1.5 (I)(c) for details). By Propo-
sitions 3.1.2, 3.1.3, 3.1.4, (3.8), and the Borel–Cantelli lemma, we see that there exists N ′(ω) with P(N ′ < ∞) = 1
such that

(a) P
G(ω)
0

(
τG(ω)(0, n) ≤ n2(logn)1/2+2δ

) ≥ 1 − cδ(logn)−2,

(b)
{
Sm(ω): 0 ≤ m ≤ Tn(logn)−1/6−δ�(ω)

} ⊂ BG(ω)(0, n),

(c) max
1≤k≤n(logn)−1/6−δ�

∣∣Ck(ω)
∣∣ ≥ n1/2(logn)1/6−4δ

for all n ≥ N ′(ω). Then, by the Borel–Cantelli lemma (with respect to the law P
G(ω)
0 ), there exists N ′(ω,ω) with

P
G(ω)
0

({
ω: N ′(ω,ω) < ∞}) = 1

such that

(d) τG(ω)(0, n)(ω) ≤ n2(logn)1/2+2δ,

(b) and (c) hold for all n ≥ N ′(ω,ω). Therefore, it follows from (3.1) that the desired lower bound holds for each
ω ∈ {ω: N ′(ω) < ∞} and ω ∈ {ω: N ′(ω,ω) < ∞}. �

3.2. Upper bound

In this subsection, we will show the upper bound of Theorem 1.2.2. Let δ ∈ (0,1). We define the events Bi as follows,

B0 = {
τG (0, n) ≥ n2(logn)−10/3−δ

}
,

B1 = {
Tn+1 ≤ cn(logn)1/2+δ

}
,

B2 =
{

sup
0≤m≤cn(logn)1/2+δ

|Sm| ≤ n1/2(logn)1/4+δ
}
.

On the event B0 ∩ B1 ∩ B2, we have

max
0≤m≤n2(logn)−10/3−δ

|Xm| ≤ max
0≤m≤τG (0,n)

|Xm|

≤ sup
x∈BG (0,n+1)

|x|

≤ sup
0≤m≤Tn+1

|Sm|

≤ sup
0≤m≤cn(logn)1/2+δ

|Sm|

≤ n1/2(logn)1/4+δ. (3.9)

Therefore, by a simple reparameterisation, we have

max
0≤m≤n

|Xm| ≤ n1/4(logn)13/12+(5/4)δ.

So, once we have good estimates for each P(Bc
i ) then, by a similar argument to that of Section 3.1, we can deduce

the upper bound of Theorem 1.2.2.
By Corollary 2.2.4(b), there exists c > 0 such that

P
(
Bc

1

) = O
(
(logn)−1−δ/3),
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and it is a straightforward consequence of the large deviation estimate (see, for example, [9], Lemma 1.5.1) that

P
(
Bc

2

) = O
(
e−(logn)δ/2)

.

Therefore, all we need is to estimate P
G(ω)
0 (Bc

0) on a good subset of Ω .
Let α = 3 + 11δ and β = 3

2 + 4δ. We define F̃1 and F̃2 as follows,

F̃1 :=
{

sup
0≤m≤T2n

dG (0, Sm) ≤ n(logn)1/6+δ
}

F̃2 :=
{
n2(logn)−2β−2δ ≤ EG

0

(
τG

(
0, n(logn)−β

))
≤ sup

x∈BG (0,n(logn)−β )

EG
x

(
τG

(
0, n(logn)−β

)) ≤ n2(logn)1/2−2β+δ
}
.

Note that by Proposition 2.1.1 and Corollary 2.2.4(b),

P(F̃1) = 1 − O
(
(logn)−1−δ/6), (3.10)

and by Proposition 2.2.5,

P(F̃2) = 1 − O
(
(logn)−1−δ/7). (3.11)

The following proposition gives that on the event F̃1 ∩ F̃2, P
G(ω)
0 (Bc

0) is small enough to apply the Borel–Cantelli
lemma. Therefore, we complete the proof of Theorem 1.2.2 by showing this proposition.

Proposition 3.2.1. Let d = 4 and δ ∈ (0,1). For ω ∈ F̃1 ∩ F̃2, we have

P
G(ω)
0

(
τG (0, n) ≤ n2(logn)−10/3−13δ

) = O
(
(logn)−1−δ

)
.

Proof. Our argument is similar to that in [3], the proof of Lemma 4.3, so we only sketch the proof. By the strong
Markov property,

P G
0

(
τG

(
0, n(logn)1/6+δ

) ≤ n2(logn)−α
)

≤ P G
0

(
τG

(
0, n(logn)−β

)
< n2(logn)−α

)
× sup

x∈BG (0,n(logn)−β )

P G
x

(
τG

(
0, n(logn)1/6+δ

) ≤ n2(logn)−α
)
.

Let T0 := inf{m: Xm = 0}. Then, as in the proof of Lemma 4.3 in [3], we have

P G
0

(
τG

(
0, n(logn)1/6+δ

) ≤ n2(logn)−α
) ≤ P G

0

(
τG

(
0, n(logn)−β

) ≥ n2(logn)−α
)−1

× sup
x∈BG (0,n(logn)−β)

P G
x

(
τG

(
0, n(logn)1/6+δ

)
< T0

)
. (3.12)

But by the Markov property,

EG
0

(
τG

(
0, n(logn)−β

)) ≤ n2(logn)−α

+ P G
0

(
τG

(
0, n(logn)−β

) ≥ n2(logn)−α
)

× sup
x∈BG (0,n(logn)−β )

EG
x

(
τG

(
0, n(logn)−β

))
,
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and therefore, we have

P G
0

(
τG

(
0, n(logn)−β

) ≥ n2(logn)−α
)

≥ EG
0 (τG (0, n(logn)−β)) − n2(logn)−α

supx∈BG (0,n(logn)−β ) E
G
x (τG (0, n(logn)−β))

. (3.13)

On the set F̃1 ∩ F̃2, since any path from x ∈ BG (0, n(logn)−β) to BG (0, n(logn)1/6+δ)c passes through Cn and C2n,
we have

sup
x∈BG (0,n(logn)−β )

P G
x

(
τG

(
0, n(logn)1/6+δ

)
< T0

)

≤ sup
x∈BG (0,n(logn)−β )

RG (0, x)

RG (x,BG (0, n(logn)1/6+δ)c)

≤ sup
x∈BG (0,n(logn)−β )

RG (0, x)

RG (Cn,C2n)

≤ n(logn)−β

n
= (logn)−β.

On the set F̃1 ∩ F̃2, the right-hand side of (3.13) is bounded below by

n2(logn)−2β−2δ − n2(logn)−α

n2(logn)1/2−2β+δ
≥ 1

2

n2(logn)−2β−2δ

n2(logn)1/2−2β+δ

= 1

2
(logn)−1/2−3δ,

where we use α = 2β + 3δ in the first inequality. Putting these estimates into (3.12), for ω ∈ F̃1 ∩ F̃2, we have

P
G(ω)
0

(
τG

(
0, n(logn)1/6+δ

) ≤ n2(logn)−α
) ≤ 2(logn)1/2+3δ−β = O

(
(logn)−1−δ

)
. �

4. Proof of Theorem 1.2.3

In this section we will prove Theorem 1.2.3. As in the proof of the upper bound of Theorem 1.2.1, we need to estimate
the lower bound of μG (BG (0, n)), and do so by considering the loop-erased random walk.

4.1. Setting and notation

Let d = 3 and α ∈ (0,1). We choose

0 = j0 < j1 < · · · < jm−1 ≤ n

such that ji = inα� for each i, where m = inf{k ∈ N: knα� > n}. Define Yk as in (2.1), namely,

Yk = 1
{
L

(
S[ji−1, k]) ∩ S(k, ji] = ∅

}
for ji−1 ≤ k < ji.

Using (2.2), we see that

max
1≤l≤n

dG (0, Sl) ≤
jm−1∑
k=0

Yk + nα. (4.1)
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So we need to estimate E(
∑jm−1

k=0 Yk) ∨ nα . In the next subsection we will show the following for a suitable choice
of α.

E

(
jm−1∑
k=0

Yk

)
∨ nα ≤ cn9/10(logn)a, (4.2)

where c and a are some positive constants. By definition of Yk , we have

E

(
ji∑

k=ji−1

Yk

)
= E

(
j1∑

k=0

Yk

)
∀i = 1,2, . . . ,m − 1. (4.3)

Therefore, we will consider E(
∑j1

k=0 Yk).
We give some notations. Let 0 ≤ k ≤ j1 and define ωk = L(S[0, k]), that is the path obtained by erasing loops on

S[0, k]. We define random variable Zk by

Zk = P Sk
(
ωk ∩ S[1, j1 − k] = ∅

)
. (4.4)

Then we have E(Yk) = E(Zk). Let Qk be the nearest neighbor of Sk with Qk /∈ ωk which maximizes P ·(ωk ∩S[1, j1 −
k−1] = ∅). If there is more than one such points choose one arbitrarily. If each nearest neighbor of Sk is in ωk , choose
Qk arbitrarily. (Note that this Qk is denoted as Tk in the proof of Theorem 7.5.1 in [9].) Define

σ(0) = sup
{
j ≤ j1: Sj = 0

}
,

σ (i) = sup
{
j ≤ j1: Sj = S

(
σ(i − 1) + 1

)}
,

for 1 ≤ i ≤ i0 where σ(i0) = j1.
Let

Wk =
{

0 if Yk = 0,
σ(i + 1) − σ(i) if Yk = 1 and k = σ(i) for some i.

Then

j1−1∑
k=0

Wk ≤ nα. (4.5)

4.2. Estimating the amount erased

By applying the argument used in the proof of [9], Theorem 7.5.1, we have the following proposition.

Proposition 4.2.1. Let d = 3 and 0 ≤ 2r < j1 − k. Then

P
(
Wk = 2r + 1|Sj ,0 ≤ j ≤ k

) ≥ 1

6
q

ωk

2r (Qk,Qk)P
Qk

(
S[1, j1 − k − 2r − 1] ∩ (

ωk ∪ {Qk}
) = ∅

)
, (4.6)

where

q
ωk

l (x, y) = P x
(
S[0, l] ∩ ωk = ∅, Sl = y

)
.

Moreover, on the event {Zk ≥ n−4}, we have

q
ωk

2r (Qk,Qk) ≥ cZ2
k r

−3/2(logn)−3, (4.7)

for some c > 0.
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Proof. We will sketch the proof (see [9], the proof of Theorem 7.5.1). Let 0 ≤ 2r < j1 − k. By definition of Wk and
the Markov property, we have

P(Wk = 2r + 1|Sj ,0 ≤ j ≤ k) = P
(
Yk = 1, k = σ(i), σ (i + 1) − σ(i) = 2r + 1, for some i|

Sj ,0 ≤ j ≤ k
)

≥ P
(
Sk+1 = Qk,L

(
S[0, k]) ∩ S(k, j1] = ∅,

Sk+1 = Sk+2r+1, Sk+1 /∈ S[k + 2r + 2, j1]|Sj ,0 ≤ j ≤ k
)

≥ 1

6
P Qk

(
S[0,2r] ∩ ωk = ∅, S2r = Qk

)
× P Qk

(
S[1, j1 − k − 2r − 1] ∩ (

ωk ∪ {Qk}
) = ∅

)
.

For (4.7), we assume Zk ≥ n−4. By the large deviation estimate (see, for example, [9], Lemma 1.5.1)

P Qk
(|Sr − Qk| ≥ 5r1/2(logn)

) ≤ ce−5(logn) = cn−5.

Therefore, it follows that

P Qk
(|Sr − Qk| ≤ 5r1/2(logn),S[0, r] ∩ ωk = ∅

)
≥ P Qk

(
S[0, r] ∩ ωk = ∅

) − P Qk
(|Sr − Qk| ≥ 5r1/2(logn)

)
≥ 1

2
Zk,

so ∑
|x−Qk |≤5r1/2(logn)

P Qk
(
S[0, r] ∩ ωk = ∅, Sr = x

) ≥ 1

2
Zk.

Hence, by the Cauchy–Schwarz inequality, it follows that on the set {Zk ≥ n−4},
q

ωk

2r (Qk,Qk) ≥
∑

|x−Qk |≤5r1/2(logn)

qωk
r (Qk, x)2

≥ cr−3/2(logn)−3Z2
k . �

In order to establish (4.2), we need to estimate

P Qk
(
S[1, j1 − k − 2r − 1] ∩ (

ωk ∪ {Qk}
) = ∅

)
(4.8)

by using Zk . For this purpose, we now make some preparations. Let 0 < β < α < 1 and γ ≥ 1 (the exact values of
these numbers will be determined later). We estimate (4.8) for 0 ≤ k ≤ j1 − nβ�. Let N = (j1 − k)1/2(logn)−γ and
ξN = inf{j ≥ 0: |Sj − Qk| > N}.

First, we will bound this hitting time as follows.

Lemma 4.2.2. There exists c ∈ (0,1) such that

P Qk(ξN > j1 − k) ≤ c(logn)2γ

.

Proof. We have

P Qk(ξN > j1 − k) = P Qk
(|Sj − Qk| ≤ N ∀j = 1, . . . , j1 − k

)
= P

(|Sj | ≤ N ∀j = 1, . . . , j1 − k
)
.
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By the large deviation estimate (see, for example, [9], Lemma 1.5.1), the right-hand side can be bounded above by

P
(|SlN2� − S(l−1)N2�| ≤ 2N ∀l = 1, . . . , (logn)2γ

) ≤ c(logn)2γ

,

for some c ∈ (0,1). �

Now we define γ ≥ 1. Let c ∈ (0,1) be the constant in Lemma 4.2.2. Define ρ > 0 such that c = e−ρ and write
γ := 5

2ρ
∨ 1. Then since 2γ > 1,

P Qk(ξN > j1 − k) ≤ e−ρ(logn)2γ ≤ e−2ργ (logn) ≤ n−5. (4.9)

We are now in a position to estimate (4.8) by using Zk and with these preparations in place, it is easy to conclude
the following proposition.

Proposition 4.2.3. Let d = 3 and

0 ≤ k ≤ j1 − nβ�,
(4.10)

(j1 − k)
(
1 − (logn)−2γ−10) ≤ 2r + 1 ≤ j1 − k.

Then, on the event {Zk ≥ n−4}, we have

P Qk
(
S[1, j1 − k − 2r − 1] ∩ (

ωk ∪ {Qk}
) = ∅

) ≥ c̃Zk,

for some c̃ > 0.

Proof. Assume that k and r satisfy (4.10). We have

P Qk
(
S[1, j1 − k − 2r − 1] ∩ (

ωk ∪ {Qk}
) = ∅

)
≥ P Qk

(
S[1, j1 − k − 2r − 1] ∩ (

ωk ∪ {Qk}
) = ∅, ξN ≥ j1 − k − 2r − 1

)
≥ P Qk

(
S[1, ξN ] ∩ (

ωk ∪ {Qk}
) = ∅

) − P Qk(ξN < j1 − k − 2r − 1). (4.11)

Since j1 − k − 2r − 1 ≤ (j1 − k)(logn)−2γ−10, a straightforward large deviation estimate gives

P Qk(ξN < j1 − k − 2r − 1) = O
(
n−5).

So on the event {Zk ≥ n−4}, we have only to consider the first term of (4.11). By using the strong Markov property,
we have

P Qk
(
S[1, ξN ] ∩ (

ωk ∪ {Qk}
) = ∅

) ≥ cP Qk
(
S[1, ξN ] ∩ ωk = ∅

)
,

for some c > 0, cf. [12], Lemma 2.1, for example. By Lemma 4.2.2, it follows that on the event {Zk ≥ n−4},
P Qk

(
S[1, ξN ] ∩ ωk = ∅

)
≥ P Qk

(
S[1, ξN ] ∩ ωk = ∅, ξN ≤ j1 − k

)
≥ P Qk

(
S[1, j1 − k] ∩ ωk = ∅

) − P Qk(ξN > j1 − k)

≥ Zk − O
(
n−5)

≥ c̃Zk,

for some c̃ > 0. �
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We can combine Proposition 4.2.3 with Proposition 4.2.1 to conclude the following; if k and r satisfy (4.10), then
on the event {Zk ≥ n−4}, we have

P(Wk = 2r + 1|Sj ,0 ≤ j ≤ k) ≥ cZ3
k r

−3/2(logn)−3. (4.12)

We finish this subsection by showing (4.2).

Proposition 4.2.4. Let d = 3 and 0 < β < α < 1. Recall γ = 5
2ρ

∨ 1. Then there exists c > 0 such that the following
holds

E

(
jm−1∑
k=0

Zk

)
≤ cn1−β/6(logn)(2γ+13)/3 + n1−α/3+β/3. (4.13)

Further, the right-hand side of (4.13) attains the minimum cn9/10(logn)(2γ+13)/3 when α = 9
10 and β = 3

5 , so that
(4.2) holds.

Proof. Let 0 ≤ k ≤ j1 − nβ�. Then by (4.12),

E(Wk) ≥
∑

r

′
(2r + 1)E

(
P

(
Wk = 2r + 1|Sj ,0 ≤ j ≤ k

))

≥ c
∑

r

′
E

(
Z3

k r
−1/2(logn)−3;Zk ≥ n−4)

= c(logn)−3E
(
Z3

k ;Zk ≥ n−4)∑
r

′
r−1/2,

for some c > 0, where the summation
∑

r
′ is over all r with 2r + 1 satisfies (4.10). By a simple calculation, the last

expression is bounded below by

c̃E
(
Z3

k ;Zk ≥ n−4)(j1 − k)1/2(logn)−2γ−13

≥ c̃E
(
Z3

k ;Zk ≥ n−4)nβ/2(logn)−2γ−13,

for some c̃ > 0. Therefore, by (4.5),

nα ≥
j1−1∑
k=0

E(Wk)

≥
j1−nβ�∑

k=0

E(Wk)

≥ c̃nβ/2(logn)−2γ−13
j1−nβ�∑

k=0

E
(
Z3

k ;Zk ≥ n−4).
This implies

j1∑
k=0

E
(
Z3

k

) ≤
j1−nβ�∑

k=0

E
(
Z3

k

) + nβ

≤
j1−nβ�∑

k=0

E
(
Z3

k ;Zk ≥ n−4) + n−12+α + nβ

≤ cnα−β/2(logn)2γ+13 + nβ, (4.14)
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for some c > 0. So by (),

jm−1∑
k=0

E
(
Z3

k

) ≤
m−1∑
i=1

ji∑
k=ji−1

E
(
Z3

k

)

=
m−1∑
i=1

j1∑
k=0

E
(
Z3

k

)

= (m − 1)

j1∑
k=0

E
(
Z3

k

)

≤ cn1−β/2(logn)2γ+13 + n1−α+β, (4.15)

and by using Hölder’s inequality we can deduce (4.13). It is easy to check that (4.2) holds when α = 9
10 and β = 3

5 . �

Remark 4.2.5. It is quite likely that the estimate (4.14) is not sharp. We expect that the following holds for each
0 < β < α < 1,

j1∑
k=0

E(Z3
k ) ≤ cnα−β/2(logn)2γ+13. (4.16)

4.3. Proof of Theorem 1.2.3

In order to complete the proof of Theorem 1.2.3, it is enough to prove the following proposition. Indeed, once the
proposition is proved, we can apply similar argument as in the proof of the upper bound of Theorem 1.2.1.

Proposition 4.3.1. Let d = 3 and ε > 0. Then we have

P
(
μG

(
BG

(
0, n9/10(logn)(2γ+13)/3+(1+ε)

)) ≤ cn
) = O

(
(logn)−1−ε

)
,

for some c > 0.

Proof. By (4.1), Proposition 4.2.4, and Chebyshev’s inequality,

P
(

max
1≤l≤n

dG (0, Sl) ≥ n9/10(logn)(2γ+13)/3+(1+ε)
)

≤ P

(
jm−1∑
k=0

Yk + n9/10 ≥ n9/10(logn)(2γ+13)/3+(1+ε)

)

≤ E

(
jm−1∑
k=0

Yk + n9/10

)
n−9/10(logn)−(2γ+13)/3−(1+ε)

= O
(
(logn)−1−ε

)
.

Therefore,

P
(
μG

(
BG

(
0, n9/10(logn)(2γ+13)/3+(1+ε)

)) ≤ cn
)

≤ P
(
μG

(
BG

(
0, n9/10(logn)(2γ+13)/3+(1+ε)

)) ≤ cn,

max
1≤l≤n

dG (0, Sl) < n9/10(logn)(2γ+13)/3+(1+ε)
)

+ O
(
(logn)−1−ε

)
≤ P

(
�{Sk: 0 ≤ k ≤ n} ≤ cn

) + O
(
(logn)−1−ε

)
.
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But by [7], there exist c̃ > 0 and c′ > 0 such that

E
(
�{Sk: 0 ≤ k ≤ n}) ∼ c̃n,

Var
(
�
{
Sk: 0 ≤ k ≤ n

}) ∼ c′n logn.

So we can complete the proof by taking c = c̃
2 . �
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