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Abstract. We introduce the analogue of Dunkl processes in the case of an affine root system of type Ã1. The construction of the
affine Dunkl process is achieved by a skew-product decomposition by means of its radial part and a jump process on the affine Weyl
group, where the radial part of the affine Dunkl process is given by a Gaussian process on the ultraspherical hypergroup [0,1]. We
prove that the affine Dunkl process is a càdlàg Markov process as well as a local martingale, study its jumps, and give a martingale
decomposition, which are properties similar to those of the classical Dunkl process.

Résumé. Nous introduisons l’analogue des processus de Dunkl dans le cas d’un système de racines affines de type Ã1. La construc-
tion du processus de Dunkl affine est obtenue par une décomposition en skew-product de sa partie radiale et d’un processus de sauts
sur le groupe de Weyl affine, la partie radiale du processus de Dunkl affine étant définie par un processus gaussien sur l’hypergroupe
ultrasphérique [0,1]. Nous montrons que le processus de Dunkl affine est un processus de Markov càdlàg ainsi qu’une martingale
locale, étudions ses sauts, et donnons sa décomposition en martingale, propriétés analogues à celles du processus de Dunkl clas-
sique.
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1. Introduction

The aim of the following is to study the analogue of Dunkl processes in the case of an affine root system of type Ã1.
The affine Dunkl process Y = (Yt )t≥0 with parameter k will be defined as the Markov process in R with infinitesimal
generator given by

Au(x) = 1

2
u′′(x) + kπ cot(πx)u′(x) + k

2

∑
p∈Z

u(sp(x)) − u(x)

(x − p)2
,

acting on u ∈ C2
b(R) and x ∈ R \ Z, where k is a real number satisfying k ≥ 1

2 and sp is the affine reflection around
p ∈ Z, i.e. sp(x) = −x + 2p. It is a Markov process with jumps, whose radial part is the continuous Feller process
living in the interval ]0,1[ and with infinitesimal generator

Lu(x) = 1

2
u′′(x) + kπ cot(πx)u′(x)

for u ∈ C([0,1]) ∩ C2(]0,1[), and which can be seen as a Gaussian process on the compact hypergroup [0,1] asso-
ciated with ultraspherical polynomials. The main idea to achieve the construction of the process Y with generator A
is to consider a skew-product decomposition, by starting from its radial part and adding the jumps successively at
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random times, the jump part of the process being given by some process on the affine Weyl group associated with the
affine root system Ã1.

In the rest of this introduction, we briefly present the classical Dunkl processes, and introduce the affine root
system Ã1. We also give some heuristics and motivations for the study of the affine case.

1.1. Dunkl processes

Recall that the Dunkl processes are a family of càdlàg Feller processes associated with a root system (see [18] for the
notion of root systems). From an analytic point of view, the theory was initiated by Dunkl who studied differential-
difference operators with some parameter k, associated with a root system [11]. They are at the basis of a rich analytic
structure related to them and they are connected to the theory of Riemmanian symmetric space of Euclidean type
when k takes only certain values. The probabilistic counterpart, the Dunkl processes, was originated by Rösler and
Voit in [26], and then extensively studied by Gallardo and Yor in [14–16], Chybiryakov [7] and Demni [10]. We refer
to the book [8] for a good survey of Dunkl operators and Dunkl processes.

In the one-dimensional case, Dunkl processes are a family of càdlàg Feller processes with parameter a nonnegative
real number k, and with infinitesimal generator the Dunkl Laplacian given by

L0u(x) = 1

2
u′′(x) + k

u′(x)

x
+ k

u(−x) − u(x)

2x2
, (1)

acting on continuous twice differentiable functions. They correspond to the rank one root system A1, which is simply
given by R0 = {±1} ⊂ R. Letting L0 acting on even function, that is functions invariant by the Weyl group W 0 =
{Id, σ }, where σ is the orthogonal reflection with respect to zero, i.e. σ(x) = −x, we obtain the generator of the Bessel
process of index 2k + 1, given by

L0,W 0
u(x) = 1

2
u′′(x) + k

u′(x)

x
.

The radial part of the Dunkl process is thus the Bessel process, and corresponds to the projection of the Dunkl process
onto the principal Weyl chamber, which is in the A1-case the positive real line R

∗+. Note also that the Dunkl process
jumps at some random times by orthogonal reflection with respect to zero. Moreover, Dunkl processes, already in the
one-dimensional case, satisfy a lot of interesting properties, for instance they are martingales, and we refer to [8] for
more details on the theory. We also want to mention that the counterpart of Dunkl processes in the negatively curved
setting, which are called Heckman–Opdam processes, is investigated by Schapira in [27].

1.2. The affine root system Ã1

We now want to consider not only orthogonal reflections with respect to zero, but also affine reflections relative to
integers p ∈ Z. To this end, we introduce in the following the affine root system of type Ã1. We are just dealing with
the rank one case, so we refer to [18] for more general facts on root systems and Weyl groups.

Let R0 = {±1} ⊂ R be the only root system of rank one, denoted A1. We defined the affine root system Ã1 as the
product R = R0 × Z. The affine refection associated with p ∈ Z is defined by

sp(x) := −x + 2p

for x ∈ R, and the positive affine root system by

R+ = {+1} ∪ {
(±1,p)|p ≤ −1

}
. (2)

The affine Weyl group W is the infinite group generated by affine reflections sp , p ∈ Z, and is isomorphic to the infinite
dihedral group. Each connected component of R \ Z is called an alcove, and we single out the particular alcove ]0,1[,
called the principal alcove. Note that, up to some identification of the walls (i.e. the boundary points), the closure of
the principal alcove is a fundamental domain for the action of W on R.
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1.3. Heuristics and motivations

Since the link between the operator A defined in the Introduction and the affine root system Ã1 is not so obvious, we
give in the following some little heuristics, without being rigorous. We have seen that in the rank one case, the Dunkl
process is the Markov process with infinitesimal generator L0 given by (1), and with parameter k a nonnegative real
number. The idea here is then to replace the positive root system associated with L0 by the positive affine root system
R+ given by (2), and hence to define the affine Dunkl Laplacian in the Ã1 case by

Au(x) = 1

2
u′′(x) + k

u′(x)

x
+ k

u(−x) − u(x)

2x2

+ k
∑

p≤−1

{
u′(x)

x − p
+ u′(x)

x + p
+ u(−x + 2p) − u(x)

2(x − p)2
+ u(−x − 2p) − u(x)

2(x + p)2

}
.

Recall the series expansion of the cotangent function

π cot(πx) = 1

x
+

∑
n≥1

(
1

x + n
+ 1

x − n

)
for x ∈ R \ Z, see [1], which can be written more elegantly

π cot(πx) =
∑
n∈Z

1

x − n
.

Note that the latter formula is quite dangerous since it is not absolutely convergent, and we have to be cautious with
the summation order. Hence, using the cotangent expansion, the affine Dunkl Laplacian writes

Au(x) = 1

2
u′′(x) + kπ cot(πx)u′(x) + k

2

∑
p∈Z

u(sp(x)) − u(x)

(x − p)2
,

where sp is the affine reflection associated with p ∈ Z.
Let us now make some remarks on the operator A. First we note that, using the periodicity of the cotangent

function, a direct computation shows that for all u ∈ Dom(A),

A(u ◦ sp)(x) = (Au)(spx)

for all affine reflexion sp , p ∈ Z and x ∈ R. This implies that A becomes invariant with respect to the action of the
affine Weyl group W on R, that is wAw−1 = A, for all w ∈ W . Hence, letting A acting on W -invariant function,
that is functions u such that u(w · x) = u(x) for all w ∈ W , where · denotes the action of W on R, the difference part
vanishes, and we recover the expression of the operator L given by

Lu(x) = 1

2
u′′(x) + kπ cot(πx)u′(x).

Note that we can identify W -invariant functions with functions on the principal alcove ]0,1[. As we will see in the
next section, the operator L corresponding to the radial part of A is the infinitesimal generator of a diffusion process
on [0,1] given by the well-known theory of ultraspherical polynomials as studied by Bochner [6], and is moreover a
Gaussian process on the ultraspherical hypergroup [0,1]. For k a half-integer, it has also an interesting geometrical
interpretation in terms of the radial part of the Laplace–Beltrami operator on the sphere and compact homogeneous
spaces. There is a rich literature about Gaussian processes on hypergroup structures, and we refer to [5] for standard
facts on hypergroups.

The following is divided in two parts. In the first one, corresponding to Section 2, we introduce the radial affine
Dunkl process as the diffusion on the hypergroup [0,1] associated with ultraspherical polynomials. Some functional
of the radial process is also studied. The second part, which is Section 3, is devoted to the construction of the affine
Dunkl process with generator A, using a skew-product decomposition by means of the radial process and a pure jump
process on the affine Weyl group, inspired by [7]. We study its jumps and also give a martingale decomposition.
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2. The radial affine Dunkl process

2.1. Definition of the radial process

In what follows, the parameter k of the affine Dunkl process is a nonnegative number satisfying k ≥ 1
2 . We start by

studying the radial part of the affine Dunkl process, which is the following diffusion process.

Definition 2.1. The continuous Feller process (Xt )t≥0 in [0,1], with infinitesimal generator L given by

Lu(x) = 1

2
u′′(x) + kπ cot(πx)u′(x),

acting on u ∈ C([0,1]) ∩ C2(]0,1[), and X0 ∈]0,1[ a.s., is called the radial affine Dunkl process with parameter k.

This process first appears in Bochner [6] (see also [20]), who studied the heat equation

1

2

∂2g

∂x2
(t, x) + kπ cot(πx)

∂g

∂x
(t, x) = ∂g

∂t
(t, x), (3)

more exactly the same equation up to the transformation x �→ cos(πx), and shown that the Green kernel associated
with this equation can be expressed in terms of ultraspherical polynomials, and is the transition kernel of a diffusion
with generator L. The generalization of these results involving Jacobi polynomials are also known, see [17], and the
associated process is the so-called Jacobi process.

So first, let us recall some standard facts about ultraspherical polynomials (also known as Gegenbauer polynomi-
als), which can be found in [22] or [29] for example. Ultraspherical polynomials G

(k)
n (which can be expressed in

terms of Jacobi polynomials P
(k−1/2,k−1/2)
n ) are polynomials orthogonal for the weight (1 − x2)k−1/21[−1,1](x)dx,

i.e. ∫
[−1,1]

G(k)
n (x)G(k)

m (x)
(
1 − x2)k−1/2 dx = π

(
ω(k)

n

)−1
δn,m

for k > − 1
2 , where

ω(k)
n = n!(k + n)�(k)2

21−2k�(n + 2k)
.

The first polynomials are (for k = 0), G
(k)
0 (y) = 1, G

(k)
1 (y) = 2ky, . . . . They are of the same parity than n, and

G
(k)
n (−y) = (−1)nG

(k)
n (y). The value at 1 is G

(k)
n (1) = �(2k+n)

n!�(2k)
. For k > 0, they admit an explicit expression, given

by

G(k)
n (y) = 1

�(k)

�n/2�∑
m=0

(−1)m
�(k + n − m)

m!(n − 2m)! (2y)n−2m. (4)

Furthermore, for all n ≥ 0, G
(k)
n is (up to the normalization G

(k)
n (1) = �(2k+n)

n!�(2k)
) the unique polynomial solution of the

equation(
1 − x2)f ′′(x) − (2k + 1)xf ′(x) + n(n + 2k)f (x) = 0

and so x �→ G
(k)
n (cosπx) is solution of

1

2
g′′(x) + kπ cot(πx)g′(x) = −λng(x),
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with eigenvalue λn = π2

2 n(n + 2k).
Bochner shown in [6] that the Green kernel of the heat equation (3) is given, for k ≥ 0, by

qt (x, y) =
∑
n≥0

e−λntG(k)
n (cosπx)G(k)

n (cosπy)ω(k)
n (sinπy)2k (5)

for x, y ∈ [0,1] × [0,1]. Furthermore, he proved that qt is a Markov kernel and gives rise to a diffusion on [0,1]
with infinitesimal generator L, hence the radial affine Dunkl process (Xt )t≥0 is the Feller process with transition
probability given by

P(Xt+s ∈ dy|Xs = x) = qt (x,dy).

Another way to introduce the radial process is to say that (Xt )t≥0 is the unique strong solution of the stochastic
differential equation

dXt = dBt + kπ cot(πXt)dt,

with initial condition X0 = x ∈]0,1[ a.s., and where (Bt )t≥0 is a standard Brownian motion. One can prove, using for
instance the standard scale function technique as in [19] or [21], that if k ≥ 1

2 , (Xt )t≥0 lives almost surely in ]0,1[,
and the boundaries 0 and 1 are entrance ones, that is X can be started at a boundary point and moves quickly to the
interior of the interval and never returns to the boundary. The same arguments show that if k < 1

2 , X can a.s. reach the
boundary in finite time.

Remark 2.2. By the periodicity of the cotangent function, we can define the radial affine Dunkl process in any alcove
I ⊂ R \ Z.

Let us mention that for k = 1, the radial affine Dunkl process is the Brownian motion conditioned to stay in the
interval ]0,1[, also known as the Legendre process (see [25]). Indeed, in that case, the generator of the process writes

Lu(x) = 1

2
u′′(x) + h′(x)

h(x)
u′(x),

where h(x) = sin(πx) is an eigenfunction for the Laplacian 	, and hence the corresponding process X is a Doob
h-transform at the bottom of the spectrum of Brownian motion killed when it reached the walls of ]0,1[. Let us also
mention that Brownian motions in alcoves are related to the process of eigenvalues of the Brownian motion with values
in the special unitary group SU(n), see [4]. The last two remarks are analogues of the same kind of properties for the
radial Dunkl process in the classical case, see [8]. We also mention that Dunkl processes associated with dihedral root
systems as in [9] are related to radial affine Dunkl processes.

2.2. Gaussian process on compact hypergroup structures

Before dealing with Gaussian processes on hypergroup, we first note that for half-integers k = d−1
2 , with d ≥ 2, the

radial affine Dunkl processes are projections onto a diameter of the spherical Brownian motion on the sphere S
d , since

the operator L is the radial part of the Laplace–Beltrami operator on S
d [3].

Actually the radial affine Dunkl process (Xt )t≥0 can be seen as a Gaussian process on the compact hypergroup
[0,1] associated with ultraspherical polynomials. We will not go in much details here and we refer to the monograph
of Bloom and Heyer [5] for all facts on hypergroups. For all x, y ∈ [0,1], there exists a unique probability measure
δx ∗ δy on [0,1] such that

G(k)
n (cosπx)G(k)

n (cosπy) =
∫ 1

0
G(k)

n (cosπz)(δx ∗ δy)(dz).

The convolution δx ∗ δy can be extended uniquely to a bilinear, commutative, associative and weakly continuous
convolution ∗ on the Banach space Mb([0,1]) of all bounded Borel measures on [0,1], and moreover defines a com-
mutative hypergroup structure on K = [0,1]. We refer to [5] for the precise definition of the notion of hypergroups,
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and also for the explicit representation of this convolution which is in fact given by Gegenbauer’s product formula.
The normalized Haar measure ν on K is given by the normalized orthogonality measure of ultraspherical polynomials,
i.e.

ν(dx) = �(k + 1)
√

π

�(k + 1/2)
(sinπx)2k1[0,1](x)dx.

The dual space K̂ of characters can be identified with N, the Plancherel measure π on K̂ being given by

π
({n}) = (n + k)�(2k + n)

n!k�(2k)
, n ≥ 0.

The hypergroup Fourier transform of a measure μ ∈ Mb(K) is given by

μ̂(n) =
∫ 1

0
G(k)

n (cosπx)
1

G
(k)
n (1)

μ(dx), n ≥ 0.

Now define the convolution semigroup (in the sense of the hypergroup structure) (μt )t≥0 on K by

μt(dy) := qt (0, y)dy =
∑
n≥0

e−λntG(k)
n (1)G(k)

n (cosπy)ω(k)
n (sinπy)2k dy.

Then, since qt (x,dy) = (δx ∗ μt)(dy), the radial affine Dunkl process (Xt )t≥0 is a Markov process on the hyper-
group K , that is, for all s, t ≥ 0, x ∈ [0,1], and Borel set A in [0,1],

P(Xt+s ∈ A|Xs = x) = (δx ∗ μt)(A).

Actually, (μt )t≥0 is known as the Gaussian semigroup on the hypergroup K , see [24] or [31] for instance, and has
Lévy–Khinchin representation given by

μ̂t (n) = e−tλn ,

which follows from the definition of the hypergroup Fourier transform and the orthogonal relations of ultraspherical
polynomials. Furthermore, using the characterization of recurrence/transience property of Lévy processes on hyper-
groups, see [5], Chapter 6, it is easily seen that the radial affine Dunkl process (Xt )t≥0 is recurrent on ]0,1[.

For half-integers k = d−1
2 , with d ≥ 2, the geometrical interpretation stated in the beginning of this subsection is

recovered in the following way. The sphere S
d can be identified with the homogeneous space SO(d + 1)/SO(d)

(endowed with the quotient topology), and the hypergroup K is isomorphic to the double coset space SO(d +
1)//SO(d) = {SO(d)g SO(d)|g ∈ SO(d + 1)}. The radial affine Dunkl process is then the image of the spherical
Brownian motion on S

d by the canonical projection SO(d + 1)/SO(d) → SO(d + 1)//SO(d), see [30] or [31] for
more details.

2.3. Some properties of the radial process

From now on, we will denote by Px the distribution of the radial affine Dunkl process starting from x ∈ R \ Z.
As we will see, an important functional of the radial affine Dunkl process, is the continuous process 1

sin2(πX·)
. First,

note that since X is continuous and never reaches (for k ≥ 1
2 ) the walls of the alcove where is started from, we have

that for all t ≥ 0, there exists some random εt > 0 such that

inf
s∈[0,t] sin2(πXs) > εt Px-a.s.

Hence, we obtain that for all t ≥ 0,∫ t

0

ds

sin2(πXs)
< +∞ Px-a.s.
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Note also that, since sin2(πXs) < 1 for all s ≥ 0, we have that
∫ t

0
ds

sin2(πXs)
≥ t , so∫ t

0

ds

sin2(πXs)
−→

t→+∞+∞ Px-a.s.

To study some properties of the radial affine Dunkl process and more particularly of the last functional, we will
need a few lemmas.

Lemma 2.3. Let k > 1
2 . For all n ≥ 0, we have∫ 1

−1
G(k)

n (x)
(
1 − x2)k−3/2 dx = �(k − 1/2)

√
π

�(k)
if n is even

and 0 if n is odd.

Proof. Since G
(k)
n is odd for n odd, we just have to look at the even case. Recall the ultraspherical polynomials

expansion of G
(k)
n , see for instance Askey [2], that is

G(k)
n (x) =

�n/2�∑
j=0

g
k,l
n,jG

(l)
n−2j (x),

with connection coefficients given by

g
k,l
n,j = �(l)(n − 2j + l)�(j + k − l)�(n − j + k)

�(k)j !�(k − l)�(n − j + l + 1)
.

Hence, for l = k − 1 (note that this is well defined since l > − 1
2 ), and using the fact that the G

(k−1)
n ’s are orthogonal

for the weight (1 − x2)k−3/2, we find that, for n even,∫ 1

−1
G(k)

n (x)
(
1 − x2)k−3/2

dx =
n/2∑
j=0

g
k,k−1
n,j

∫ 1

−1
G

(k−1)
n−2j (x)

(
1 − x2)k−3/2

dx

= g
k,k−1
n,n/2 π

(
ω

(k−1)
0

)−1
.

Since

g
k,k−1
n,n/2 = 1

and (
ω

(k−1)
0

)−1 = �(2k − 2)23−2k

�(k − 1)2(k − 1)
= �(k − 1/2)√

π�(k)

by the duplication formula of the Gamma function, i.e.

�(z)�

(
z + 1

2

)
= 21−2z

√
π�(2z),

we obtain∫ 1

−1
G(k)

n (x)
(
1 − x2)k−3/2 dx = �(k − 1/2)

√
π

�(k)
. �

First, we make the following remark.
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Lemma 2.4. Let (Xt )t≥0 be the radial affine Dunkl process, and k > 1
2 . Then, for all x ∈]0,1[, and all t ≥ 0, we have

Ex

(
1

sin2(πXt)

)
< +∞.

Proof. We have,

Ex

(
1

sin2(πXt)

)
=

∫
[0,1]

1

sin2(πy)
qt (x, y)dy

=
∫

[0,1]

∑
n≥0

e−λntG(k)
n (cosπx)G(k)

n (cosπy)ω(k)
n (sinπy)2k−2 dy,

which is integrable as soon as 2k − 2 > −1, i.e. k > 1
2 , the summability of the series being guaranteed by the

term e−λnt . �

Note that the proof of this lemma gives that for k = 1
2 , Ex(

1
sin2(πXt )

) = +∞ for all t > 0. Actually, Lemma 2.3

leads to the following proposition.

Proposition 2.5. Let k > 1
2 . For all x ∈]0,1[, and all t ≥ 0, we have

Ex

(∫ t

0

ds

sin2(πXs)

)
< +∞.

Proof. For all t > 0, we have,∫ t

0
Ex

(
ds

sin2(πXs)

)

=
∫ t

0

∫ 1

0

1

sin2(πy)
qs(x, y)dy ds

=
∫ t

0

∫ 1

0

∑
n≥0

e−λnsG(k)
n (cosπx)G(k)

n (cosπy)ω(k)
n (sinπy)2k−2 dy ds

=
∑
n≥0

1

λn

(
1 − e−λnt

)
G(k)

n (cosπx)ω(k)
n

∫ 1

0
G(k)

n (cosπy)(sinπy)2k−2 dy.

First, remark that the term n = 0 is not a problem since G
(k)
0 (y) = 1 and ω

(k)
0 = k�(k)2

21−2k�(2k)
. Now, by the change of

variables u = cos(πy), and Lemma 2.3, we have∫ 1

0
G(k)

n (cosπy)(sinπy)2k−2 dy = 1

π

∫ 1

−1
G(k)

n (u)
(
1 − u2)k−3/2 du = 1√

π

�(k − 1/2)

�(k)
,

if n is even, and 0 if n is odd. So,∫ t

0
Ex

(
ds

sin2(πXs)

)
=

∑
n≥0

n even

1

λn

(
1 − e−λnt

)
G(k)

n (cosπx)ω(k)
n

1√
π

�(k − 1/2)

�(k)
.

Hence, it suffices to prove that∑
n≥0

n even

∣∣∣∣ 1

λn

G(k)
n (cosπx)ω(k)

n

∣∣∣∣ < +∞.
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Using Stirling’s formula for the Gamma function, i.e.

�(z) =
√

2π√
z

zze−z

(
1 + O

(
1

z

))
,

we find that

ω(k)
n ∼+∞n2−2k.

Now, using asymptotic expansion of Gegenbauer polynomials (see [22]), that is

G(k)
n (cosπx) = 21−k �(n + k)

n!�(k)
(sinπx)−k cos

(
(n + k)πx − kπ2/2

) + O
(
nk−2)

for 0 < x < 1, we have (recall that λn = π2

2 n(n + 2k)),∣∣∣∣ 1

λn

ω(k)
n G(k)

n (cosπx)

∣∣∣∣ ∼+∞
1

nk+1
,

Hence, since k > 1
2 , the series is convergent, which proves the proposition. �

Remark 2.6. We obviously obtain the same results if a.s. X0 = x for some x ∈ R \ Z (not only in ]0,1[), that is for all
x ∈ R \ Z, t ≥ 0, and k > 1

2 ,

Ex

(∫ t

0

ds

sin2(πXs)

)
< +∞.

Due to the importance of the process 1
sin2(πX·)

for the construction of the affine Dunkl process as we will see in the

next section, we put the following definition.

Definition 2.7. For all t ≥ 0, we define

ηt = k

2
π2

∫ t

0

ds

sin2(πXs)
.

Let us summarize the properties of the process η. For all x ∈ R \ Z, it is a Px -almost surely finite continuous
increasing process, with η0 = 0 and ηt → +∞ a.s. when t goes to infinity. Furthermore, it has finite expectation for
k > 1

2 , and for k = 1
2 , Ex(ηt ) = +∞ for t > 0.

The construction of the affine Dunkl process is now the content of the next section.

3. The affine Dunkl process

We will define in this section the affine Dunkl process with parameter k (k ≥ 1
2 ) as the Markov process with infinites-

imal generator

Af (x) = 1

2
f ′′(x) + kπ cot(πx)f ′(x) + k

2

∑
n∈Z

f (sn(x)) − f (x)

(x − n)2

for f ∈ C2
b(R) and x ∈ R \ Z. To achieve this, we will start with the radial affine Dunkl process living in some alcove,

and add the jumps at some random times. This is a kind of skew-product decomposition as the one done in [7] (see
also [28] for the same decomposition in the Heckman–Opdam setting). More precisely, we construct a pure jump
process on the affine Weyl group W , and use the action of W on the radial process.
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3.1. Jump process on the affine Weyl group

First, since the functional ηt = k
2π2

∫ t

0
ds

sin2(πXs)
is an a.s. finite continuous increasing process, with η0 = 0 and ηt →

+∞ as t → +∞, we have that ηt is a well-defined time change. Let us call its inverse a(t), i.e.

a(t) = inf{s ≥ 0|ηs > t},
so a is continuous, increasing, a(0) = 0, a(t) < +∞ for all t ≥ 0, and a(t) → +∞ as t → +∞, a.s. It is well known
that such time-change transformation preserves the Markovian character of a process (see for example [12]), so the
process

X̃t = Xa(t)

is a strong Markov process, with infinitesimal generator

L̃f (y) = 2 sin2(πy)

kπ2
Lf (y)

for f ∈ C(Ī ) ∩ C2(I ) and y ∈ I , where I is the alcove containing X0.
Recall that for x ∈ R \ Z, we have the series expansion

π2

sin2(πx)
=

∑
n∈Z

1

(x − n)2
.

We denote by σx the following probability measure on the affine Weyl group W

σx(dw) =
∑
n∈Z

sin2(πx)

π2

1

(x − n)2
δsn(dw).

Let (Nt )t≥0 be a Poisson point process with intensity 1, independent of X, i.e.

Nt =
∑
n≥1

1{τn≤t},

where τ0 = 0 and τn = ∑n
j=1 ej , where (ej )j≥1 is a sequence of independent and identically distributed random

variables, with exponential distribution of parameter 1, and independent of X.
Now define recursively the processes X̃j and the random variables (βj )j≥1 on W by

X̃
j
t = βj · X̃j−1

t (6)

for all j ≥ 1, with X̃0
t = X̃t , and where conditionally on {X̃j−1

τj
= x}, βj is distributed according to σx . Note that X̃j

is the Markov process X̃ with initial condition X̃
j

0 = βj · · ·β1 · X̃0.
Using left multiplication on W , we define the jump process on W

wt = ξNt = βn · · ·β1 for t ∈ [τn, τn+1[, (7)

where ξn = βn · · ·β1, for all n ≥ 1.

3.2. Skew-product decomposition

Given an operator A with domain D(A), we say that a càdlàg stochastic process (Yt )t≥0 is a solution of the martingale
problem for A if for all u ∈ D(A),

u(Yt ) − u(Y0) −
∫ t

0
Au(Ys)ds
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is a (F Y
t )-martingale, where (F Y

t )t≥0 is the natural filtration of Y (see [13] for a detailed exposition of the theory of
martingale problems).

Now we can state the main result of this paper.

Theorem 3.1. Let (Xt )t≥0 be the radial affine Dunkl process with X0 = x ∈ R \ Z a.s., and parameter k ≥ 1
2 , and

(wt )t≥0 be the pure jump process defined by (7). Then the process (Yt )t≥0 defined by

Yt = wηt · Xt,

with ηt = k
2π2

∫ t

0
ds

sin2(πXs)
, is a Markov process on R, with infinitesimal generator A given by

Af (y) = 1

2
f ′′(y) + kπ cot(πy)f ′(y) + k

2

∑
p∈Z

f (sp(y)) − f (y)

(y − p)2

for f ∈ C2
b(R) and y ∈ R \ Z, and such that Yt ∈ R \ Z for all t ≥ 0 a.s.

Definition 3.2. The process (Yt )t≥0 defined in the above theorem is called the affine Dunkl process with parameter k.

Proof of Theorem 3.1. We suppose that X starts in ]0,1[ without lost of generality. As notice in Section 2, we have
that X lives in ]0,1[ almost surely. Consider the process X̃, with generator L̃, defined previously by X̃t = Xa(t), where
a(t) is the inverse of ηt . Define, for all t ≥ 0,

Ỹt = wt · X̃t .

Hence, for t ∈ [τn, τn+1[, we have

Ỹt = βn · · ·β1 · X̃t

= X̃n
t ,

where the processes X̃n are defined by (6).
By construction (Ỹt )t≥0 is a càdlàg process which jumps at the random times τn’s. We denote by (F̃t )t≥0 the natural

filtration of Ỹ , and by F̃ n
t = σ(X̃n

s , s ≤ t) ∨ σ(Ns, s ≤ t). As we shall see, (Ỹt )t≥0 is a solution of the martingale
problem for the generator Ã given by

Ãf (y) = L̃f (y) +
∫

W

(
f (w · y) − f (y)

)
σy(dw),

acting on f ∈ C2
b(R) for y ∈ R \ Z, where σx(dw) = ∑

n∈Z

sin2(πx)

π2
1

(x−n)2 δsn(dw), and L̃ is the generator of X̃. The

proof follows exactly the lines of Proposition 10.2, Chapter 4 of [13], see also Lemma 17 in [7]. First, since (X̃n
t )t≥τn

is a Markov process with generator L̃, and using independence of X̃ and (τn)n≥0, we have that for u ∈ C2
b(R)

u
(
X̃n

(t∨τn)∧τn+1

) − u
(
X̃n

τn

) −
∫ (t∨τn)∧τn+1

τn

L̃u
(
X̃n

s

)
ds

is a (F̃t )-martingale. Hence, summing over n ≥ 0, and using

u
(
X̃n

(t∨τn)∧τn+1

) = u
(
X̃n

τn

)
1{t<τn} + u

(
X̃n

t

)
1{τn≤t<τn+1} + u

(
X̃n

τn+1

)
1{t≥τn+1},

we get that

u(Ỹt ) − u(Ỹ0) −
∫ t

0
L̃u(Ỹs)ds −

Nt∑
n=1

(
u
(
X̃n

τn

) − u
(
X̃n−1

τn

))
(8)
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is a (F̃t )-martingale. Note that, since N is a Poisson process, we have that∫ t

0

(∫
W

u(w · Ỹs−)σ Ỹs− (dw) − u(Ỹs−)

)
d(Ns − s)

is a (F̃t )-martingale, and is equal to

Nt∑
n=1

(∫
W

u
(
w · X̃n−1

τn

)
σ X̃n−1

τn (dw) − u
(
X̃n−1

τn

)) −
∫ t

0

(∫
W

u(w · Ỹs−)σ Ỹs− (dw) − u(Ỹs−)

)
ds. (9)

But

Nt∑
n=1

(
u
(
X̃n

τn

) −
∫

W

u
(
w · X̃n−1

τn

)
σ X̃n−1

τn (dw)

)
(10)

is also a (F̃t )-martingale. This follows from the fact that for all t1 < · · · < tm ≤ s < t , and all h1, . . . , hm measurable
bounded functions, we have

E

(
m∏

i=1

hi(Yti )
∑
n≥1

1{s<τn≤t}
(

u
(
X̃n

τn

) −
∫

W

u
(
w · X̃n−1

τn

)
σ X̃n−1

τn (dw)

))

= E

(
m∏

i=1

hi(Yti )
∑
n≥1

1{s<τn≤t}E
(

u
(
X̃n

τn

) −
∫

W

u
(
w · X̃n−1

τn

)
σ X̃n−1

τn (dw)

∣∣∣F̃ n−1
τn

))
= 0,

since X̃n
τn

= βn · X̃n−1
τn

, and βn is distributed according to σ X̃n−1
τn conditionally to X̃n−1

τn
.

Adding (10) and (9) to (8), we get that

u(Ỹt ) − u(Ỹ0) −
∫ t

0
L̃u(Ỹs)ds −

∫ t

0

∫
W

(
u(w · Ỹs) − u(Ỹs)

)
σ Ỹs (dw)ds

is a (F̃t )-martingale (since Ỹ is càdlàg and {s|Ỹs− = Ỹs} is Lebesgue negligible, we can replace Ỹs− by Ỹs in the last
integral). Hence, we have obtained that for u ∈ C2

b(R)

u(Ỹt ) − u(Ỹ0) −
∫ t

0
Ãu(Ỹs)ds

is a (F̃t )-martingale, which proves that (Ỹt )t≥0 is a solution of the martingale problem for the generator Ã.
We are now interested in solution of

Yt = Ỹ

(∫ t

0
β(Ys)ds

)
, (11)

with β(y) = kπ2

2 sin2(πy)
for y ∈ R\Z, and β(y) = 0 for y ∈ Z. First remark that since sin2(π·) is a W -invariant function,

we have β(Ỹt ) = β(X̃t ) almost surely, since Ỹt = wt · X̃t . Since X never touches 0 and 1 a.s., so is X̃, and β ◦ X̃ is
a.s. bounded on bounded intervals. Define

ζ1 = inf

{
t ≥ 0

∣∣ ∫ t

0

ds

β(Ỹs)
= +∞

}
and

ζ0 = inf
{
t ≥ 0 | β(Ỹt ) = 0

}
.
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Since 0 < sin2(πX̃t ) < 1 for all t ≥ 0, we easily see that ζ1 = ζ0 = +∞, so by applying Theorem 1.3, Chapter 6
of [13], we have that equation (11) admits a solution (Yt )t≥0, which is a solution of the martingale problem for
A = βÃ, i.e. for all u ∈ C2

b(R),

u(Yt ) − u(Y0) −
∫ t

0
Au(Ys)ds

is a (F̃τ(t))-martingale, where τ(t) = ∫ t

0 β(Ys)ds. Since we have

Ãu(y) = L̃u(y) +
∫

W

(
u(w · y) − u(y)

)
σy(dw)

= 2 sin2(πy)

kπ2
Lu(y) + sin2(πy)

π2

∑
n∈Z

u(sn(y)) − u(y)

(y − n)2
,

we obtain

Au(y) = Lu(y) + k

2

∑
n∈Z

u(sn(y)) − u(y)

(y − n)2
,

acting on u ∈ C2
b(R), for y ∈ R \ Z. Since β(Ys) = β(Xs) for all s ≥ 0 by the W -invariance of sin2(π·), we have that∫ t

0
β(Ys)ds = ηt

for all t ≥ 0. Hence, we obtain the skew-product decomposition of (Yt )t≥0 given by

Yt = wηt · Xt

for all t ≥ 0. Let π be the projection onto the principal alcove A0 =]0,1[. Then, by the invariance of π under the
action of the Weyl group W and the skew-product representation of the affine Dunkl process, we see that

π(Yt ) = Xt a.s.,

i.e. (π(Yt ))t≥0 is the radial affine Dunkl process. Hence, if two process Y and Y ′ are solutions to the martingale
problem for A, then π(Yt ) = π(Y ′

t ) = Xt , so Y and Y ′ have the same one-dimensional distributions, and by the same
arguments as in Theorem 4.2, Chapter 4 in [13], we have that the affine Dunkl process Y is a Markov process with
infinitesimal generator A. By construction, Y is càdlàg and lives a.s. in R \ Z, else the radial process X would touch
the walls of the principal alcove, which is impossible as already noticed. �

3.3. Jumps of the affine Dunkl process

By the construction of the affine Dunkl process, we have the skew-product decomposition

Yt = wηt · Xt

for t ≥ 0. This shows that there is a jump of the process at time t when the functional ηt is equal to one of the τn’s.
Hence, the number of jumps Vt of (Yt )t≥0 before time t , i.e.

Vt =
∑
s≤t

1{	Ys =0},

where 	Ys = Ys − Ys− , is exactly given by the point process

Vt =
∑
n≥1

1{ηt≥τn}.
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Since η is a well-defined time change, we get the following representation of V in term of a time-change Poisson
process

Vt = Nηt

for all t ≥ 0, where (Nt )t≥0 is the Poisson process considered previously. Using this representation and the fact that
for all t ≥ 0, ηt < +∞ a.s., we get immediately the following proposition.

Proposition 3.3. For all x ∈ R \ Z, and all t ≥ 0

Vt < +∞ Px-almost surely,

i.e. the number of jumps of the affine Dunkl process in a finite time interval is almost surely finite.

Now define for all n ≥ 1,

Tn = a(τn),

where a is the inverse of η, i.e. a(t) = inf{s ≥ 0 | ηs > t}, and T0 = 0. The sequence (Tn)n≥1 corresponds to the jump
times of the affine Dunkl process. Since a is increasing and a(t) → +∞ as t → +∞ a.s., we have that for all n ≥ 0,

Tn > Tn−1 Px-almost surely

and Tn → +∞ when n → +∞ a.s. Note that we can also define the jump times recursively by

Tn = inf

{
t ≥ Tn−1

∣∣ kπ2

2

∫ t

Tn−1

ds

sin2(πXs)
> en

}
, (12)

where (en)n≥1 is a sequence of independent and identically distributed random variables with exponential distribution
of parameter 1. Indeed, define for all n ≥ 1 and all t ≥ 0,

ηn(t) = kπ2

2

∫ Tn−1+t

Tn−1

ds

sin2(πXs)
,

so ηn is a well-defined time-change with inverse given by

η−1
n (t) = inf

{
s ≥ 0 | ηn(s) > t

}
,

which is finite for all t ≥ 0, and goes to infinity as t goes to infinity. Then, we can rewrite Tn as

Tn = Tn−1 + inf
{
t ≥ 0 | ηn(t) > en

}
= Tn−1 + η−1

n (en).

So,

Tn − Tn−1 = η−1
n (en),

which gives ηn(Tn − Tn−1) = en, and

ηTn =
n∑

j=1

ηj (Tj − Tj−1) =
n∑

j=1

ej = τn,

or equivalently Tn = a(τn). Note that the fact that the sequence (Tn)n≥0 is well defined can be proved directly using
expression (12) and the strong Markov property of (Xt )t≥0.

Since Vt is a time-change Poisson process, it is not difficult to exhibit its compensator.
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Lemma 3.4. Let Vt = Nηt . The compensator of V is η, that is

Vt − ηt

is a martingale with respect to the filtration (F N
ηt

)t≥0, where F N
t = σ(Ns, s ≤ t).

Proof. Let 0 ≤ s < t . Define T = ηt and S = ηs . We have S < T , since t �→ ηt is increasing. Note also that S and T

are stopping times with respect to Ft . Hence, since N is a Poisson process, Nt − t is a martingale and by the optional
sampling theorem, we have

Ex

(
Vt − ηt |F N

ηs

) = Ex

(
NT − T |F N

S

) = NS − S = Vs − ηs. �

Since η is the compensator of V , we have by Proposition 2.5 that

Ex(Vt ) < +∞ for k >
1

2

and Ex(Vt ) = +∞ for k = 1
2 , that is, the number of jumps of the affine Dunkl process has finite expectation when

k > 1
2 , and infinite expectation for k = 1

2 .

3.4. Martingale decomposition

First, we remark that Y is a local martingale.

Proposition 3.5. The affine Dunkl process (Yt )t≥0 is a local martingale.

Proof. Using the formula

π cot(πx) =
∑
n∈Z

1

x − n
,

one can see that the function f (x) = x is killed by the generator A of (Yt )t≥0, which proves that Y is a local martin-
gale. �

We give now the martingale decomposition of Y into its continuous and purely discontinuous parts. First, recall
that the Lévy kernel N of a Markov process describes the distribution of its jumps, see [23]. For all x ∈ R, and for a
function f in the domain of the infinitesimal generator which vanishes in a neigbourhood of x, the Lévy kernel N of
(Yt )t≥0 is given by

Af (x) =
∫

R

N(x,dy)f (y).

Hence, by the explicit form of the infinitesimal generator A, we get immediately that

N(x,dy) = kπ2

2

∑
n∈Z

δsn(x)(dy)

(x − n)2

for all x ∈ R \ Z. By [23], for all nonnegative measurable function f on R2, the nonnegative discontinuous functional∑
s≥t

f (Ys− , Ys)1{	Ys =0},

where 	Ys = Ys − Ys− , can be compensated by the process∫ t

0
ds

∫
R

N(Ys− ,dy)f (Ys− , y).
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Proposition 3.6. We have the following martingale decomposition,

Yt = Y0 + Bt + Mt,

where (Bt )t≥0 is a standard Brownian motion, and (Mt)t≥0 is a purely discontinuous local martingale which can
written as the compensated sum of its jumps:

Mt = −
∑
s≤t

	Ys1{	Ys =0} +
∫ t

0
kπ cot(πYs)ds.

The proof uses Itô’s formula and the theory of Lévy kernel and is exactly the same as in the classical case of Dunkl
processes, so we refer to [15] for more details.
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