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Abstract. Let X be a one-dimensional positive recurrent diffusion with initial distribution ν and invariant probability μ. Suppose

that for some p > 1, ∃a ∈ R such that ∀x ∈ R, ExT
p
a < ∞ and EνT

p/2
a < ∞, where Ta is the hitting time of a. For such a

diffusion, we derive non-asymptotic deviation bounds of the form

Pν

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − μ(f )

∣∣∣∣ ≥ ε

)
≤ K(p)

1

tp/2

1

εp
A(f )p.

Here f bounded or bounded and compactly supported and A(f ) = ‖f ‖∞ when f is bounded and A(f ) = μ(|f |) when f is
bounded and compactly supported.

We also give, under some conditions on the coefficients of X, a polynomial control of ExT
p
a from above and below. This control

is based on a generalized Kac’s formula (see Theorem 4.1) for the moments Exf (Ta) of a differentiable function f .

Résumé. Considérons une diffusion récurrente positive avec loi initiale ν et probabilité invariante μ. Pour tout a ∈ R, soit Ta le

temps d’atteinte du point a. Supposons qu’il existe p > 1 et un point a ∈ R tels que pour tout x ∈ R, ExT
p
a < ∞ et EνT

p/2
a < ∞.

Alors nous obtenons l’inégalité de déviation non-asymptotique suivante:

Pν

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − μ(f )

∣∣∣∣ ≥ ε

)
≤ K(p)

1

tp/2

1

εp
A(f )p,

où f est une fonction bornée ou une fonction bornée à support compact. Ici, A(f ) = ‖f ‖∞ dans le cas d’une fonction bornée et
A(f ) = μ(|f |) dans le cas d’une fonction bornée à support compact.

De plus, sous certaines conditions sur les coefficients de la diffusion, nous obtenons une minoration et majoration, polynomiale
en x, de ExT

p
a . Ce résultat est basé sur une formule de Kac généralisée (voir théoréme 4.1) pour les moments Exf (Ta) où f est

une fonction dérivable.
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1. Introduction

We consider the solution of the one-dimensional stochastic differential equation

dXt = β(Xt)dt + σ(Xt )dWt,

with arbitrary initial data. Suppose that X is positive recurrent, and denote by μ its invariant probability. From the
Ergodic theorem in this case we know that for all x ∈ R, f ∈ L

1(μ) and ε > 0

Px

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − μ(f )

∣∣∣∣ ≥ ε

)
→ 0 (1.1)

as t goes to +∞. The purpose of this paper is to obtain a non-asymptotic upper bound for the probability in (1.1). Such
a bound is of major importance for many applications: various non-asymptotic problems for statistics of diffusions
(see [11,22,36]), concentration for particular approximations of granular media equations (see [8]), and many other
examples. Mainly, such a bound is useful any time when we wish to substitute a random quantity 1

t

∫ t

0 f (Xs)ds by
a deterministic μ(f ) except on some set of “small” probability. “Small” usually means “exponentially small,” and
this case has already been discussed in the literature (see the references below). Other possible rates seem not to be
studied so far, but actually it turns out that in concrete problems it is often sufficient to consider slower rates. On the
other hand, considering slower rates generally permits to lighten the assumptions on the model.

In this paper we study the case when the rate of convergence in (1.1) is polynomial. We use the regeneration
method, which appeals to the following natural condition: the integrability of regeneration times. For bounded or
bounded and compactly supported functions f , and X such that for some p > 1 the pth moment of the regeneration
time exists, we show the following deviation inequality: for all 0 < ε < A(f ),

Pν

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − μ(f )

∣∣∣∣ > ε

)
≤ K(p,x)ε−pt−α/2A(f )p. (1.2)

Here A(f ) = ‖f ‖∞ when f is bounded and A(f ) = μ(|f |) when f is bounded and of compact support, α = p if
p ≥ 2, and α = p − 1 if 1 < p ≤ 2. The constant K is a positive constant, which does not depend on f , t , ε, see
Theorems 3.2 and 3.5 for the precise statement.

Since the one-dimensional case is very explicit, the moments of regeneration times are closely related to hitting
time moments. In the last section we formulate conditions on the existence of hitting time moments and give (Corol-
laries 5.9 and 5.10) some sufficient conditions for (1.2) in terms of the coefficients of the diffusion.

Let us give a short overview of the history of the problem. In the context of i.i.d. variables the question of the
rate of convergence in (1.1) turns out to be the question of the rate of convergence in the law of large numbers. This
rate is exponential whenever the variables have exponential moments. There is a large literature on this subject; let
us cite very early results by Bernstein, Bennet [3], Hoeffding [27], the book by Petrov [42], a more recent article by
Pinelis [43], and the references therein.

For Markov chains, Clémençon [10], deduces an exponential bound for the probability in (1.1) using the regen-
eration method. He works with geometrically regular Markov chains, which means exponential integrability of some
hitting times, in the stationary regime and with bounded functions f (see also Bertail–Clémençon [4]). Following a
completely different approach, Adamczak [1], derives concentration inequalities for empirical processes of Markov
chains. As a particular case he deduces an exponential bound for (1.1), when f is bounded and μ(f ) = 0. He also
works under the assumption of exponential integrability of some regeneration time. As far as we know, in the con-
text of Markov chains the polynomial rate of convergence in the Ergodic theorem has not been considered. However,
it has been studied for many other ergodic phenomena, see, for example, Tuominen and Tweedy [46], Jarner and
Roberts [29], Chazottes and Redig [9] and references therein. Moreover, it is a well-known observation that there is
a natural connection between the speed of convergence to equilibrium and the integrability of some stopping (typi-
cally regeneration or coupling) times, see Chazottes and Redig [9], Meyn and Tweedie [39], Chapter III.15, Douc et
al. [16].

For continuous time Markov processes, as we already mentioned, the non-asymptotic bound in the Ergodic theorem
was obtained by Lezaud [34] and Cattiaux and Guillin [7]. The approach in [7] relies on the use of functional inequal-
ities for the invariant probability μ like the Poincaré inequality. In this way the authors obtain an asymptotically sharp
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exponential bound, in the spirit of the large deviation principle (see also [49]), for a process starting from the invariant
measure μ or from an initial law being absolute continuous with respect to μ. Another approach is followed in [34]
where perturbation of operator theory is used. All these authors work under the assumption of a spectral gap and obtain
an exponential bound for (1.1). Concerning the spectral gap, recently Loukianov, Loukianova and Song [37], proved
that this condition is equivalent to the existence of exponential moments of hitting times for one-dimensional diffu-
sions. Note also that more general exponential bounds are obtained in Guillin et al. [25], in relation with transportation
of measure inequalities. For one-dimensional ergodic diffusion processes, Galtchouk and Pergamenshchikov [21], ob-
tain (1.1) uniformly with respect to the initial condition and to some other parameter. Their bound is exponential,
too. They work under the assumption of constant diffusion coefficient and a drift bounded from above and below by
linear functions. Finally, let us also mention the paper of Kontoyiannis and Meyn [32], where an exponential bound
for the integral version of (1.1) is obtained. This work concerns multiplicatively (and geometrically) regular Markov
processes, see also [33] for its discrete counterpart.

In the continuous time, to the best of our knowledge, the polynomial case of the rate of convergence in the Ergodic
theorem (1.1) has not yet been considered. However there are a lot of results on polynomial rates for other phenomena
of convergence to equilibrium. The most studied are the rate of decrease of mixing coefficients and the rate of decrease
of the total variation distance between the law of Xt and μ. When the last rate is exponential (resp., sub-exponential or
polynomial), the model is usually called exponentially (resp., sub-exponentially or polynomially) ergodic. In this field
of research, Fort and Roberts [20], study the sub-exponential ergodicity for a strong Markov process and obtain as
an application of their results the polynomial ergodicity for multi-dimensional diffusions. Veretennikov [47], studies
both mixing coefficients and total variation distance between the law of Xt and μ and gives sufficient conditions
for their polynomial decrease in the framework of multi-dimensional diffusions. The conditions in [20] and [47] are
formulated in terms of the coefficients of the diffusion, but both papers involve the existence of polynomial moments
for some regeneration times: modulated for [20] and coupling times for [47]. Finally, Douc, Fort and Guillin [15],
study sub-geometric ergodicity of a strong Markov process and provide a criterion that yields a precise control of a sub-
geometric moment of the return-time to a test-set (modulated moment). Hence the relation between the integrability
of regeneration times and different types of ergodicity in the sense of total variation distance between the law of Xt

and μ seems to be quite well understood. Regarding the very huge literature on this subject, let us also cite Roberts and
Tweedie [45], Down, Meyn and Tweedie [18], Douc, Guillin and Moulines [17], Pardoux and Veretennikov [40,41],
Veretennikov and Klokov [48] and the references therein.

In this paper, we establish a very explicit relation between integrability of hitting times and speed of convergence
in the Ergodic theorem (1.1). Hence a large part of the paper is devoted to the study of hitting time’s moments. In
Theorem 4.5 we explain that ExT

p
y is finite or infinite simultaneously for all couples x < y or x > y. The proof of

this result is based on a generalized version of Kac’s moment formula (Theorem 4.1), interesting in its own. Recall
that the original Kac’s formula given in [19] relates the moment of order p of hitting times Ty (or more generally of a
stopped additive functional) to the previous moment of order p − 1, for any p ∈ [1,+∞[. Our version (Theorem 4.1)
relates the moment Exf (Ty) to the moment of Exf

′(Ty).
In order to be able to work with an initial distribution ν and to check EνT

p
y < ∞, we give in Theorem 5.6 upper

and lower polynomial bounds for ExT
p
y under assumptions in the spirit of those given by Veretennikov [47] and by

Balaji and Ramasubramanian [2]. The constants in our bounds are sharp. A comparative analysis of our conditions
with those of [47] and [2] is contained in the last Section 5.

The paper is organized as follows. Section 2 collects auxiliary probabilistic results, needed for the proof of the
deviation theorems. The Deviations theorems are stated and proved in Section 3. They hold true under the assumption
that ExT

p
y < ∞ for all x, y. Consequently, Sections 4 and 5 are devoted to the study of polynomial integrability

of hitting times: Section 4 contains generalized Kac’s formula and theoretical conditions for ExT
p
y < ∞ for all x, y.

A precise polynomial bounds for ExT
p
y , under conditions on the coefficient of X, as well as some sufficient conditions

for (1.2) in terms of the coefficients of the diffusion are given in the last section.

2. Notation, basic assumptions and auxiliary results

Let Xt be a one-dimensional diffusion process given by

dXt = β(Xt)dt + σ(Xt )dWt. (2.1)
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We impose the following condition on the coefficients of (2.1).

Assumption 2.1. (1) For all x, σ 2(x) > 0.

(2) β and σ are locally Lipschitz, and |σ(x)| + |β(x)| ≤ C(1 + |x|), for some C > 0.

This assumption ensures the existence of a unique strong non-exploding solution of (2.1) (see, for example, [5],
Chapter III.4.17).

Let us recall some basic facts about one-dimensional diffusions. Denote

s(x) = exp

(
−2

∫ x

0

β(u)

σ 2(u)
du

)
, m(x) = 2

σ 2(x)s(x)
,

and recall that the scale function is given by

S(x) =
∫ x

0
s(t)dt for x ≥ 0, S(x) = −

∫ 0

x

s(t)dt for x < 0.

The diffusion X is said to be recurrent if for all x ∈ R, y ∈ R, Px(Ty < ∞) = 1. A necessary and sufficient condition
of recurrence is

lim
x→+∞S(x) = +∞ and lim

x→−∞S(x) = −∞ (2.2)

(see [26], Example 2 in Section 3.8, or [44], Chapter VII, Example 3.21). A recurrent diffusion is called positively
recurrent if Ex(Ty) < ∞ for all x, y ∈ R. This condition is equivalent to

M :=
∫ ∞

−∞
m(x)dx < +∞

(see [5], Chapter II.1.12). In the case of positive recurrence, the unique invariant probability measure of the process is
given by

μ(dx) = 1

M
m(x)dx. (2.3)

For the remainder of the article, except Proposition 2.3, we suppose:

Assumption 2.2. X is positively recurrent.

In the sequel we use the regeneration method for one-dimensional diffusions. One possible way to introduce the
regeneration times is the following: Fix two points a < b, a, b ∈ R. Define a sequence of stopping times (Sn)n, (Rn)n
as follows: S0 = 0, R0 = 0,

S1 := inf{t ≥ 0: Xt = b}, R1 := inf{t ≥ S1: Xt = a},
and for n ≥ 1,

Sn+1 := inf{t > Rn: Xt = b}, Rn+1 := inf{t ≥ Sn+1: Xt = a}.
The sequence (Rn)n “cuts” the process into i.i.d. blocs in the following sense: If f : R → R is measurable and bounded
and if we put

ξn =
∫ Rn+1

Rn

f (Xs)ds, n ≥ 0,

then we have the following proposition.

Proposition 2.3. Suppose that Assumption 2.1 and condition (2.2) hold. For any initial distribution ν, the sequence
(ξn)n≥1 is an i.i.d. sequence under Pν . For all n ≥ 1, the law of ξn under Pν is equal to the law of ξ0 under Pa.
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This last proposition is well known and easy to show using the strong Markov property. Note that in particular the
sequence (Rk+1 − Rk), k = 1,2, . . . , is an i.i.d. sequence with common distribution equal to the law of R1 under Pa .
Denote

C(f ) := sup
x

Ex

∫ R1

0
|f |(Xs)ds.

Proposition 2.4. Grant Assumptions 2.1 and 2.2. If f is measurable bounded with compact support, then C(f ) < ∞.

Proof. Denote by K the support of f and let τ = inf{t ≥ 0: Xt ∈ K}. Let M > 0 be such that |f | ≤ M . Then,

C(f ) = Ex

(
Ex

(∫ R1

τ∧R1

∣∣f (Xs)
∣∣ds

∣∣∣Fτ

))
≤ Ex

(
EXτ

∫ R1

0

∣∣f (Xs)
∣∣ds

)

≤ sup
x∈K

Ex

∫ R1

0

∣∣f (Xs)
∣∣ds ≤ M sup

x∈K

ExR1.

Since X is positive recurrent, we can use Theorem 4.5 below for n = 1. This theorem implies that x �→ ExR1 is
continuous, and thus supx∈K ExR1 < ∞. �

Note that the last proposition is true in a much more general case. Actually it is true for any recurrent strong-Feller
diffusion with state space R

n, see Remark 5.28(4) of [28].
The following proposition extends the uniform in x integrability property of the first life cycle and will play an

important role in the sequel.

Proposition 2.5. Grant Assumptions 2.1 and 2.2. Let f be a bounded measurable function with compact support.
Then for any n ∈ N

∗, supx Ex(
∫ R1

0 |f (Xs)|ds)n ≤ n!C(f )n. In particular, Eνξ
n ≤ n!C(f )n for any initial distribu-

tion ν.

Proof. We will first consider the case n = 2, the general case can be obtained in the same way. Writing θs , s ≥ 0 for
the usual shift operator, defined on the canonical space by Xu(θs(ω)) := Xs+u(ω) (see [44], Chapter I.3, p. 34) we
obtain(∫ R1

0

∣∣f (Xs)
∣∣ds

)2

=
∫ R1

0

∫ R1

0

∣∣f (Xs)
∣∣∣∣f (Xu)

∣∣ds du

= 2!
∫ R1

0
ds

∣∣f (Xs)
∣∣ ∫ R1

s

∣∣f (Xu)
∣∣du

= 2!
∫ ∞

0
ds

(∣∣f (Xs)
∣∣1{0<s<R1}

∫ R1

s

∣∣f (Xu)
∣∣du

)

≤ 2!
∫ ∞

0
ds

(∣∣f (Xs)
∣∣1{0<s<R1}

∫ R1◦θs

s

∣∣f (Xu)
∣∣du

)
.

Taking expectation and using Markov’s property in the last integral gives an upper bound

Ex

(∫ R1

0

∣∣f (Xs)
∣∣ds

)2

≤ 2!
∫ ∞

0
ds Ex

[∣∣f (Xs)
∣∣1{0<s<R1}Ex

(∫ R1◦θs

s

∣∣f (Xu)
∣∣du

∣∣∣Fs

)]

= 2!
∫ ∞

0
ds Ex

[∣∣f (Xs)
∣∣1{0<s<R1}EXs

(∫ R1

s

∣∣f (Xu)
∣∣du

)]

≤ 2!C(f )2.
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Applying this argument n times successively yields the result for arbitrary n ∈ N
∗. �

The following estimates will also be useful in the sequel. They are obtained using local time, hence the result is
typically one-dimensional in spirit. Let {La

t , t ≥ 0, a ∈ R} be a local time associated to the semi-martingale {Xt, t ≥
0}, i.e. a continuous increasing process such that for all a ∈ R,

|Xt − a| = |X0 − a| +
∫ t

0
sgn(Xs − a)dXs + La

t .

Lemma 2.6. Suppose that Assumptions 2.1 and 2.2 hold. Then for any bounded f : R → R, having compact sup-
port K,

C(f ) ≤ kμ
(|f |),

where k is a finite constant given by

k := M

2
sup
y∈K

s(y) sup
y∈K

sup
x

ExL
y
R1

.

Proof. Using Assumption 2.1, σ 2, s and m are continuous and strictly positive. Using the occupation time formula,

sup
x

Ex

∫ R1

0

∣∣f (Xs)
∣∣ds ≤

∫ +∞

−∞
∣∣f (y)

∣∣ 1

σ 2(y)
sup
x

ExL
y
R1

dy

≤ M

2
sup
y∈K

s(y) sup
y∈K

sup
x

ExL
y
R1

μ
(|f |). (2.4)

It suffices to show that supy∈K supx ExL
y
R1

is finite. We start by showing that for all y ∈ R supx ExL
y
R1

= EyL
y
R1

,
which can be seen as follows:

ExL
y
R1

= ExL
y
R1

1{R1>Ty } ≤ Ex

[
1{R1>Ty }Ex

(
L

y
Ty+R1◦θTy

|FTy

)]
≤ P(R1 > Ty)EyL

y
R1

≤ EyL
y
R1

.

Hence supx ExL
y
R1

= EyL
y
R1

. Let c = infK,d = supK. Now for y ∈ K we write

EyL
y
R1

≤ EyL
c
R1

+ Ey

∣∣Ly
R1

− Lc
R1

∣∣ ≤ EcL
c
R1

+ Ey

∣∣Ly
R1

− Lc
R1

∣∣.
But

∣∣Ly
R1

− Lc
R1

∣∣ ≤ |y| +
∣∣∣∣
∫ R1

0
1{c<Xs<y}σ(Xs)dWs

∣∣∣∣ +
∫ R1

0
1{c<Xs<d}

∣∣β(Xs)
∣∣ds.

y → EyR1 is continuous (see Theorem 4.5 below). Taking expectation with respect to Ey and taking supy∈K , using
continuity of β and of y → EyR1, we only need to show that

sup
y∈K

Ey

∣∣∣∣
∫ R1

0
1{c<Xs<y}σ(Xs)dWs

∣∣∣∣ < ∞.

By norm inclusion and isometry,

Ey

∣∣∣∣
∫ R1

0
1{c<Xs<y}σ(Xs)dWs

∣∣∣∣ <

(
Ey

(∫ R1

0
1{c<Xs<y}σ(Xs)dWs

)2)1/2

≤
(

Ey

(∫ R1

0
1{c<Xs<d}σ 2(Xs)ds

))1/2

.
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Using the continuity of σ 2 and of the map y �→ EyR1 we see that supy∈K Ey(
∫ R1

0 1{c<Xs<d}σ 2(Xs)ds) < ∞. �

We now define the point process associated to the life cycle decomposition Rn. Let N0 = 0 and put for t > 0,

Nt = sup{n: Rn ≤ t} =
∞∑

n=1

1{Rn≤t}.

Then the key fact for our proof of the deviation inequality is that the processes (Nt )t≥0 and (Rn)n∈N are mutually
inverse in the following sense:

{Nt ≥ n} = {Rn ≤ t} and {Nt ≤ n} = {Rn ≥ t}.
Lemma 2.7. Suppose that X verifies Assumptions 2.1 and 2.2. Then the quantities EaR1 and EμN1 are positive and
finite, and for any initial distribution ν the following statements hold:

(1) limn→∞ Rn/n = EaR1, Pν -a.s.
(2) limt→∞ Nt/t = EμN1, Pν -a.s.
(3) EaR1 = 1/EμN1.

Proof. The finiteness of EaR1 follows from positive recurrence. Statement (1) is the strong law of large numbers
since we can write

Rn

n
= R1

n
+ 1

n

n−1∑
k=1

(Rk+1 − Rk).

Using the recurrence property, R1 < ∞ a.s. and hence R1/n → 0 almost surely. Using Proposition 2.3 the variables
Rk+1 − Rk, k ≥ 1, are i.i.d. and equal in law to R1 under Pa . To prove the third statement we write:

lim
t→∞

Nt

t
= lim

n→∞
NRn

Rn

= lim
n→∞

n

Rn

.

Statement (2) follows from the Ergodic theorem: (Nt )t is an integrable additive functional of X, hence limt→∞ Nt/t =
EμN1/Eμ1 = EμN1 almost surely. �

The following proposition will be useful in the sequel.

Proposition 2.8. Suppose that X verifies Assumptions 2.1 and 2.2. Denote l := Eμ(N1). Then for any initial mea-
sure ν,

Eν

∫ R2

R1

f (Xs)ds = μ(f )

l
= μ(f )EaR1.

In particular, we have∣∣μ(f )
∣∣ ≤ l · C(f ).

Proof. Using the Ergodic theorem, almost surely,

μ(f ) = lim
t→∞

∫ t

0 f (Xs)ds

t
= lim

n→∞

∫ Rn

0 f (Xs)ds

Rn

.

On the other hand, using the strong law of large numbers,

lim
n→∞

∫ Rn

0 f (Xs)ds

Rn

= lim
n→∞

(1/n)
∫ Rn

0 f (Xs)ds

Rn/n
= Eν

∫ R2
R1

f (Xs)ds

EaR1
.

�
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3. The deviation inequalities

In this section we prove the deviation inequality (1.2). As explained in the Introduction, we use the regeneration
method, which consists to “cut the trajectory of the process into i.i.d. blocs.” However, the number of blocs before a
fixed t > 0 is a random quantity Nt . So in Theorem 3.1 we study the deviations of this random quantity around its
mean. After that, we prove the deviation inequality for a bounded function f in Theorem 3.2, and for f -bounded and
compactly supported in Theorem 3.5. In the first case the dependence on f is expressed through its sup-norm and in
the second case through its L1(μ)-norm.

Throughout this section we impose Assumptions 2.1 and 2.2. Hence the measure μ of (2.3) is the unique invariant
probability measure of the process.

3.1. Deviations for (Nt/t)t≥0

This section is devoted to the study of deviations of (Nt/t)t≥0 around its limit value Eμ(N1). The control of deviations
of (Nt/t)t≥0 will allow us to control the deviations of other additive functionals. We recall that l = Eμ(N1). The main
idea of the proof of this theorem is that the processes (Nt ) and (Rn) are mutually inverse in the sense of the Lemma 2.7.
The deviations of Nt can therefore be expressed in terms of the deviations of Rn = ∑n−1

k=0(Rk+1 − Rk), which is a
sum of i.i.d. variables.

Theorem 3.1. Grant Assumptions 2.1 and 2.2. Let ν be any initial distribution and 0 < ε < 1. Suppose that there
exists p > 1 such that Eν(R1)

p/2 < ∞ and Eν(R2 − R1)
p < ∞. Then there exists a positive constant C(l,p, ν) such

that the following inequality holds:
If p ≥ 2, then

Pν

(|Nt/t − l| > lε
) ≤ C(l,p, ν)

1

εp

1

tp/2
.

If 1 < p < 2 and t ≥ 1,

Pν

(|Nt/t − l| > lε
) ≤ C(l,p, ν)

1

εp

1

t (p−1)/2
.

Here C(l,p, ν) is given by

C(l,p, ν) =
{

2p/2
Eν |R1 − 1/l|p/2 + 23p/2C

p
pEν |η̄1|plp/2 if p ≥ 2,

2p/2
Eν |R1 − 1/l|p/2 + 2(3p+1)/2C

p
pEν |η̄1|pl(p+1)/2 if p ∈]1,2[,

where η̄1 = (−1)(R2 − R1 − 1
l
) and where Cp is the constant of the Burkholder–Davis–Gundy inequality.

Proof. Firstly, we decompose:

Pν

(|Nt/t − l| > lε
) ≤ Pν

(
Nt/t > l(1 + ε)

) + Pν

(
Nt/t < l(1 − ε)

)
. (3.1)

Put for k ≥ 1, η̄k = −1(Rk+1 − Rk − 1/l). For the first term of (3.1), we have

Pν

(
Nt/t > l(1 + ε)

) = Pν

(
Nt ≥ [

t l(1 + ε)
] + 1

) = Pν(R[t l(1+ε)]+1 ≤ t)

= Pν

([t l(1+ε)]∑
k=0

(Rk+1 − Rk) ≤ t

)

= Pν

([t l(1+ε)]∑
k=0

(
Rk+1 − Rk − 1

l

)
≤ t

(
1 − [t l(1 + ε)] + 1

t l

))
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≤ Pν

([t l(1+ε)]∑
k=0

(
Rk+1 − Rk − 1

l

)
≤ t

(
1 − t l(1 + ε)

tl

))

≤ Pν

([t l(1+ε)]∑
k=0

(
Rk+1 − Rk − 1

l

)
≤ −tε

)

≤ Pν(R1 − 1/l ≤ −tε/2) + Pν

([t l(1+ε)]∑
k=1

η̄k ≥ tε/2

)
. (3.2)

In an analogous way, we treat the second term in (3.1):

Pν

(
Nt/t < l(1 − ε)

) = Pν

(
Nt ≤ [

t l(1 − ε)
]) = Pν(R[t l(1−ε)] ≥ t)

= Pν

([t l(1−ε)]−1∑
k=0

(
Rk+1 − Rk − 1

l

)
≥ t

(
1 − [t l(1 − ε)]

t l

))

≤ Pν

(
R1 − 1

l
≥ tε/2

)
+ Pν

([t l(1−ε)]−1∑
k=1

η̄k ≤ −tε/2

)
. (3.3)

Let M0 = 0 and Mn = ∑n
k=1 η̄k. For k ≥ 1, (η̄k) are i.i.d. centered random variables such that Eν |η̄k|p < ∞, hence

(Mn)n≥1 is an Lp martingale such that [M]n = ∑n
k=1 η̄2

k . Denote M∗
n = supk≤n |Mk|. As a consequence of (3.2)

and (3.3) we can write

Pν

(|Nt/t − l| > lε
) ≤ Pν

(|R1 − 1/l| ≥ tε/2
) + Pν

(
M∗

[t l(1+ε)] ≥ tε/2
)
. (3.4)

We use the Burkholder–Davis–Gundy inequality to bound the last term in (3.4). By the Burkholder–Davis–Gundy
inequality, for all p > 1 there exists a constant Cp depending only p such that ‖M∗

n‖p ≤ Cp‖[M]1/2
n ‖p, hence

Eν(M
∗
n)p ≤ C

p
pEν(

∑n
k=1 η̄2

k)
p/2.

If p ≥ 2, using Hölder’s inequality,(
n∑

k=1

η̄2
k

)p/2

≤ np/2−1
n∑

k=1

|η̄k|p, hence Eν

(
M∗

n

)p ≤ C
p
pnp/2

E|η̄1|p. (3.5)

If 1 < p < 2, using Hölder’s inequality together with the sub-additivity of the function x �→ √
x,(

n∑
k=1

η̄2
k

)p/2

≤ n(p−1)/2
n∑

k=1

|η̄k|p, hence Eν

(
M∗

n

)p ≤ C
p
pn(p+1)/2

E|η̄1|p. (3.6)

Finally, if p ≥ 2,

Pν

(|Nt/t − l| > lε
) ≤ 2p/2

Eν |R1 − 1/l|p/2

(tε)p/2
+ 2pC

p
pEν |η̄1|p

[
t l(1 + ε)

]p/2 1

(εt)p

≤ (
2p/2

Eν |R1 − 1/l|p/2 + 23p/2C
p
pEν |η̄1|plp/2) 1

εp

1

tp/2
,

and if 1 < p < 2, for t ≥ 1,

Pν

(|Nt/t − l| > lε
) ≤ 2p/2

Eν |R1 − 1/l|p/2

(tε)p/2
+ 2pC

p
pEν |η̄1|p

[
t l(1 + ε)

](p+1)/2 1

(tε)p

≤ (
2p/2

Eν |R1 − 1/l|p/2 + 2(3p+1)/2C
p
pEν |η̄1|pl(p+1)/2) 1

εp

1

t (p−1)/2
. �
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3.2. Rate of convergence in the Ergodic theorem

We apply the results of the previous section to get a bound on the rate of convergence in the Ergodic theorem for
additive functionals

∫ t

0 f (Xs)ds, where f ∈ L
1(μ). We consider two situations. Firstly, the case where f is bounded,

secondly, the case where f is bounded and compactly supported. Our bound depends on f through ‖f ‖∞ in the first
case, and through μ(|f |) in the second one. In both proofs we use the following decomposition of trajectories: the
trajectory before R1, the trajectory between Rk and Rk+1, 1 ≤ k ≤ Nt + 1, and finally the trajectory between t and
Nt + 1. We also restrict this decomposition to the set Ωt where Nt is close to its mean. Hence the main term – the
sum of parts between Rk and Rk+1 – becomes just a sum of i.i.d. variables. The control of the complementary of Ωt

is given by the Theorem 3.1.

Theorem 3.2. Grant Assumptions 2.1 and 2.2. Let f ∈ L
1(μ). Suppose that ‖f ‖∞ < ∞. Let ν be any initial distrib-

ution and 0 < ε < ‖f ‖∞. Suppose that there exists p > 1 such that Eν(R1)
p/2 < ∞ and Eν(R2 − R1)

p < ∞. Then
for all t ≥ 1 the following inequality holds:

Pν

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − μ(f )

∣∣∣∣ > ε

)
≤

{
K(l,p, ν,X) 1

εp ‖f ‖p∞t−p/2 if p ≥ 2,

K(l,p, ν,X) 1
εp ‖f ‖p∞t−(p−1)/2 if 1 < p < 2.

Here K(l,p, ν,X) is a positive constant, different in the two cases, which depends on l, p, ν and on the process X

through the life cycle decomposition, but which does not depend on f , t , ε.

Remark 3.3. Since Eν(R1)
p ≤ 2p−1(EνT

p
b + EbT

p
a ), we can see that the hypotheses of the Theorem 3.2 are satisfied

if EaT
p
b < ∞, EbT

p
a < ∞ and EνT

p/2
b < ∞. Corollary 5.9 gives some explicit conditions for that in terms of the

coefficients of X.

Remark 3.4. Using regeneration techniques developed in [35] it should be possible to get some multi-dimensional
version of the previous theorem, but on this stage we are not able to state any practical condition ensuring the existence
of moments of regeneration times in this case. For that reason in the present paper we restrict our attention to the
one-dimensional diffusions.

Proof of Theorem 3.2. Put f̄ := f − μ(f ). Recall that 0 < ε < ‖f ‖∞. Denote δ = ε/‖f ‖∞ and

Ωt =
{∣∣∣∣Nt

t
− l

∣∣∣∣ ≤ lδ

}
.

We shall use the following decomposition.

Pν

(∣∣∣∣
∫ t

0
f (Xs)ds − tμ(f )

∣∣∣∣ > tε

)

≤ Pν

(∣∣∣∣
∫ t

0
f̄ (Xs)ds

∣∣∣∣ > tε;Ωt

)
+ Pν

(
Ωc

t

)

≤ Pν

(∣∣∣∣
∫ R1

0
f̄ (Xs)ds

∣∣∣∣ >
tε

3

)
+ Pν

(∣∣∣∣
∫ RNt +1

R1

f̄ (Xs)ds

∣∣∣∣ >
tε

3
;Ωt

)

+ Pν

(∣∣∣∣
∫ RNt +1

t

f̄ (Xs)ds

∣∣∣∣ >
tε

3
;Ωt

)
+ Pν

(
Ωc

t

)
= A + B + C + D.

For the term A, we have, since ‖f̄ ‖∞ ≤ 2‖f ‖∞,

Pν

(∣∣∣∣
∫ R1

0
f̄ (Xs)ds

∣∣∣∣ >
tε

3

)
≤ Pν

(
R1 >

tε

6‖f ‖∞

)
≤ EνR

p/2
1

tp/2

(
6‖f ‖∞

ε

)p/2

. (3.7)
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Recall that for n ≥ 1, ξn = ∫ Rn+1
Rn

f̄ (Xs)ds are i.i.d. random variables. Using Proposition 2.3, the law of ξn, n ≥ 1, does
not depend on the initial distribution and is equal to the law of ξ0 = ∫ R1

0 f̄ (Xs)ds under Pa . Recall (Proposition 2.8)
that Eaξ0 = μ(f̄ )/ l = 0.

In the sequel we need Eν |ξk|p < ∞, which can be seen as follows:

Eν |ξk|p ≤ 2p‖f ‖p∞Eν(R2 − R1)
p.

Now we treat the term B , which is the main term of the decomposition. Denote M0 = 0, Mn = ∑n
k=1(ξk) and

M∗
n = supk=0,...,n |Mk|. Then we have

B = Pν

(∣∣∣∣
∫ RNt+1

R1

f̄ (Xs)ds

∣∣∣∣ >
tε

3
;Ωt

)

≤ Pν

(∣∣∣∣∣
Nt∑

k=1

ξk

∣∣∣∣∣ >
tε

3
; |Nt/t − l| ≤ lδ

)

≤ Pν

(
sup

n≤[t l(1+δ)]
|Mn| > ε

3

)
≤ 3p

Eν(M
∗
[t l(1+δ)])p

εptp
.

We want to use the Burkholder–Davis–Gundy inequality for the martingale Mn. Now as in (3.5), (3.6) we have for
p ≥ 2

Eν

(
M∗

n

)p ≤ C
p
pnp/2−1

Eν

n∑
k=1

|ξk|p = C
p
pnp/2

Eν |ξ1|p,

and for 1 < p < 2,

Eν

(
M∗

n

)p ≤ C
p
pn(p−1)/2

Eν

n+1∑
k=2

|ξk|p = C
p
pn(p+1)/2

Eν |ξ1|p.

Finally, we have for p ≥ 2,

B ≤ C
p
p 3p[t l(1 + δ)]p/2

εptp
2p‖f ‖p∞Eν |R2 − R1|p ≤ K(p)‖f ‖p∞

1

tp/2

1

εp
, (3.8)

where K(p) = C
p
p 12plp/2

Eν |R2 − R1|p, and for p < 2,

B ≤ C
p
p 3p[t l(1 + δ)](p+1)/2

εptp
2p‖f ‖p∞Eν |R2 − R1|p ≤ (2l)1/2K(p)‖f ‖p∞

1

t (p−1)/2

1

εp
.

For the term C we can write

C = Pν

(∣∣∣∣
∫ RNt +1

t

f̄ (Xs)ds

∣∣∣∣ >
tε

3
;Ωt

)
≤

[t l(1+δ)]∑
k=1

Pν

(∣∣∣∣
∫ RNt +1

t

f̄ (Xs)ds

∣∣∣∣ >
tε

3
;Nt = k

)

≤
[t l(1+δ)]∑

k=1

Pν

(∫ Rk+1

Rk

|f̄ |(Xs)ds >
tε

3

)

≤ t l(1 + δ)
Eν(

∫ R2
R1

|f̄ |(Xs)ds)p

tp

(
3

ε

)p

≤ 1

tp−1

2p‖f ‖p∞
εp

2l3p
E|R2 − R1|p.
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Finally,

C ≤ K(p)
1

tp−1

‖f ‖p∞
εp

≤
⎧⎨
⎩

K(p) 1
tp/2

‖f ‖p∞
εp if p ≥ 2,

K(p) 1
tp−1

‖f ‖p∞
εp if p < 2,

(3.9)

where K(p) = 2p+1l3p
EaR

p

1 .

For the term D, we use the Theorem 3.1:

D ≤
{

C(p)t−p/2 ‖f ‖p∞
εp if p ≥ 2,

C(p)t−(p−1)/2 ‖f ‖p∞
εp if p < 2.

Here, C(p) is the constant of the Theorem 3.1. Finally, we obtain, putting together (3.7), (3.8) and (3.9)

Pν

(∣∣∣∣
∫ t

0
f (Xs)ds − tμ(f )

∣∣∣∣ > tε

)
≤ K(l,p, ν,X)

1

tα

(‖f ‖∞
ε

)p

∨
(‖f ‖∞

ε

)p/2

,

where α = p/2 if p ≥ 2, and α = (p − 1)/2 for 1 < p < 2.

Finally, since ‖f ‖∞ > ε,

(‖f ‖∞
ε

)p

∨
(‖f ‖∞

ε

)p/2

=
(‖f ‖∞

ε

)p

.

Then the theorem follows. �

In the case where f is bounded and compactly supported we get the version of the deviation inequality with L
1(μ)

norm of f instead of its sup-norm. In some practical situations this can be of major importance. In the next theorem
we only deal with integer p ∈ N

∗. This is due to the fact that Proposition 2.5 is only stated for integer moments.

Theorem 3.5. Grant Assumptions 2.1 and 2.2. Let f be a bounded function with compact support. Let ν be any initial
distribution. Suppose that there exists p ∈ N, p > 1, such that Eν(R1)

p < ∞ and Eν(R2 − R1)
p < ∞. Then for all

t ≥ 1, for all 0 < ε < μ(|f |) the following inequality holds:

Pν

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − μ(f )

∣∣∣∣ > ε

)
≤ K(l,p,X)

1

εp
μ

(|f |)p
t−p/2.

Here K(l,p,X) is a positive constant which depends on l, p,X, but which does not depend on f , t , ε.

Remark 3.6. The Corollary 5.10 gives some explicit conditions for the Theorem 3.5 in terms of coefficients of X.

Proof. Since 0 < ε < μ(|f |), we can write ε = μ(|f |)δ, where 0 < δ < 1.

Denote

Ωt =
{∣∣∣∣Nt

t
− l

∣∣∣∣ ≤ lδ

4

}
.

We shall use the following decomposition.

Pν

(∣∣∣∣
∫ t

0
f (Xs)ds − tμ(f )

∣∣∣∣ > tε

)

≤ Pν

(∣∣∣∣
∫ t

0
f (Xs)ds − tμ(f )

∣∣∣∣ > tε;Ωt

)
+ Pν

(
Ωc

t

)
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≤ Pν

(∣∣∣∣
∫ R1

0
f (Xs)ds

∣∣∣∣ >
tε

4

)
+ Pν

(∣∣∣∣
∫ RNt +1

R1

f (Xs)ds − Nt

μ(f )

l

∣∣∣∣ >
tε

4
;Ωt

)

+ Pν

(∣∣∣∣Nt

μ(f )

l
− tμ(f )

∣∣∣∣ >
tε

4
;Ωt

)
+ Pν

(∣∣∣∣
∫ RNt +1

t

f (Xs)ds

∣∣∣∣ >
tε

4
;Ωt

)
+ Pν

(
Ωc

t

)
= A + B + E + C + D.

All the long of the proof K is a positive constant, not always the same, which depends on l, p and on the process X

through the life cycle decomposition, but which does not depend on f , t , ε.

We start with the term E. Using μ(|f |)/|μ(f )| ≥ 1 together with x/0 = +∞ for x > 0, we have

E = Pν

(∣∣∣∣Nt

t
− l

∣∣∣∣ >
μ(|f |)
|μ(f )|

lδ

4
;Ωt

)
= 0. (3.10)

For the term A, we have, applying Proposition 2.5 and Lemma 2.6,

A = Pν

(∣∣∣∣
∫ R1

0
f (Xs)ds

∣∣∣∣ >
tε

4

)
≤ Eν(

∫ R1
0 |f (Xs)|ds)p

tp

(
4

ε

)p

≤ p!C(f )p

tp/2

(
4

ε

)p

≤ kp p!μ(|f |)p
tp/2

(
4

ε

)p

. (3.11)

Recall that for n ≥ 1, ξn = ∫ Rn+1
Rn

f (Xs)ds are i.i.d. equal in law to the ξ0 under Pa . By Proposition 2.8 Eaξ0 =
μ(f )/l. Write M0 = 0, Mn = ∑n

k=1(ξk − Eν(ξk)). We have that Eν |ξk − μ(f )/l|p < ∞, since

Eν

∣∣ξk − μ(f )/l
∣∣p < 2p

(
Eν |ξk|p + ∣∣μ(f )/l

∣∣p)
< 2pp!C(f )p + 2p

∣∣μ(f )/l
∣∣p < ∞.

Then

B = P

(
|MNt | >

tε

4
;Ωt

)
≤ Pν

(
sup

n≤[t l(1+δ/4)]
|Mn| > tε

4

)
≤ 4p

Eν(M
∗[t l(1+δ/4)])p

εptp
.

As in the proof of Theorem 3.2, we use the Burkholder–Davis–Gundy inequality for the martingale Mn. Now as in
the proof of (3.5), since p ≥ 2,

Eν

(
M∗

n

)p ≤ C
p
pnp/2

Eν

∣∣ξ1 − Ex(ξ1)
∣∣p ≤ C

p
pnp/2(2pp!C(f )p + 2p

∣∣μ(f )/l
∣∣p)

.

Hence, since C(f ) ≤ kμ(|f |) (Lemma 2.6),

B ≤ K(p)[t l(1 + δ/4)]p/2

εptp
μ

(|f |)p ≤ K(l,p,X)μ
(|f |)p 1

tp/2

1

εp
. (3.12)

For the term C as in the proof of Theorem 3.2 and using Proposition 2.5 we can write:

C = Pν

(∣∣∣∣
∫ RNt +1

t

f (Xs)ds

∣∣∣∣ >
tε

4
;Ωt

)
≤ t l(1 + δ/4)

Eν(
∫ Rk+1
Rk

|f |(Xs)ds)p

tp

(
4

ε

)p

≤ t l(1 + δ/4)
p!C(f )p

tp

(
4

ε

)p

.

We get

C ≤ K(p)
1

tp−1

C(f )p

εp
≤ K(p)

1

tp/2

C(f )p

εp
≤ K(l,p,X)

1

tp/2

μ(|f |)p
εp

(3.13)
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since p ≥ 2, using once more Lemma 2.6.
For the term D we have

D = Pν

(∣∣∣∣Nt

t
− l

∣∣∣∣ ≥ lδ

4

)
≤ Kt−p/2 1

δp
≤ K(l,p)t−p/2 μ(|f |)p

(δμ(|f |))p = K(l,p)
1

tp/2

μ(|f |)p
εp

. (3.14)

Finally, we put together (3.10)–(3.14) and the theorem follows. �

4. Kac formula

In Theorems 3.1, 3.2 and 3.5, the speed of convergence is governed by the pth moment of the regeneration time,
which can be expressed in terms of ExT

p
y . In this section we give a generalized version of Kac’s moments formula

(compare to [19] and [23]). It will be used to prove that the moments ExT
p
y , p ≥ 1, exist (or not) simultaneously for

all couples x < y (resp., x > y), see the Theorem 4.5. Also, Kac’s formula will be used in the last section to give
necessary and sufficient conditions of existence of such a moments.

Fix any pair of points a, b with −∞ < a < b < +∞. For a ≤ x ≤ b let us consider

Ta,b = inf
{
t ≥ 0;Xt /∈]a, b[}.

Let G be the Green’s function associated to the stopping time Ta,b, defined by

G(a,b, x, ξ) =

⎧⎪⎨
⎪⎩

(S(x)−S(a))(S(b)−S(ξ))
S(b)−S(a)

, a ≤ x ≤ ξ ≤ b,
(S(b)−S(x))(S(ξ)−S(a))

S(b)−S(a)
, a ≤ ξ ≤ x ≤ b,

0, otherwise.

Theorem 4.1 (Generalized Kac’s moment formula). Let f : R → R be such that the function x → Exf
′(Ta,b) is

continuous on [a, b]. Then

Exf (Ta,b) = f (0) +
∫ +∞

−∞
G(a,b, x, ξ)Eξ f

′(Ta,b)m(ξ)dξ. (4.1)

Proof. For any f : R → R denote uf (x) = uf (x, a, b) = Exf (Ta,b) and let

u(x) = u(x, a, b) =
∫ +∞

−∞
G(a,b, x, ξ)uf ′(ξ)m(ξ)dξ.

We see that u is continuous on [a, b]. Let (Lu)(x) = 1
2σ 2(x)u′′(x) + β(x)u′(x) be the generator of the semi-group

of X. An easy calculation using the derivation of an integral with variable upper limit and LS = 0 shows that under
our assumption u satisfies{

Lu(x) = −uf ′(x), a < x < b,
u(a) = a(b) = 0.

Hence the Ito formula applied to u gives

du(Xt ) = −uf ′(Xt )dt + dMt ; u(Xt ) = u(x) −
∫ t

0
uf ′(Xs)ds + Mt,

where Mt = ∫ t

0 u′(Xs)σ
2(Xs)dWs is a continuous local martingale such that Mt∧Ta,b

is uniformly integrable. Doob’s
stopping rule gives

0 = u(XTa,b
) = u(x) −

∫ Ta,b

0
uf ′(Xs)ds + MTa,b

,
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thus

u(x) = Ex

∫ Ta,b

0
uf ′(Xs)ds.

Then

u(x) = Ex

∫ Ta,b

0
EXs f

′(Ta,b)ds =
∫ ∞

0
Ex

(
1{s<Ta,b}Ex

(
f ′(Ta,b ◦ θs)|Fs

)
ds

)

=
∫ ∞

0
Ex

(
Ex

(
f ′(Ta,b ◦ θs)1{s<Ta,b}|Fs

)
ds

) =
∫ ∞

0
Ex

(
Ex

(
f ′(Ta,b − s)1{s<Ta,b}|Fs

)
ds

)

=
∫ ∞

0
Ex

(
f ′(Ta,b − s)1{s<Ta,b}

)
ds = Ex

∫ Ta,b

0
f ′(Ta,b − s)ds = Exf (Ta,b) − f (0),

and the theorem follows. �

Define for x < b

G(−∞, b, x, ξ) =
⎧⎨
⎩

(
S(b) − S(x)

)
, −∞ < ξ ≤ x,(

S(b) − S(ξ)
)
, x ≤ ξ ≤ b,

0, ξ ≥ b,

and for x > a,

G(a,+∞, x, ξ) =
⎧⎨
⎩

0, ξ ≤ a,(
S(ξ) − S(a)

)
, a ≤ ξ ≤ x,(

S(x) − S(a)
)
, x ≤ ξ < ∞.

Proposition 4.2. Under Assumptions 2.1 and 2.2, we have for all p ∈ [1,+∞[, a ∈ R, b ∈ R,

ExT
p
b = p

∫ +∞

−∞
G(−∞, b, x, ξ)Eξ T

p−1
b m(ξ)dξ ∀x < b (4.2)

and

ExT
p
a = p

∫ +∞

−∞
G(a,+∞, x, ξ)Eξ T

p−1
a m(ξ)dξ ∀x > a. (4.3)

Remark 4.3. The expressions (4.2) and (4.3) are always defined, because all functions we integrate are positive. In
Theorem 4.5 below we discuss the issue of finiteness of these terms.

Proof of Proposition 4.2. As an application of (4.1) with f (x) = x we obtain

ExTa,b =
∫ +∞

−∞
G(a,b, x, ξ)m(ξ)dξ. (4.4)

As a consequence, being an integral with variable upper limit and continuous integrand, the function x �→ ExTa,b is
continuous on [a, b]. Thus (4.1) with f (x) = x2 applies and gives

ExT
2
a,b = 2

∫ +∞

−∞
G(a,b, x, ξ)Eξ Ta,bm(ξ)dξ,
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which is also continuous being an integral with variable upper limit and continuous integrand. Finally, after n appli-
cations of (4.1) we have

ExT
n
a,b = n

∫ +∞

−∞
G(a,b, x, ξ)Eξ T

n−1
a,b m(ξ)dξ. (4.5)

Using monotone convergence, we get

ExT
n
b = lim

a→−∞ ExT
n
a,b.

Note that

G(−∞, b, x, ξ) = lim
a→−∞G(a,b, x, ξ) =

⎧⎨
⎩

(
S(b) − S(ξ)

)
, x ≤ ξ ≤ b,(

S(b) − S(x)
)
, ξ ≤ x ≤ b,

0, ξ > b.

Moreover, for all a < x < b, G(a, b, x, ξ) ≤ G(−∞, b, x, ξ). So, if the integral∫ +∞

−∞
G(−∞, b, x, ξ)Eξ T

n−1
a,b m(ξ)dξ (4.6)

converges, using dominated convergence, we pass to the limit when a → −∞, which gives

ExT
n
b = n

∫ +∞

−∞
G(−∞, b, x, ξ)Eξ T

n−1
b m(ξ)dξ.

We can rewrite this last expression as

ExT
n
b = n

((
S(b) − S(x)

)∫ x

−∞
Eξ T

n−1
b m(ξ)dξ +

∫ b

x

(
S(b) − S(ξ)

)
Eξ T

n−1
b m(ξ)dξ

)
.

If the integral in (4.6) diverges, using Fatou’s lemma, we have

ExT
n
b = n

∫ +∞

−∞
G(−∞, b, x, ξ)Eξ T

n−1
b m(ξ)dξ = ∞.

Hence independently of convergence or divergence of the integral (4.6) we have the equality (4.2). The proof of (4.3)
is similar to this of (4.2). This finishes the proof of (4.2) and (4.3) for n ∈ N, n ≥ 1.

We now turn to the proof of (4.2) and (4.3) for p > 1, p /∈ N. Write α = p − [p] ∈ ]0,1[. Note that under our
conditions, [a, b] � x �→ ExT

α
a,b is continuous which will be shown in Lemma 4.4 below. Hence exactly the same

schema applies: We start from the function f (x) = x1+α, using (4.1) we can write

ExT
1+α
a,b = (1 + α)

∫ +∞

−∞
G(a,b, x, ξ)Eξ T

α
a,bm(ξ)dξ.

The function x �→ ExT
1+α
a,b is continuous on [a, b], so we can apply the formula (4.1) again. In each step we obtain a

continuous function. Hence we can apply (4.1) [p] times. In this way we obtain

ExT
p
a,b = p

∫ +∞

−∞
G(a,b, x, ξ)Eξ T

p−1
a,b m(ξ)dξ.

Then we pass to the limit when a → −∞ using exactly the same considerations as for (4.5). �

The above proposition works for non-integer moments only if [a, b] � x �→ ExT
α
a,b is continuous, for any

0 < α < 1. This is true under our conditions as shows the following lemma.
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Lemma 4.4. Grant the Assumption 2.1. Then [a, b] � x �→ ExT
α
a,b is continuous for any 0 < α < 1.

Proof. Let xn → x, xn, x ∈ [a, b]. Write Fn(dt) (resp., F(dt)) for the law of Ta,b under Pxn (under Px, resp.).
Moreover, write

ϕn(λ) = Exne−λTa,b , ϕ(λ) = Exe−λTa,b

for the associated Laplace transforms:

(1) We start by showing that for any λ > 0, ϕn(λ) → ϕ(λ) as n → ∞. For that sake, let uλ(x) for a ≤ x ≤ b be the
solution of the equation{

Luλ = λuλ in ]a, b[
uλ(a) = uλ(b) = 1,

}
.

Under our assumptions, the coefficients of the diffusion are Hölder-continuous on [a, b]. By continuity, L is
uniformly elliptic on [a, b]. Hence, a solution to this problem exists and is given by

uλ(x) = Exe−λTa,b ,

see [31], Chapter 5.7, Proposition 7.2 and Remark 7.5. This solution uλ(x) is continuous on [a, b] which implies
our claim.

(2) By Maruyama and Tanaka [38], formula (3.7), we have that for any 0 < α < 1 and any n,∫ ∞

0

1 − ϕn(λ)

λ1+α
dλ =

∫ ∞

0
tαFn(dt)

∫ ∞

0

1 − e−λ

λ1+α
dλ.

In other words,∫ ∞

0

1 − ϕn(λ)

λ1+α
dλ = (

Exn

(
T α

a,b

)) ·
(∫ ∞

0

1 − e−λ

λ1+α
dλ

)
.

On the left-hand side of the above formula we use dominated convergence. Note that

1 − ϕn(λ)

λ
≤ ExnTa,b ≤ sup

n
ExnTa,b,

where supn ExnTa,b is finite due to continuity on [a, b] of the function x → ExTa,b, see (4.4). Hence we can use
the upper bound

1 − ϕn(λ)

λ1+α
≤ λ−(1+α)1[1,+∞[(λ) + sup

n
Exn(Ta,b)λ

−α1[0,1](λ).

Then by dominated convergence,∫ ∞

0

1 − ϕn(λ)

λ1+α
dλ →

∫ ∞

0

1 − ϕ(λ)

λ1+α
dλ,

which in turn equals∫ ∞

0

1 − ϕ(λ)

λ1+α
dλ = (

Ex

(
T α

a,b

)) ·
(∫ ∞

0

1 − e−λ

λ1+α
dλ

)
,

applying once more formula (3.7) of [38]. This implies that

Exn

(
T α

a,b

) → Ex

(
T α

a,b

)
as n → ∞,

and this finishes our proof. �
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It is known, see, for example, [38], that for p > 0, x < b (resp., x > a) the hitting time’s moments satisfy the
following property: ExT

p
b (resp., ExT

p
a ) is finite or infinite simultaneously for all couples (x, b) s.t. x < b (resp.,

(x, a) s.t. x > a). In the following theorem we refine this result and give an independent proof based on the generalized
Kac’s formula.

Theorem 4.5. Grant Assumptions 2.1 and 2.2.

(1) Let x < b and p ≥ 1.
(i) ExT

p
b < ∞ if and only if

∫ x

−∞ Eξ T
p−1
b m(ξ)dξ < ∞.

(ii) If for one couple x < b, ExT
p
b < ∞, then for all couples x′ < b′, Ex′T p

b′ < ∞. Moreover, for all b′ fixed,
the function x′ �→ Ex′T p

b′ is continuous in x′, for x′ < b′.
(2) Let a < x and p ≥ 1.

(i) ExT
p
a < ∞ if and only if

∫ +∞
x

Eξ T
p−1
a m(ξ)dξ < ∞.

(ii) If for one couple a < x, ExT
p
a < ∞, then for all couples a′ < x′, Ex′T p

a′ < ∞. Moreover, for all a′ fixed,
the function x′ �→ Ex′T p

a′ is continuous in x′, for a′ < x′.

Proof. (1) Suppose p = 1. Using Kac’s formula,

ExTb = (
S(b) − S(x)

) ∫ x

−∞
m(ξ)dξ +

∫ b

x

(
S(b) − S(ξ)

)
m(ξ)dξ. (4.7)

The functions S and m are continuous, hence the last expression is finite if and only if
∫ x

−∞ m(ξ)dξ < ∞. The
finiteness of the last integral does not depend on x nor on b. Hence, ExTb is finite or not simultaneously for all x, b

such that x < b. If ExTb < ∞, the Kac’s formula (4.7) gives the continuity in x < b of ExTb .

(2) Now let p = α + 1, where α ∈]0,1[. Suppose for some fixed x < b, ExT
p
b < ∞. Then ExTb < ∞, too. Hence

Ex′Tb′ < ∞ for all x′ < b′. Then also Ex′T α
b′ < ∞ for all x′ < b′. By Kac’s formula,

ExT
p
b = p

((
S(b) − S(x)

) ∫ x

−∞
Eξ

(
T α

b

)
m(ξ)dξ +

∫ b

x

(
S(b) − S(ξ)

)
Eξ

(
T α

b

)
m(ξ)dξ

)
.

ExT
p
b is finite if and only if

∫ x

−∞ Eξ T
α
b m(ξ)dξ < ∞. We have the upper bound Eξ T

α
b ≤ 1 + Eξ Tb, where ξ �→ Eξ Tb

has already been shown to be continuous. Hence we see that for fixed b the integral
∫ x′
−∞ Eξ T

α
b m(ξ)dξ converges or

diverges simultaneously for all x′ < b. Hence we obtain the following equivalence for fixed b ∈ R.

For some x s.t. x < bExT
p
b < ∞ ⇐⇒ for all x′ s.t. x′ < bEx′T p

b < ∞.

Then the continuity of x �→ ExT
p
b , x < b, follows by dominated convergence, if ExT

p
b < ∞.

Now let ExT
p
b < ∞ and fix some b′ such that x < b < b′. We have ExT

p

b′ < ∞ if and only if
∫ x

−∞ Eξ T
α
b′ m(ξ)dξ <

∞. Using the strong Markov property and the sub-additivity of the function x �→ xα, we have∫ x

−∞
Eξ T

α
b′ m(ξ)dξ ≤

(∫ x

−∞
Eξ T

α
b m(ξ)dξ + EbT

α
b′

∫ x

−∞
m(ξ)dξ

)

≤
(∫ x

−∞
Eξ T

α
b m(ξ)dξ + [EbTb′ + 1]

∫ x

−∞
m(ξ)dξ

)
.

Moreover, for x < b < b′, ExT
p
b ≤ ExT

p

b′ . Therefore, the following two statements are equivalent.

For some x s.t. x < bExT
p
b < ∞ ⇐⇒ for all b′ s.t. x < b < b′

ExT
p

b′ < ∞.

(3) Now let p ≥ 2. We suppose the claim of the theorem verified for all moments of order α + k, 1 ≤ k < [p], and
we show it for p.
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Suppose for some fixed x < b, ExT
p
b < ∞. Then ExT

p−1
b < ∞, too. This implies by our recurrence assumption

that Ex′T p−1
b′ is finite and continuous for all x′ < b′. We use generalized Kac’s formula once more in order to get

ExT
p
b = p

((
S(b) − S(x)

) ∫ x

−∞
Eξ T

p−1
b m(ξ)dξ +

∫ b

x

(
S(b) − S(ξ)

)
Eξ T

p−1
b m(ξ)dξ

)
.

ExT
p
b is finite if and only if

∫ x

−∞ Eξ T
p−1
b m(ξ)dξ < ∞. Using continuity of Eξ T

p−1
b , we see that for fixed b the

integral
∫ x′
−∞ Eξ T

p−1
b m(ξ)dξ converges or diverges simultaneously for all x′ < b. Hence we obtain the following

equivalence for fixed b ∈ R.

For some x s.t. x < bExT
p
b < ∞ ⇐⇒ for all x′ s.t. x′ < bEx′T p

b < ∞. (4.8)

Now let ExT
p
b < ∞ and fix some b′ such that x < b < b′. We have ExT

p

b′ < ∞ if and only if
∫ x

−∞ Eξ T
p−1
b′ m(ξ)dξ <

∞. Using the strong Markov property and Hölder’s inequality,∫ x

−∞
Eξ T

p−1
b′ m(ξ)dξ ≤ 2p−2

(∫ x

−∞
Eξ T

p−1
b m(ξ)dξ + EbT

p−1
b′

∫ x

−∞
m(ξ)dξ

)
.

Moreover, for x < b < b′, ExT
p
b ≤ ExT

p

b′ . Therefore, the following two statements are equivalent.

For some x s.t. x < bExT
p
b < ∞ ⇐⇒ for all b′ s.t. x < b < b′

ExT
p

b′ < ∞. (4.9)

(4) The proof of point (2) of the theorem is similar. With (4.8) and (4.9), the proof is complete. �

5. Estimation of moments for hitting times

The question of existence of moments of hitting times arises in various problems and is widely studied in the litera-
ture, see Fitzsimmons and Pitman [19], Carmona and Klein [6], Darling and Siegert [12], Veretennikov [47], Balaji
and Ramasubramanian [2], Ditlevsen [14], Deaconu and Wantz [13], Giorno et al. [24], Kavian, Kerkyacharian and
Roynette [30] and the references therein. In this section we explore some sufficient and necessary conditions for
existence of polynomial moments of hitting times and give lower and upper bounds on these moments.

To give examples of diffusions with finite or infinite moments of hitting times, we have to impose some conditions
on β(x) and σ 2(x) for large |x|. The first one guarantees the finiteness of the moments up to some order.

Assumption 5.1. There exist M0 > 0, σ0 > 0, −∞ < γ < 1 and r > 0 such that

σ0|x|γ ≤ ∣∣σ(x)
∣∣ and − xβ(x)

σ 2(x)
≥ r for |x| > M0.

Example 5.2. This condition is for example satisfied for σ(x) = 1 and β(x) = − ϑx

1+x2 , where ϑ > 1/2, for any
1/2 < r < ϑ . For the recurrent Ornstein–Uhlenbeck process having β(x) = −ϑx, ϑ > 0, Assumption 5.1 is satisfied
for any r > 1/2 by taking M0 large enough.

It is well known, see, for instance, [2], that ExT
n
a is finite for n < r + 1/2 (if γ = 0). However, in order to verify

the conditions of our Theorems 3.1, 3.2 and 3.5, we have to estimate EνT
n
a for n = p/2, thus the finiteness of ExT

n
a is

not sufficient for our purpose, we need a finer control on ExT
n
a in order to control integrability of ExT

n
a with respect

to ν.

The second assumption, which is somewhat complementary to Assumption 5.1, ensures that starting from some
order, the moments of hitting times are infinite.

Assumption 5.3. There exist M0 > 0, σ1 > 0, −∞ < δ < 1 and R > 0 such that

0 <
∣∣σ(x)

∣∣ ≤ σ1|x|δ and 0 < −xβ(x)

σ 2(x)
≤ R for |x| > M0.
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Example 5.4. We continue the previous example. For β(x) = − ϑx

1+x2 , where ϑ > 0, Assumption 5.3 is satisfied for
any R > ϑ. For the recurrent Ornstein–Uhlenbeck process, β(x) = −ϑx, Assumption 5.3 obviously does not hold.

Note that the Assumptions 5.1 and 5.3 do not need to hold simultaneously.
Recall that the scale function of Xt is given by

S(x) =
∫ x

0
s(t)dt, where s(t) = exp

(
−2

∫ t

0

β(u)

σ 2(u)
du

)
.

It is easily seen that under Assumption 5.1,
∫
−∞ s(x)dx = +∞ = ∫ ∞

s(x)dx, which implies that Xt is recurrent (not

necessarily positive recurrent) with speed density m(ξ) = 1
s(ξ)σ 2(ξ)

. The speed density is precisely the density of the
unique (up to a constant factor) invariant measure of the process, and positive recurrence is equivalent to the finiteness
of the speed measure of X (see [44], Chapters VII.3 and VII.4, Examples 3.20 and 3.21; [5], Chapter II.12). In the
sequel we will need to estimate the moments of the speed measure of X. We start with an elementary lemma.

Lemma 5.5. Let 0 < a ≤ x. Denote

Ip,q(x, a) =
∫ ∞

x

(ξ − a)p

ξq
dξ and Jp,q(x, a) =

∫ x

a

(ξ − a)p

ξq
dξ.

Then

(x − a)p+1

(q − p − 1)xq
≤ Ip,q ≤ xp+1

(q − p − 1)xq
for 0 ≤ p < q − 1

and

(x − a)p+1

κxq
≤ Jp,q ≤ xp+1

(p + 1 − q)xq
for p ≥ 0, q < p + 1,

where κ = (p + 1) if q > 0 and κ = (p + 1 − q) if q ≤ 0.

Proof. Note that Ip,q(x, a) < ∞ if 0 ≤ p < q − 1. We have also Ip+1,q+1(x, a) ≤ Ip,q(x, a), whence

Ip,q(x, a) = (ξ − a)p+1

(p + 1)ξq

∣∣∣∣
∞

x

+ q

p + 1
Ip+1,q+1(x, a) ≤ − (x − a)p+1

(p + 1)xq
+ q

p + 1
Ip,q(x, a),

which yields

Ip,q(x, a) ≥ (x − a)p+1

(q − p − 1)xq
.

In the same manner, for p ≥ 0 and q < p + 1,

Jp,q(x, a) = (x − a)p+1

(p + 1)xq
+ q

p + 1
Jp+1,q+1(x, a),

whence

Jp,q(x, a) ≥
⎧⎨
⎩

(x−a)p+1

(p+1)xq if q > 0,

(x−a)p+1

(p+1−q)xq if q ≤ 0.

On the other hand, under the respective conditions,

Ip,q(x, a) ≤
∫ ∞

x

ξp

ξq
dξ = xp+1

(q − p − 1)xq
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and

Jp,q(x, a) ≤
∫ x

a

ξp

ξq
dξ ≤ xp+1

(p + 1 − q)xq
.

�

Put

p∗ = sup

{
p > 0:

∫ ∞

x

ξp

σ 2(ξ)s(ξ)
dξ < ∞

}
.

Note that, for M0 ≤ x ≤ ξ ,

s(x)

s(ξ)
= exp

(
2
∫ ξ

x

β(u)

σ 2(u)

)
.

Under the Assumption 5.1, this yields s(x)/s(ξ) ≤ (x/ξ)2r and m(ξ) ≤ Cξ−2r−2γ , hence p∗ ≥ 2r + 2γ − 1.

On the other hand, under the Assumption 5.3, m(ξ) ≥ C|ξ |−2R−2δ , hence p∗ ≤ 2R + 2δ − 1 and
∫ ∞
x

ξp∗

σ 2(ξ)s(ξ)
dξ =

∞ if p∗ = 2R + 2δ − 1.

Theorem 5.6. Let M0 < a < x or x < a < −M0.

(1) Suppose that the Assumption 5.1 holds with 2r + 2γ > 1. For any positive real number 1 ≤ m < (2r + 1)(1 −
γ )−1/2 put α = m − [m]. Then

ExT
m
a ≤ x2m(1−γ )

rmσ 2m
0 (1 − γ )m

,

where rm = (2r + 2γ − 1)α
∏[m]

k=1(2r − 2(k + α)(1 − γ ) + 1).
(2) Under the Assumption 5.3, for any integer n ≥ 1:

• if n ≤ p∗(1 − δ)−1/2 + 1 then

ExT
n
a ≥ (x − a)2n(1−δ)

Rnσ
2n
1 κn

,

where Rn = ∏n
k=1(2R − 2k(1 − δ) + 1) and κ = 1 ∨ (1 − δ);

• if n > p∗(1 − δ)−1/2 + 1, in particular if n > (2R + 1)(1 − δ)−1/2, then ExT
n
a = ∞.

Remark 5.7. Let us compare the above theorem to some known results. Note that most of them require that

0 < σ 2
0 ≤ σ 2(x) or σ 2(x) ≤ σ 2

1 , |x| > M0,

i.e. γ = δ = 0 in our notations. To simplify the comparison, we assume it below, unless otherwise stated. Note, however,
that our theorem holds under more general Assumptions 5.1 and 5.3.

(1) Under the condition

xβ(x) < −r|x|1−p for |x| > M0 and 0 < p < 1,

Douc, Fort and Guillin [15], obtain the sub-exponential integrability of hitting times. They do not treat the critical
case p = 1 which we consider here.

(2) It is known from Balaji and Ramasubramanian [2] that, under the corresponding assumptions, ExT
p
a < ∞ for

p < r + 1/2 and ExT
p
a = ∞ for p > R + 1/2. Nevertheless, they do note provide explicit bounds on ExT

p
a .

Moreover, we show that in fact, at least for integer n, ExT
n
a = ∞ as soon as n > p∗/2 + 1, which can be much

smaller then R + 1/2.
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(3) In [47], Theorem 4, Veretennikov obtains – in our notations – an upper bound

ExT
p
a ≤ C

(
1 + |x|m)

for any p < r0 := r − 1 + 1

2

σ 2
0

σ 2
1

(5.1)

and for any m ∈]2p,2r0 [. In our Theorem 5.6 we obtain an upper bound

ExT
p
a ≤ C

(
1 + |x|2p

)
for any p < r + 1

2
. (5.2)

Comparing (5.1) and (5.2), we see that we have pushed the range of p a little bit further: we obtain the control of
moments up to at least p = r0 + 1. Moreover, our constant C for x > a > M0 is quite explicit and sharp, as seen
by taking a diffusion with constant drift and r = R.

Proof of Theorem 5.6. Suppose M0 ≤ a < x. If ExT
m
a < ∞ for m ≥ 1, by the generalized Kac formula (Theo-

rem 4.1)

(
ExT

m
a

)′ = 2ms(x)

∫ ∞

x

Eξ T
m−1
a

σ 2(ξ)s(ξ)
dξ,

where the derivative is taken with respect to x. Note that, for x ≤ ξ ,

s(x)

s(ξ)
= exp

(
2
∫ ξ

x

β(u)

σ 2(u)

)
.

We start with the lower bound for ExT
n
a , n ≤ p∗(1−δ)−1/2+1 under the Assumption 5.3. Note that the assertion is

true if ExT
n
a = ∞, so we assume ExT

n
a < ∞ in the sequel. Recall that p∗ ≤ 2R+2δ−1, so n ≤ (2R+1)(1−δ)−1/2.

Note also that

s(x)

s(ξ)σ 2(ξ)
≥ x2R

σ 2
1 ξ2R+2δ

.

Firstly, suppose that n < (2R + 1)(1 − δ)−1/2. For n = 1 we get, in the notations of Lemma 5.5

(ExTa)
′ = 2s(x)

∫ ∞

x

dξ

σ 2(ξ)s(ξ)
≥ 2x2R

σ 2
1

I0,2R+2δ(x, a) ≥ 2(x − a)

(2R + 2δ − 1)σ 2
1 x2δ

,

whence

ExTa ≥ 2

(2R + 2δ − 1)σ 2
1

∫ x

a

ξ − a

ξ2δ
dξ = 2

(2R + 2δ − 1)σ 2
1

J1,2δ(x, a) ≥ (x − a)2

R1σ
2
1 κx2δ

.

By induction, for n > 1,

(
ExT

n
a

)′ ≥ 2ns(x)

Rn−1σ
2n−2
1 κn−1

∫ x

a

(ξ − a)2n−2

ξ2δ(n−1)σ 2(ξ)s(ξ)
dξ ≥ 2nx2R

Rn−1σ
2n
1 κn−1

I2n−2,2R+2δn(x, a)

≥ 2n(x − a)2n−1

Rn−1(2R + 2δn − (2n − 1))σ 2n
1 κn−1x2δn

= 2n

Rnσ
2n
1 κn−1

(x − a)2n−1

x2δn
,

whence

ExT
n
a ≥ 2n

Rnσ
2n
1 κn−1

J2n−1,2δn(x, a) ≥ (x − a)2n

Rnσ
2n
1 κnx2δn

.
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In the case n = (2R + 1)(1 − δ)−1/2 ≤ p∗(1 − δ)−1/2 + 1, recalling that p∗ ≤ 2R + 2δ − 1, we deduce that
p∗ = 2R + 2δ − 1 and n = p∗(1 − δ)−1/2 + 1. Then

ExT
n−1
a ≥ Cx2(n−1)(1−δ) = Cx2R+2δ−1

for x large enough. So
∫ ∞
x

Eξ T
n−1
a m(ξ)dξ = ∞, and Theorem 4.5 yields that ExT

n
a = ∞. Hence the first point of

the second assertion of the theorem is true for all n ≤ p∗(1 − δ)−1/2 + 1.
Now, suppose that n ≤ p∗(1 − δ)−1/2 + 1 < n + 1, then ExT

n
a ≥ Cx2n(1−δ) for x large enough. Since 2n(1 − δ) >

p∗, we get
∫ ∞
x

Eξ T
n
a m(ξ)dξ = ∞, and Theorem 4.5 yields again that ExT

n+1
a = ∞.

To prove the upper bound, note firstly that for any p < 2r + 2γ − 1,

s(x)

∫ ∞

x

ξp dξ

σ 2(ξ)s(ξ)
≤ x2r

σ 2
0

∫ ∞

0
ξp−2r−2γ dξ = xp+1−2γ

σ 2
0 (2r + 2γ − p − 1)

.

So we get

(ExTa)
′ = 2s(x)

∫ ∞

x

dξ

σ 2(ξ)s(ξ)
≤ 2x1−2γ

(2r + 2γ − 1)σ 2
0

,

whence

ExTa ≤
∫ x

a

2ξ1−2γ

(2r + 2γ − 1)σ 2
0

dξ = x2−2γ − a2−2γ

r1σ
2
0 (1 − γ )

≤ x2−2γ

r1σ
2
0 (1 − γ )

.

Now, starting from

ExT
α
a ≤ (ExTa)

α ≤ x2α(1−γ )

rα
1 σ 2α

0 (1 − γ )α
,

we get analogously to the above calculus, applying successively the Kac formula:

ExT
m
a ≤ x2m(1−γ )

rmσ 2m
0 (1 − γ )m

.

The case x < a < −M0 follows by symmetry. �

Remark 5.8. Theorem 4.5 implies the finiteness (and the continuity in x) or the infiniteness of ExT
m
a for all x and a

under the corresponding hypotheses of Theorem 5.6.

We would like to end this article with two corollaries, giving some “practical” form of the deviations theorems
proved in Section 3.

Corollary 5.9. Suppose that X satisfies the Assumption 2.1 and that the Assumption 5.1 holds with 2r +2γ > 1. Take
some 1 < p < (2r + 1)(1 − γ )−1/2 and let f ∈ L

1(μ), with ‖f ‖∞ < ∞. Then for any initial distribution ν such that∫
R

|x|p(1−γ ) dν(x) < ∞, for all 0 < ε < ‖f ‖∞ and t ≥ 1, the following inequality holds:

Pν

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − μ(f )

∣∣∣∣ > ε

)
≤

{
K(l,p, ν,X) 1

εp ‖f ‖p∞t−p/2 if p ≥ 2,

K(l,p, ν,X) 1
εp ‖f ‖p∞t−(p−1)/2 if 1 < p < 2.

(5.3)

Here K(l,p, ν,X) is a positive constant, different in the two cases, which does not depend on f , t , ε. In particu-
lar, (5.3) holds under Px for all x ∈ R.
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Proof. Assumption 5.1 together with 2r + 2γ > 1 implies the positive recurrence of X and also that (2r + 1)(1 −
γ )−1/2 > 1. Let 1 < p < (2r + 1)(1 − γ )−1/2. Since

Eν(R1)
p/2 ≤ (

2p/2−1 ∨ 1
)(

EνT
p/2
b + EbT

p/2
a

)
and Eν(R2 − R1)

p = EaR
p

1 ,

we can see that the hypotheses of the Theorem 3.2 are satisfied if for some a < b it holds that EaT
p
b < ∞, EbT

p
a < ∞

and EνT
p/2
b = ∫

R
ExT

p/2
b ν(dx) < ∞. Using the Theorem 5.6 and the remark above, we obtain ExT

p
y < ∞ and

ExT
p/2
y < ∞ for all (x, y) ∈ R

2.
Without loss of generality we can choose a = −M0 and b = M0. We then have

ExT
p/2
b ≤ C|x|p(1−γ ), x > b, and ExT

p/2
a ≤ C|x|p(1−γ ), x < a.

Further, for any x < a, ExT
p/2
b ≤ C(ExT

p/2
a + EaT

p/2
b ). Finally, the continuity of ExT

p/2
b implies

ExT
p/2
b ≤ C|x|p(1−γ ) + C1 for all x ∈ R,

hence (5.3) holds under Pν if
∫

R
|x|p(1−γ ) dν(x) < ∞. �

In the similar way one shows the following result.

Corollary 5.10. Suppose that X satisfies the Assumption 2.1 and that the Assumption 5.1 holds with 2r + 4γ > 3.
Let f be a bounded function with compact support. Let ν be an initial distribution such that

∫
R

|x|p(1−γ ) dν(x) < ∞.
Then for all p ∈ N, 2 ≤ p < (2r + 1)(1 − γ )−1/2, for all 0 < ε < μ(|f |) and t ≥ 1, the following inequality holds:

Pν

(∣∣∣∣1

t

∫ t

0
f (Xs)ds − μ(f )

∣∣∣∣ > ε

)
≤ K(l,p,X)

1

εp
μ

(|f |)p
t−p/2. (5.4)

Here K(l,p,X) is a positive constant which does not depend on f , t , ε.
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