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Abstract. Let T be a random field invariant under the action of a compact group G. In the line of previous work we investigate
properties of the Fourier coefficients as orthogonality and Gaussianity. In particular we give conditions ensuring that independence
of the random Fourier coefficients implies Gaussianity. As a consequence, in general, it is not possible to simulate a non-Gaussian
invariant random field through its Fourier expansion using independent coefficients.

Résumé. Soit T un champ aléatoire invariant par rapport à l’action d’un groupe compact G. On étudie les propriétés de ses
coefficients de Fourier telles que l’orthogonalité et la gaussianité. En particulier on établit des conditions qui garantissent que
l’indépendance de ces coefficients entraîne qu’ils sont gaussiens. Une conséquence remarquable est que, en général, il n’est pas
possible de générer par simulation un champ aléatoire non gaussien invariant à l’aide de son développement par des coefficients
indépendants.
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1. Introduction

Recently much interest has been attracted to the investigation of properties of random fields on the sphere S
2 that

are invariant (in distribution) with respect to the action of the rotation group SO(3), highlighting a certain number
of interesting features (see [1,9] e.g.). This interest is motivated mainly by the modeling and the investigation of
cosmological data.

For instance, in [1] it was proved that assumptions of independence of the Fourier coefficients of the development
in spherical harmonics

T =
∞∑

�=1

�∑
m=−�

a�mY�m (1.1)

of a real random field T , in addition to invariance, imply Gaussianity. More precisely it was proved that if the field
is invariant and the coefficients a�m, � = 1,2, . . . , 0 ≤ m ≤ � are independent, then the field is necessarily Gaussian
(since the field is real, the other coefficients are constrained by the condition a�,−m = (−1)ma�m). This result implies,
in particular, the relevant consequence that a non-Gaussian invariant random field on S

2 cannot be simulated using
independent coefficients.

It is then a natural question whether this property also holds for invariant random fields on more general structures.
A result in this direction was obtained in [2] where it was proved that a similar statement holds in general for an
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invariant random field on the homogeneous space of a compact Lie group, provided the development is made with
respect to a suitable Fourier basis satisfying a particular condition.

The main object of this paper is to pursue this line of investigation in the direction of determining new examples
where assumptions of independence for the coefficients imply Gaussianity for an invariant random field and to better
understand this phenomenon.

In particular we give a new condition, equivalent to the one that was introduced in [2] and therefore ensuring the
property above, which is satisfied for every self-conjugated Fourier basis of the sphere S

2 (and not just the spherical
harmonics) and also for an important class of self-conjugated bases of the sphere S

3. A relevant consequence is that
it is not possible to simulate a non-Gaussian invariant real random field on S

2 using independent coefficients with
respect to any self-conjugated bases of the irreducible G-modules of L2(S2).

Besides this characterization of Gaussianity, we discuss other properties of the Fourier coefficients of an invariant
random field such as orthogonality (it is well known that the a�m’s of the development (1.1) on S

2 for an invariant
random field with finite variance are orthogonal, see [9], p. 140) and invariance of their distribution with respect to
rotations of the complex plane.

The plan of the paper is as follows. In Section 2 we recall the main properties of the Fourier development of a
random field on the homogeneous space X of a compact group and give necessary and sufficient conditions for
the invariance of the field in terms of its development. In Section 3 we investigate properties of its coefficients as
orthogonality, among other things. It turns out that, unlike the case of S

2, they are not orthogonal in general and
precisions are made concerning this phenomenon. In Section 4 we recall (from [2]) results giving the characterization
of Gaussianity which is our main concern. As mentioned above, these results, in many cases of interest, hold under the
assumption that the Fourier basis that is chosen for the Fourier development enjoys a certain property (Assumption 4.3)
with respect to the action of the group. This section also contains a converse result, giving conditions on Gaussian
coefficients in order to produce an invariant random field.

The remainder of the paper is devoted to the investigation of the validity of Assumption 4.3. In Section 5 we give a
new equivalent condition which is the main tool for the investigation of the two main examples (S2 and S

3) which are
the objects of Section 6 and Section 7. We are also able to prove that independence of the Fourier coefficients entails
Gaussianity in some situations of interest in which it is known that Assumption 4.3 does not hold (Theorem 6.4), in
particular covering the case of the basis of the spherical harmonics (Y�m)m for � = 1 (which completes the proof of
the result of [1]).

Finally Section 8 points out some open questions.

2. A.s. square integrable random fields and Fourier developments

Throughout this paper we denote by G a compact group, by K a closed subgroup and by X the homogeneous space
G/K . We denote (g, x) �→ gx, g ∈ G the action of G and by π :G → G/K the canonical projection. We denote
respectively by dg and dx the normalized Haar measure on G and the unique G-invariant probability measure on X .
We write L2(X ) for L2(X ,dx) and L2(G) for L2(G,dg). The spaces L2 are spaces of complex valued square
integrable functions.

Let us denote by Ĝ the set of equivalence classes of irreducible representations of G. For every σ ∈ Ĝ, let Hσ a
Hilbert unitary G-module of class σ fixed from now on. As soon as an orthonormal basis h1, . . . , hm, m = dimσ , of
Hσ is chosen, one can define the matrix coefficients

Dσ
ij (g) = 〈

σ(g)hj ,hi

〉
.

The Peter–Weyl theorem (see [12] or [3] e.g.) states that the normalized matrix elements
√

dimσDσ
ij , σ ∈ Ĝ, 1 ≤

i, j ≤ dimσ , form an orthonormal complete basis of L2(G), so that, if we set, for f ∈ L2(G),

f̂ (σ )ij = √
dimσ

∫
G

f (g)Dσ
ij

(
g−1)dg = √

dimσ

∫
G

f (g)Dσ
ji(g)dg = √

dimσ
〈
f,Dσ

ji

〉
L2(G)
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we have the Fourier development

f (g) =
∑
σ∈Ĝ

√
dimσ

dimσ∑
i,j=1

f̂ (σ )ijD
σ
ji(g) =

∑
σ∈Ĝ

dimσ

dimσ∑
i,j=1

〈
f,Dσ

ji

〉
L2(G)

Dσ
ji(g). (2.1)

The development (2.1) is actually independent of the choice of orthonormal bases of the G-modules Hσ : if for f ∈
L2(G) we set

f̂ (σ ) := √
dimσ

∫
G

f (g)σ
(
g−1)dg ∈ End(Hσ )

then (2.1) can be written

f (g) =
∑
σ∈Ĝ

√
dimσ tr

(
f̂ (σ )σ (g)

)
. (2.2)

Let us denote by L the left action of G on L2(G), so that for all g,h ∈ G and all f ∈ L2(G), Lgf (h) = f (g−1h). It
is immediate that the functions (Dσ (g)ij )1≤i≤dimσ , appearing in the columns of Dσ , span a subspace of L2(G) that
is invariant and irreducible with respect to this left action. To be precise the action of G on this subspace is not in
general equivalent to σ , but to its dual.

From (2.2) a similar development can be derived for L2(X ), X = G/K . Actually remark that, if e is the identity
of G and x0 = π(e) ∈ X , the relation f̃ (g) = f (gx0) uniquely identifies functions in L2(X ) as functions in L2(G)

that are right invariant under the action of K which is the isotropy group of x0. For such functions f we have, for
every k ∈ K ,

f̂ (σ ) =
∫

G

f (g)σ
(
g−1)dg =

∫
G

f (gk)σ
(
g−1)dg =

∫
G

f (t)σ
(
kt−1)dt = σ(k)

∫
G

f (t)σ
(
t−1)dt = σ(k)f̂ (σ )

which implies that f̂ (σ ) is HK
σ -valued, HK

σ denoting the subspace of Hσ of vectors that are invariant under the action
of K , i.e. f̂ (σ ) ∈ Hom(Hσ ,HK

σ ). Hence, for a choice of an orthonormal basis h1, . . . , hm of Hσ such that h1, . . . , hk

span HK
σ , the matrix f̂ (σ ) will have all zeros in the rows from the (k + 1)th to the mth. For f ∈ L2(X ) we shall

consider, for simplicity, that f̂ (σ ) is a dimσ × dimσ matrix with zeros on every row but for the first dimHK
σ ones,

corresponding to the first elements of the basis, that are supposed to be K-invariant. Remark that HK
σ might be reduced

to {0}.
As a consequence of the aforementioned Peter–Weyl theorem we have the decomposition, that we shall need later,

L2(X ) =
⊕
σ∈Ĝ

⊕
1≤j≤dim(HK

σ )

V σ
j , (2.3)

where the V σ
j are irreducible sub-G-modules of L2(X ). For instance one can choose V σ

j to be the span of the column
(Dσ

ij )0≤i≤dimσ . Even if it is not going to be relevant in the rest of the paper recall that, as mentioned above, the action
of G is not, in general, equivalent to σ .

We consider on X a real or complex random field (T (x))x∈X . This means that there exists a probability space
(Ω,F ,P) on which the r.v.’s T (x) are defined and we shall always assume joint measurability, i.e. (x,ω) �→ T (x,ω)

is B(X ) ⊗ F measurable, B(X ) denoting the Borel σ -field of X .
T is said to be a.s. continuous if the map x �→ T (x) is continuous a.s. It is said to be a.s. square integrable if∫

X

∣∣T (x)
∣∣2 dx < +∞, a.s. (2.4)

Remark that a.s. square integrability does not imply existence of moments of the r.v.’s T (x). If T is a a.s. square
integrable random field on G then the function x �→ T (x,ω) belongs to L2(X ) a.s. and one can define “pathwise”

T̂ (σ ) = √
dimσ

∫
G

T (g)σ
(
g−1)dg (2.5)
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which is now a End(Hσ )-valued r.v. Similarly we have the analog of (2.2), i.e.

T (h) =
∑
σ∈Ĝ

√
dimσ tr

(
T̂ (σ )σ (h)

)
(2.6)

or

T (h) =
∑
σ∈Ĝ

√
dimσ

dimσ∑
i,j=1

T̂ (σ )ijD
σ
ji(h) =

∑
σ∈Ĝ

dimσ

dimσ∑
i,j=1

〈
T ,Dσ

ji

〉
L2(G)

Dσ
ji(h) (2.7)

the series converging a.s. in L2(G).
For a random field T we define the rotated random field T g as T g(x) = T (gx).

Definition 2.1. A a.s. square integrable random field T on X is said to be G-invariant if, as a L2(X )-valued random
variable, it has the same distribution as the rotated random field T g for every g ∈ G, in the sense that the joint laws
of (

T (x1), . . . , T (xm)
)

and
(
T (gx1), . . . , T (gxm)

)
(2.8)

coincide for every g ∈ G and x1, . . . , xm ∈ X .
More generally a family (Ti)i∈I of random fields on X is said to be invariant if and only if for every choice of

g ∈ G, i1, . . . , im ∈ I and x1, . . . , xm ∈ X , the joint laws of(
Ti1(x1), . . . , Tim(xm)

)
and

(
Ti1(gx1), . . . , Tim(gxm)

)
(2.9)

coincide.

The following will have some importance later. We thank D. Marinucci and G. Peccati for informing us of the
existence of this result.

Proposition 2.2. Let T be a a.s. square-integrable invariant random field on X and define, for f ∈ L2(X ),

T (f ) :=
∫
X

T (x)f (x)dx. (2.10)

Then, for every g ∈ G and every f1, . . . , fm ∈ L2(G), the two random variables(
T (f1), . . . , T (fm)

)
and

(
T g(f1), . . . , T

g(fm)
)

have the same distribution.

Proof. See [10]. �

Proposition 2.3. Let T be a a.s. square integrable random field on G. Then T is invariant if and only if, for every
g ∈ G, the two families of r.v.’s(

T̂ (σ )
)
σ∈Ĝ

and
(
T̂ (σ )σ (g)

)
σ∈Ĝ

are equi-distributed.

Proof. Let us assume T invariant and let σ ∈ Ĝ. Then for every v,w ∈ Hσ the function g �→ 〈σ(g−1)v,w〉 is bounded
and therefore in L2(G). Therefore, thanks to Proposition 2.2 and denoting by ∼ equality in law, we have for every
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g ∈ G,〈
T̂ (σ )v,w

〉 = √
dimσ

∫
G

T (h)
〈
σ
(
h−1)v,w

〉
dh ∼ √

dimσ

∫
G

T (gh)
〈
σ
(
h−1)v,w

〉
dh

= √
dimσ

∫
G

T (t)
〈
σ
(
t−1g

)
v,w

〉
dt = √

dimσ

∫
G

T (t)
〈
σ
(
t−1)σ(g)v,w

〉
dt = 〈

T̂ (σ )σ (g)v,w
〉
.

This being true for every v,w ∈ Hσ , we have that, as End(Hσ )-valued r.v.’s, T̂ (σ ) and T̂ (σ )σ (g) have the same
distribution. Quite similarly, only in a just more complicated way to write,(

T̂ (σ1), . . . , T̂ (σn)
)

and
(
T̂ (σ1)σ1(g), . . . , T̂ (σn)σn(g)

)
have the same distribution as End(Hσ1) ⊕ · · · ⊕ End(Hσn)-valued r.v., thus proving the only if part of the statement.
The converse follows easily from development (2.6). �

Let f ∈ L2(X ) and V ⊂ L2(X ) an irreducible G-module. We can then consider the orthogonal projection PV f

of f on V . Similarly, for a a.s. square integrable random field T on X , let us denote by TV its orthogonal projection
on V . Remark that by definition (the functions of V are necessarily continuous) TV is always a continuous random
field.

Let us denote by Dij (g) the matrix elements of the left regular action of G on V with respect to a fixed orthonormal
basis (vi)i of V and let us consider the random coefficients of the development of T with respect to this basis

ai =
∫
X

T (x)vi(x)dx. (2.11)

We denote by a the complex vector with components ai , i = 1, . . . , d . Then the coefficients of the rotated random
field T g are

a
g
i =

∫
X

T (gx)vi(x)dx =
∫
X

T (x)vi

(
g−1x

)
dx

=
d∑

k=1

Dki(g)

∫
X

T (x)vk(x)dx =
d∑

k=1

Dik

(
g−1)ak (2.12)

that is

ag = D
(
g−1)a. (2.13)

As

TV (x) =
d∑

k=1

akvk(x),

it is immediate that TV is invariant if and only if the random vectors a and D(g)a have the same distribution.
With respect to the Peter–Weyl decomposition (2.3) we have

T =
∑
σ∈Ĝ

dimHK
σ∑

i=1

TV σ
i
.

Using the fact that the projections are G-equivariant (i.e. commute with the action of G) it is easy to prove the
following, not really unexpected, statement (anyway see Proposition 3 of [11] for a proof).

Proposition 2.4. T is invariant if and only if the family (TV σ
i
)σ∈Ĝ,1≤i≤dimHK

σ
of random fields is invariant.
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We shall therefore concentrate our attention mainly on the projected random fields TV . When dealing with a real
random field it is natural to require that the basis v1, . . . , vd of the G-module V , with respect to which the coefficients
are computed “respects” the real and imaginary parts and, in particular, if V = V , that this basis is stable under
conjugation. As explained in [2], Section 2 and the Appendix, it is actually possible to decompose L2(X ) into a
direct sum of irreducible G-modules in the form

L2(X ) =
⊕
i∈I 0

Vi ⊕
⊕

i∈I +
(Vi ⊕ Vi), (2.14)

where the direct sums are orthogonal and

i ∈ I 0 ⇔ Vi = Vi, i ∈ I + ⇔ Vi ⊥ Vi.

We can therefore choose an orthonormal basis (vik)ik of L2(X ) such that (di = dimVi ):

• for i ∈ I 0, (vik)1≤k≤di
is an orthonormal basis of Vi stable under conjugation;

• for i ∈ I +, (vik)1≤k≤di
is an orthonormal basis of Vi and (vik)1≤k≤di

is an orthonormal basis of Vi .

It is immediate that if T is a real random field and i ∈ I 0 then TVi
is also a real random field. On the other hand,

if i ∈ I + then TVi
and TVi

may not be real (actually they cannot be real unless they vanish), whereas TVi
+ TVi

will
be real.

Remark 2.5. Representations of a compact Lie group G are classically classified as of real, complex or quaternionic
type (see for instance [3], p. 93). In order to be self-contained let us recall that a conjugation J of a G-module V is
an antilinear (J (αv) = αJ (v)) equivariant map J :V → V .

A G-module V is said to be real if there exists a conjugation J :V → V such that J 2 = 1 and quaternionic if there
exists a conjugation J :V → V such that J 2 = −1. It is complex if it is neither real nor quaternionic.

The important thing is that an irreducible G-module is of one and only one of these types and that equivalent
G-modules are necessarily of the same type. If an irreducible G-module V ⊂ L2(X ) is such that V = V , the usual
conjugation J :v → v is a real conjugation, so that V must be of real type. In particular, if a representation is of
quaternionic or complex type, it cannot contain in its isotypical space a G-module that is self-conjugated, so that in
the decomposition (2.14) it cannot be of type I 0.

The irreducible representations of even dimension of SU(2) are quaternionic and the corresponding G-modules of
this group cannot, therefore, be self-conjugated.

3. Properties of the coefficients

In this section we give results concerning two properties that are enjoyed by the coefficients T̂ (σ )ij , σ ∈ Ĝ, 1 ≤ i, j ≤
dimσ , of the Fourier development of an invariant random field on X .

A random field T is said to have finite variance if

E

(∫
X

∣∣T (x)
∣∣2 dx

)
< +∞. (3.1)

Remark 3.1. If (3.1) holds, then the map x �→ T (x) necessarily belongs to L2(X ) a.s., so that T is also a.s. square
integrable. Moreover, by the Cauchy–Schwarz inequality, if T has finite variance, the random variables T (f ), f ∈
L2(X ), defined in (2.10), have finite variance. In particular the Fourier coefficients of T , with respect to any Fourier
basis, also have finite variance.

It is well known (see [1], [9], p. 126) that in the case X = S
2, G = SO(3), if T is invariant and has finite variance,

its Fourier coefficients with respect to the basis formed by the spherical harmonics (see for instance [9], p. 64, for
definitions) are pairwise orthogonal. Our first concern in this section is to investigate this question in the case of a
more general basis and for a general homogeneous space of a compact Lie group.
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Remark that, if T is invariant and has finite variance, then for every σ that is not the trivial representation we have

E
[
T̂ (σ )

] = E
[
T̂ (σ )σ (g)

] = E
[
T̂ (σ )

] ∫
G

σ(g)dg = 0. (3.2)

Theorem 3.2. Let T be a finite variance invariant random field on X and σ1, σ2 ∈ Ĝ.

(a) If σ1 and σ2 are not equivalent, then, for every orthonormal bases of Hσ1 and Hσ2 the r.v.’s T̂ (σ1)ij and T̂ (σ2)k�

are orthogonal, 1 ≤ i, j ≤ dimσ1, 1 ≤ k, � ≤ dimσ2.
(b) If σ1 = σ2 = σ let �(σ) = E[T̂ (σ )T̂ (σ )∗]. Then Cov(T̂ (σ )ij , T̂ (σ )k�) = δj��(σ )ik . In particular coefficients

belonging to different columns are orthogonal and the covariance between entries in different rows of a same
column does not depend on the column.

Proof. Let us denote by Dσ
ij (g) the matrix elements of the action of G on Hσ with respect to a given orthonormal

basis. Recall that T̂ (σ )ij = √
dimσ 〈T ,Dσ

ji〉L2(G) so that, thanks to Remark 3.1, the r.v.’s T̂ (σ )ij ’s have themselves
finite variance.

(a) By Proposition 2.3 (T̂ (σ1), T̂ (σ2)) has the same joint distribution as (T̂ (σ1)σ1(g), T̂ (σ2)σ2(g)) for every g ∈ G,
which implies that, as matrices, (T̂ (σ1), T̂ (σ2)) and (T̂ (σ1)D

σ1(g), T̂ (σ2)D
σ2(g)) have the same joint distribution.

Therefore we have

E
[
T̂ (σ1)ij T̂ (σ2)k�

] = E
[(

T̂ (σ1)D
σ1(g)

)
ij

(
T̂ (σ2)Dσ2(g)

)
k�

]
=

dimσ1∑
r=1

dimσ2∑
m=1

D
σ1
rj (g)D

σ2
m�(g)E

[
T̂ (σ1)ir T̂ (σ2)km

]
.

This being true for every g ∈ G, it is also true if we take the integral of the right-hand side over G in dg. As the func-
tions D

σ1
rj and D

σ2
m� are orthogonal for every choice of the indices, the representations σ1 and σ2 being not equivalent,

we find

E
[
T̂ (σ1)ij T̂ (σ2)k�

] = 0.

(b) If σ1 = σ2 = σ , the previous computation gives

E
[
T̂ (σ )ij T̂ (σ )k�

] =
dimσ∑
r,m=1

E
[
T̂ (σ )ir T̂ (σ )km

] ∫
G

Dσ
rj (g)Dσ

m�(g)dg

=
dimσ∑
r,m=1

E
[
T̂ (σ )ir T̂ (σ )km

]
δrmδj� = δj�

dimσ∑
r=1

E
[
T̂ (σ )ir T̂ (σ )kr

] = δj��(σ )ik.
�

Theorem 3.2 states that the entries of T̂ (σ ) are not pairwise orthogonal unless the matrix � is diagonal. This fact
has actually already been remarked by other authors (see [8], Theorem 2, e.g.) and Example 3.3 below provides an
instance of this phenomenon.

Of course there are situations in which orthogonality is still guaranteed: when the dimension of HK
σ is 1 at most

(i.e. in every irreducible G-module the dimension of the space HK
σ of the K-invariant vectors in one at most) as is the

case for G = SO(d), K = SO(d − 1), G/K = S
d−1. In this case actually the matrix T̂ (σ ) has just one row that does

not vanish and �(σ) is all zeros, but one entry in the diagonal.
Let us recall first a well known definition.
Let Z = Z1 + iZ2 a complex r.v. Z is said to be Gaussian complex valued if (Z1,Z2) is jointly Gaussian. Z is said

to be complex Gaussian if, in addition, Z1 and Z2 are independent and have the same variance. If Z is centered this
is equivalent to the requirement that their distribution is invariant with respect to rotations of the complex plane. We
shall use the following properties.

• A centered Gaussian complex valued r.v. Z is complex Gaussian if and only if E[Z2] = 0.
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• Two centered complex valued Gaussian r.v.’s Z1, Z2 are independent if and only if E[Z1Z2] = E[Z1Z2] = 0.

Example 3.3. Let σ ∈ Ĝ and V ⊂ L2(G) an irreducible G-module of dimension d ≥ 2 of class σ and denote by the
matrix Dσ (g) the action of G on V with respect to a fixed basis. Let Z1, . . . ,Zd be independent centered complex
Gaussian r.v.’s such that E[|Zj |2] = 1 for every j . Let B = (bij )ij be the random matrix defined as bij = αiZj , αi ∈C.
Then the random field

T (g) = √
d tr

(
BDσ (g)

)
is invariant and, as it is immediate that T̂ (σ ) = B , its coefficients T̂ (σ )ij are not pairwise orthogonal. Let us check
invariance. Let C = T̂ (σ )Dσ (g), then cij = αi

∑d
k=1 ZkD

σ
kj (g) = αiWj where

Wj =
d∑

k=1

ZkD
σ
kj (g).

In view of Proposition 2.3 we must therefore just prove that the Wj ’s are complex Gaussian, independent and that
E[|Wj |2] = 1. First it is immediate that they are Gaussian complex valued. We have also

E[WjWk] = E

[
d∑

h,r=1

ZhZrD
σ
hj (g)Dσ

rk(g)

]
=

d∑
h,r=1

δhrD
σ
hj (g)Dσ

rk(g)

=
d∑

r=1

Dσ
rj (g)Dσ

rk(g) =
d∑

r=1

Dσ
kr

(
g−1)Dσ

rj (g) = δkj . (3.3)

Similarly, as E[ZhZr ] = 0 for every 1 ≤ h, r ≤ d (recall that E[Z2] = 0 for a centered complex Gaussian r.v. Z),

E[WjWk] = E

[
d∑

h,r=1

ZhZrD
σ
hj (g)Dσ

r�(g)

]
= 0. (3.4)

(3.3) for k = j gives E[|Wj |2] = 1, whereas (3.3) and (3.4) together imply that Wj and Wk , k �= j , are independent.
Finally (3.4) for k = j gives E[W 2

j ] = 0 for every j so that the Wj ’s are complex Gaussian, which completes the proof.

Arguments similar to the proof of Theorem 3.2(c) allow to prove the following.

Corollary 3.4. Let T an invariant random field with finite variance on X and let V ⊂ L2(X ) an irreducible G-
module different from the constants. Then the coefficients (ak)k of the development of the projection TV of T on V

with respect to any orthonormal basis of V are centered, orthogonal, and have a common variance c.

Proof. As pointed out in Remark 3.1 the coefficients ak’s have themselves finite variance and, thanks to (2.12) and V

being different from the constants, they are also centered. From (2.13) we have, for every g ∈ G,

E[aka�] = E
[(

D(g)a
)
k

(
D(g)a

)
�

] =
d∑

j,r=1

Dkr(g)D�j (g)E[araj ].

Integrating in dg and using the orthonormality properties of the matrix elements Dij (g) we find

E[aka�] = 1

dimV

dimV∑
j,r=1

δk�δrj E[araj ] = 1

dimV
δk�

dimV∑
j=1

E
[|aj |2

]
.
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For k �= � this gives immediately the orthogonality, whereas for k = � we have

E
[|ak|2

] = 1

dimV

dimV∑
j=1

E
[|aj |2

]
so that the ak’s have the same variance. �

Another feature appearing in the case G = SO(3), X = S
2 is that if we consider the development of an invariant

random field with respect to the classical basis of the spherical harmonics (see for instance [9], p. 64, for definitions)
as in (1.1), then the coefficients a�m have each a distribution that is invariant with respect to rotations of the complex
plane if m �= 0. See for instance [9], p. 142, on this point. The following discussion aims at seeing what can be said
for a general homogeneous space X concerning this property.

Remark 3.5. Let G be a compact connected Lie group, V ⊂ L2(X ) an irreducible G-module of dimension d > 1
and T ⊂ G a maximal torus. Let

V =
d⊕

k=1

Uk (3.5)

be a decomposition of V into orthogonal irreducible components of the action of T on V . As T is Abelian, dim(Uk) = 1
for every k = 1, . . . , d . Let uk ∈ Uk be a unit vector. Then Ltuk = uk(t

−1·) = χk(t)uk for t ∈ T, where χk denotes the
character of the representation of T on Uk . If we consider the Fourier development

T =
d∑

k=1

akuk

of an invariant random field T with respect to the orthonormal basis (u1, . . . , ud) then, as for t ∈ T

T (tx) =
d∑

k=1

akuk(tx) =
d∑

k=1

akχk(t)uk(x),

and T (tx) and T (x) have the same distribution, necessarily for every k such that the action of T on Uk is not trivial
(that is χk(t) �≡ 1) the coefficient ak must be invariant in distribution with respect to rotations of the complex plane
(and therefore, if it is Gaussian, it must be complex Gaussian).

Remark also that the action of T on V cannot be trivial, that is χk �≡ 1 for some k necessarily. Actually, as all
maximal tori are conjugated (that is if T′ is another maximal torus then T

′ = gTg−1 for some g ∈ G) then the action
of all maximal tori on V would be trivial which is impossible as the union of all maximal tori is the group itself so
that this would imply that the action of G itself is trivial, whereas we assumed V to be irreducible and with dimension
d > 1.

The property, mentioned above, of the random coefficients with respect to the basis of the spherical harmonics in
the case of the S

2, appears now as a particular case.

4. Invariant random fields with independent Fourier coefficients

In this section we see results that state that independence assumptions on the Fourier coefficients imply Gaussianity
of the coefficients and of the corresponding random field.

Theorems 4.1 and 4.4 below are already known (see [2]) and we reproduce them only to be self-contained, our main
concern being the investigation of the validity of Assumption 4.3, which is a necessary condition in many situations
of interest.
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Theorem 4.1. Assume that G is a compact connected Lie group. Let T be a a.s. square integrable G-invariant random
field on the homogeneous space X of G. Let V be an irreducible G-module of L2(X ) with dimension d > 1 and let
us assume that coefficients (ak)k of the development

TV =
d∑

k=1

akvk

with respect to an orthonormal basis (vk)k of V are independent. Then they are necessarily Gaussian and the random
field TV is Gaussian itself.

Remark that in the statement of Theorem 4.1, as in Theorem 4.4 below, we make no assumption concerning the
integrability or the existence of finite moments of the r.v.’s T (x) and/or ak . But, of course, under the assumptions of
the theorem it follows that necessarily the r.v.’s TV (x) and ak has finite moments of every order.

The proof of Theorem 4.1 relies on the following Skitovich–Darmois theorem, actually proved in this version by
Ghurye and Olkin [6] (see also [7]).

Theorem 4.2. Let X1, . . . ,Xr be mutually independent random vectors with values in R
n. If, for some real nonsin-

gular n × n matrices Aj ,Bj , j = 1, . . . , r , there are two linear statistics

L1 =
r∑

j=1

AjXj , L2 =
r∑

j=1

BjXj

that are independent, then the vectors X1, . . . ,Xr are Gaussian.

Proof of Theorem 4.1. Let us denote again by D(g) the representative matrix of the left action of g ∈ G on V with
respect to the orthonormal basis (vk)k and by a the vector of the coefficients ak . Thanks to (2.13) we have

a
distr= ag = D

(
g−1)a.

Let 1 ≤ k1 < k2 ≤ dimV . Then the joint distribution of ak1 and ak2 is the same as the joint distribution of

d∑
j=1

Dk1j

(
g−1)aj and

d∑
j=1

Dk2j

(
g−1)aj

which are therefore themselves independent. Thus we have found two linear statistics of the r.v.’s ak that are indepen-
dent. Therefore, it will follow from the Skitovich–Darmois theorem (Theorem 4.2) that the joint distribution of the
ak’s is Gaussian complex-valued as soon as we will have proved that there exists at least one element g ∈ G such that
the real linear transformations

C � z �→ Dk1j (g)z and C � z �→ Dk2j (g)z, j = 1, . . . , d

are nondegenerate. This follows from analyticity properties of the coefficients, as explained at the end of the proof of
Proposition 4.8 of [2] (in this part of the proof the connectedness of G is required). �

Remark that the result above does not hold for 1-dimensional G-modules. As shown in [2], Example 3.7, it is
possible to construct a non-Gaussian invariant random field on the torus having all its coefficients independent.

Theorem 4.1 is not really satisfactory because its assumptions are not satisfied in the case of real random fields,
for which the coefficients are necessarily constrained by the fact that the imaginary parts must cancel and therefore
cannot, in general, be independent. Theorem 4.1 has however its own interest because it contains the essence of the
arguments that we use in the sequel and because it holds without any assumption concerning the orthonormal basis
(vk)k of V .
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We consider now the case of a real G-invariant random field T .
The results are different according to the fact that the irreducible G-module V under consideration is of type I +

or I 0, as classified at the end of Section 2.
In the case V ∈ I + the fact that we deal with a real random field does not impose constraints on the coefficients

of TV and TV but, of course, in order to obtain a real random field one must impose that in the sum TV + TV the
imaginary parts cancel. In this situation TV and TV will be both complex, in general, but their sum will give rise to a
real random field.

In this case Theorem 4.1 states that, if dimV > 1 and the coefficients (ak)k are independent, then TV and TV are
both Gaussian and their sum is a Gaussian real random field.

On the other hand if V ∈ I 0 the coefficients must satisfy some constraints in order to ensure that the random field
is real. It is natural then to consider the setting of an orthonormal basis that is self-conjugated.

It is actually appealing to consider a basis that is formed by real functions. For such a basis, say (vk)k , and under
the assumption that the coefficients ak = ∫

S2 T (x)vk(x)dx are independent, Theorem 4.1 applies so that if the random
field T is invariant then the ak’s are jointly Gaussian. Such a statement turns out however to be much weaker than the
one we are going to state now, as explained below in Remark 4.6.

We shall consider the case of a basis (vk)−�≤k≤� of V such that

v−k = vk. (4.1)

This means that we assume that, if the dimension of V is odd, the basis contains only one element v0 which is a
real function. If the dimension of V is even we shall still write (vk)−�≤k≤� in order to simplify the notations (there is
however no v0 function). In the following arguments we shall consider the case where dimV is odd, the case dimV

even being quite similar.
For a basis satisfying (4.1) the fact that T is real imposes to the coefficients the requirement a−k = ak . This is the

usual setting in the case X = S
2, where, to be precise, usually one considers the basis of the spherical harmonics for

which it holds v−k = (−1)kvk so that the condition above becomes a−k = (−1)kak , a slight difference that does not
change things. The argument in the case V = V can be implemented along the same lines as in Theorem 4.1: let us
assume that the coefficients (ak)k≥0, are independent, then, if m1 ≥ 0, m2 ≥ 0, m1 �= m2, and we denote as above by
Dm,m′(g) the matrix elements of the action of G on V , the two complex r.v.’s

ãm1 =
�∑

m=−�

Dm1,m

(
g−1)am and ãm2 =

�∑
m=−�

Dm2,m

(
g−1)am (4.2)

have the same joint distribution as am1 and am2 and are therefore independent. The Skitovich–Darmois theorem cannot
be applied as before, as am and a−m = am are certainly not independent. But (4.2) can be written

ãm1 = Dm1,0
(
g−1)a0 +

�∑
m=1

(
Dm1,m

(
g−1)am + Dm1,−m

(
g−1)am

)
,

ãm2 = Dm2,0
(
g−1)a0 +

�∑
m=1

(
Dm2,m

(
g−1)am + Dm2,−m

(
g−1)am

)
so that ãm1 , ãm2 are (real) linear functions of the independent r.v.’s a0, . . . , a�. Therefore we can again apply Theo-
rem 4.2 as soon as we prove that an element g ∈ G can be chosen so that the real linear applications

z �→ Dmi,m

(
g−1)z + Dmi,−m

(
g−1)z, m = 1, . . . , �, i = 1,2 (4.3)

are non singular. It is immediate that this is equivalent to require that∣∣Dmi,m

(
g−1)∣∣ �= ∣∣Dmi,−m

(
g−1)∣∣, m = 1, . . . , �, i = 1,2. (4.4)

We are therefore led to state our main result under the assumption that (4.4) is fulfilled.
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Assumption 4.3 (The mixing condition). Let V ⊂ L2(X ) a self-conjugated irreducible G-module and let
(vi)−�≤i≤� a self-conjugated orthonormal basis of V . Let us denote by D(g) the representative matrix of the ac-
tion of G on V . We say that the self-conjugated basis (vi)−�≤i≤� is mixing if there exist g ∈ G and 0 ≤ m1 < m2 ≤ �

such that∣∣Dmi,m(g)
∣∣ �= ∣∣Dmi,−m(g)

∣∣ (4.5)

for every 0 < m ≤ �, i = 1,2.

We have therefore proved the following.

Theorem 4.4. Let G be a compact connected Lie group and T a a.s. square integrable real G-invariant random field
on the homogeneous space X of G. Let V ⊂ L2(X ) be an irreducible G-module such that V = V . Let (vk)−�≤k≤�

be a self-conjugated mixing (see Assumption 4.3) basis of V . Consider the real random field

TV (x) =
∑

k

akvk(x), (4.6)

where the r.v.’s ak, k ≥ 0 are independent. Then if TV is G-invariant the r.v.’s (ak)k are jointly Gaussian and therefore
also TV is Gaussian.

Remark 4.5. It is relevant to point out that in Theorems 4.1 and 4.4 we do not assume independence of the real and
imaginary parts of the coefficients. Actually under this additional assumption the statement becomes almost trivial
(and much weaker) in many situations, as often the invariance of the random field implies that the coefficients (some
of them at least, see Remark 3.5) have a distribution that is invariant with respect to rotations of the complex plane.
And it is well known that this assumption together with independence of the components implies a joint Gaussian
distribution, with no need of Assumption 4.3 (immediate consequence of the Bernstein–Kac theorem as recalled in
Proposition 6.3 below).

This point is important with respect to one of the practical consequences of these results, which is the simulation
of invariant random fields. Actually a natural and computationally efficient procedure in order to simulate a random
field on X is by sampling its Fourier coefficients. For the case X = S2, for instance, Theorem 4.4 together with
the fact that the basis of the spherical harmonics is mixing ([9], p. 145) entails that if the coefficients a�m’s, m ≥ 0,
of the corresponding development are independent, then, in order to obtain an invariant random field, they must be
Gaussian and the resulting random field will be Gaussian itself. Different choices of their distribution will lead to a
random field which cannot be invariant. In particular the choice of independent r.v.’s a�m’s, m ≥ 1 with a complex
Cauchy distribution, for example, cannot produce an invariant random field, even if the real and imaginary parts of
a�m are not independent.

We shall improve this statement in the following sections. As a consequence of Theorem 6.2 below it is not possible
to simulate a non-Gaussian random field on S

2 using independent coefficients, with respect to any self-conjugated
basis.

Remark 4.6. As remarked above, if the G-module V is self-conjugated as in Theorem 4.4, it is natural to consider
an orthonormal basis on V that is formed by real functions. For instance in the case X = S

2, denoting as usual by
(Y�,m)�,m the Fourier basis of the spherical harmonics (see again [9], p. 64) one might consider the orthonormal basis
given by v�0 = Y�0 and

v�m = 1√
2

(
Y�m + (−1)mY�,−m

)
, v�,−m = 1

i
√

2

(
Y�m − (−1)mY�,−m

)
, m ≥ 0.

The functions v�m are real and, if we denote a�m the coefficients of the real random field T with respect to the basis
of the spherical harmonics, then the coefficients with respect to the basis (v�m)m would be b�0 = a�0 and

b�m = √
2 Rea�m, b�,−m = √

2 Ima�,m, m ≥ 1.
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They are of course real r.v.’s. A repetition of the arguments of Theorem 4.1 now gives immediately that invariance of the
random field and independence of the coefficients (b�m)m imply joint Gaussianity of the coefficients (b�m)m without
bothering with Assumption 4.3. This would however be a much weaker result, as independence of the (b�m)m’s would
imply independence of the real and imaginary parts of the (a�m)m’s, which is not required in Theorem 4.4 as pointed
out above in Remark 4.5.

Let V an irreducible self-conjugated G-module, TV a real random field as in (4.6) and (vk)−�≤k≤� a self-conjugated
basis as above. Then by Theorem 4.4, under Assumption 4.3, if the coefficients ak , k ≥ 0, with respect to the given
basis are independent they are Gaussian. Moreover, by Corollary 3.4, as they must have the same variance and be or-
thogonal, there exists c ≥ 0 such that for k �= 0 E[(�ak)

2] = E[(�ak)
2] = c

2 (this is a consequence of the orthogonality
of ak and a−k = ak) and E[a2

0] = c (if the basis contains a real function v0). Conversely, is a real random field TV with
these properties invariant? This is the object of the next statement.

Theorem 4.7. Let G be a compact Lie group and V ⊂ L2(X ) a self-conjugated irreducible G-module and
(vk)−�≤k≤� a self-conjugated orthonormal basis of V (possibly k �= 0 if dimH is even). Let T be a real a.s. square
integrable random field on X and let (ak)−�≤k≤� be its random coefficients with respect to the basis above. Then if the
real and imaginary parts of the r.v.’s ak, k ≥ 0 (resp. k > 0 if dimV is even) are centered, independent and Gaussian
and, for k �= 0, there exists c ≥ 0 such that E[(�ak)

2] = E[(�ak)
2] = c

2 and E[a2
0] = c, then the random field

TV =
�∑

k=−�

akvk

is invariant.

Proof. We make the proof under the assumption that dimV is odd, the case of an even dimension being quite similar.
Therefore in the basis (vk)−�≤k≤� we have v−k = vk and v0 is a real function. Let A be the matrix of the transformation
C

2�+1 → C
2�+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z�
...

z1
z0
z−1
...

z−�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2
(z� + z−�)

...
1√
2
(z1 + z−1)

z0
1

i
√

2
(z1 − z−1)

...
1

i
√

2
(z� − z−�)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.7)

Lemma 4.8 below proves that the matrix D̃(g) = AD(g)A−1 is real orthogonal. Let ak = Xk + iYk , k > 0, and a0 = Z.
The real r.v.’s Z,Xk,Yk , k = 1, . . . , �, are independent and the matrix A maps the vector a = (a�, . . . , a−�)

t into

ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2X�
...√

2X1
Z√
2Y1
...√
2Y�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As the distribution of ã is Gaussian with all its coordinates centered and independent with a common variance, ã is
invariant in distribution under the action of every orthogonal matrix and therefore under the action of D̃(g) for every
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g ∈ G. Therefore the random vector a is invariant in distribution under the action of D(g) for every g ∈ G, which
implies the invariance of TV . �

Lemma 4.8. D̃(g) = AD(g)A−1 is a real orthogonal matrix for every g ∈ G.

Proof. It is immediate that the rows of A are pairwise orthogonal and unitary. Therefore A is a unitary matrix
as well as D̃(g). Let us prove that D̃(g) maps R

2�+1 into R
2�+1, which will end the proof. Let Ξ = (ξ�, . . . ,

ξ1, ζ, η1, . . . , η�)
t ∈ R

2�+1 and zk = ξk + iηk , k ≥ 1, z0 = ζ . Set z = (z�, . . . , z1, z0, z1, . . . , z�)
t , then z = A−1Ξ

and z has the form

z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2
(ξ� + iη�)

...
1√
2
(ξ1 + iη1)

ζ
1√
2
(ξ1 − iη1)

...
1√
2
(ξ� − iη�)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.8)

Now the function f defined as

f (z) =
∑
k>0

zkvk + ζv0 +
∑
k>0

z−kv−k

is a real function. Remark that the matrix A changes any vector of the form (4.8) into a vector of R2�+1. As D(g)z is
the vector of the coefficients of the function Lgf , which is still a real function, its coefficients are again of the form
(4.8), so that AD(g)A−1Ξ ∈R

2�+1. �

5. On the validity of the main assumption

In this section we investigate the validity of Assumption 4.3. Throughout this section we assume that G is a compact
Lie group.

Let us remark first that, for a given self-conjugated G-module V of L2(X ), Assumption 4.3, as far as we know,
might be true for some orthonormal bases of V and not for other ones. So far it is known to be true for the basis
formed by the spherical harmonics when X = S

2 (see [9], p. 144, for a proof), if dimV > 3. Actually, as explained
below, if dimV ≤ 3 Assumption 4.3 cannot hold. We shall investigate the implication between independence of the
coefficients and Gaussianity for the 3-dimensional irreducible G-module of L2(S2) in Theorem 6.4.

Remark that, as Dmk(g) = 〈Lgvk, vm〉, condition (4.5) is equivalent to∣∣〈Lgvm,vmi
〉∣∣ �= ∣∣〈Lgv−m,vmi

〉∣∣ for some g ∈ G and every 0 < m ≤ �, i = 1,2. (5.1)

The main results of this section are Proposition 5.3 and Corollary 5.4 where we state a condition equivalent to As-
sumption 4.3 carrying a more geometric meaning. This will be the key tool in the next section, where we prove that
every self-conjugated orthonormal basis of an irreducible G-module of L2(S2) with dim(V ) > 3 is mixing. In Sec-
tion 7 we check the validity of Assumption 4.3 for the sphere X = S

3 under the action of G = SO(4), at least for a
class of self-conjugated orthonormal bases.

Let us first state some remarks.

Remark 5.1. (a) As remarked above, mixing (Assumption 4.3), might hold for some orthonormal self-conjugated
basis and not for other ones of a given irreducible G-module V ⊂ L2(X ). However if it holds for a self-conjugated
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orthonormal basis (vk)−�≤k≤�, then it also holds for every other basis (wk)−�≤k≤� of the form wk = Lg0vk for some
g0 ∈ G. Actually if D̃(g) denotes the matrix of the action of G on V with respect to the basis (wk)−�≤k≤�, that is

wk

(
g−1x

) =
d∑

i=−d

D̃ik(g)wi(x),

then D̃(g) = D(g−1
0 gg0) so that Assumption 4.3 holds also for (wk)−�≤k≤�.

(b) A given self-conjugated orthonormal basis (vk)−�≤k≤� can of course have some of its elements that are real
functions, actually one at least if the dimension is odd. Remark however that Assumption 4.3 cannot be true if vmi

is
a real function of L2(X ). Actually, as the left regular action commutes with conjugation,

Dmi,−m(g) = 〈Lgv−m,vmi
〉 = 〈Lgvm,vmi

〉 = 〈Lgvm,vmi
〉 = Dmi,m(g).

Therefore |Dmi,−m(g)| = |Dmi,m(g)| for every g ∈ G. This implies that Assumption 4.3 cannot be satisfied if V = V

and dimV = 2 or dimV = 3. Actually in the first case there is only one mi ≥ 0, whereas, if dimV = 3, the values
mi = 0,1 are possible, but v0 must be a real function and (4.5) cannot be satisfied for v0. The case dimV = 3 is of
interest because it appears in the Peter–Weyl decomposition of L2(S2).

In the next section we prove however that also for this G-module, if the random field is invariant and the coefficients
a0, a1 are independent, then they are necessarily Gaussian. In this proof we do not use Skitovitch–Darmois theorem
so that Assumption 4.3 is not required.

This raises the question whether one might prove Theorem 4.4 using a different characterization of the Gaussian
distribution than the one provided by the Skitovich–Darmois Theorem 4.2. This might lead to an argument in which
Assumption 4.3 is not needed (see Section 8 for a more precise discussion on open questions).

Let H be a irreducible unitary G-module of real type (recall Remark 2.5) and let J :H → H a conjugation such that
J 2 = 1 and let us denote by 〈·, ·〉 the corresponding G-invariant scalar product on H . Let (hk)−�≤k≤� be a orthonormal
basis of H which is self-conjugated with respect to J , i.e. such that h−k = J (hk). We shall say that such a basis is
J -mixing if (4.5) holds, now denoting by D(g) the matrix of the action of G on H with respect to this basis. Of course
J -mixing coincides with mixing if H ⊂ L2(X ) with the left regular action and J is the usual conjugation Jv = v.

Lemma 5.2. Let H be a irreducible unitary G-module of real (resp. quaternionic) type (recall Remark 2.5) and let
J :H → H a conjugation such that J 2 = 1 (resp. J 2 = −1), then, for every v,w ∈ H ,

〈Jv,Jw〉 = 〈Jv,Jw〉.

Proof. It is immediate that

〈v,w〉′ = 〈Jv,Jw〉
is also a G-invariant scalar product on H , hence, by Schur lemma, there exists a real number λ > 0 such that 〈v,w〉′ =
λ〈v,w〉. The relation J 2 = 1 (resp. J 2 = −1) easily implies λ = 1. �

We are going to express Assumption 4.3 in terms of the action of G on the wedge product
∧2

H . Recall that
∧2

H

is endowed with the usual G-invariant scalar product

〈v1 ∧ w1, v2 ∧ w2〉2 := 〈v1, v2〉〈w1,w2〉 − 〈v1,w2〉〈w1, v2〉.
We denote by g(v ∧ w) = gu ∧ gw the action of G on

∧2
H .

Proposition 5.3. Let g ∈ G, then |Dmi,m(g)| = |Dmi,−m(g)| if and only if〈
g(hmi

∧ h−mi
), hm ∧ h−m

〉
2 = 0.
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Proof. We have〈
g(hs ∧ h−s), hm ∧ h−m

〉
2 = 〈ghs ∧ gh−s , hm ∧ h−m〉2

= 〈ghs,hm〉〈gh−s , h−m〉 − 〈ghs,h−m〉〈gh−s , hm〉
= 〈ghs,hm〉〈gJhs, Jhm〉 − 〈ghs,h−m〉〈gJhs, Jh−m〉
= ∣∣〈ghs,hm〉∣∣2 − ∣∣〈gh−s , hm〉∣∣2 = ∣∣Dm,s(g)

∣∣2 − ∣∣Dm,−s(g)
∣∣2,

where we used the fact that 〈Jv,Jw〉 = 〈Jv,Jw〉 thanks to Lemma 5.2. �

Assumption 4.3 can therefore be rephrased in terms of orthogonality of the G-orbits of the vectors hm ∧ h−m in∧2
H .

To be precise, let us denote, for every 1 ≤ m ≤ �, by Wm the subspace of
∧2

H generated by the G-orbit of
hm ∧ h−m; let S the set of the pairs (i, j), 1 ≤ i, j ≤ �, such Wi ⊂ W⊥

j . Let S̃ the set of the indices 1 ≤ i ≤ � such that
(i, j) ∈ S for some 1 ≤ j ≤ �.

Corollary 5.4. Assumption 4.3 holds if and only if the complement set S̃c contains at least two indices. In particular
Assumption 4.3 is verified if � ≥ 2 and S is empty.

Proof. Let (i, j), 1 ≤ i, j ≤ � and let

Fi,j = {
g ∈ G; ∣∣Di,j (g)

∣∣ �= ∣∣Di,−j (g)
∣∣}.

If Fi,j �= ∅ then it is a dense open set of G. Assumption 4.3 holds if and only if for every 1 ≤ m1 < m2 ≤ � we have
that Fm1,m �= ∅ for every 1 ≤ m ≤ � and Fm2,m

′ �= ∅ for every 1 ≤ m′ ≤ �. Now it is sufficient to observe that, by
Proposition 5.3, Fi,j =∅ if and only if (i, j) ∈ S. �

In the remainder of this section we introduce a family of orthonormal bases of a G-module that arises naturally
(the spherical harmonics are of this type) and for which the investigation of the validity of Assumption 4.3 might be
simpler.

Let H be an irreducible G-module, T a maximal torus of G and let us go back to the setting of Remark 3.5 and
consider the decomposition (3.5). It is possible to assemble an orthonormal basis of H by picking a unitary vector uk

in each of the Uk’s. We say that such a basis is associated to the torus T.
If among the Uk’s there is only one subspace at most that is associated to a given character of T, then the decom-

position (3.5) is unique and an associated orthonormal basis is also unique, up to multiplication of its elements by
unitary complex numbers. In this case (i.e. if among the Uk’s there is only one subspace at most that is associated to
a given character of T) we say that H is T-simple.

We shall see in the next sections that all irreducible sub-G-modules of L2(S2) and L2(S3) are T simple with respect
to the maximal tori of G = SO(3) or G = SO(4) respectively.

Let us now suppose that H is a real G-module and denote by J a real conjugation. If u ∈ Uk and t ∈ T we have,
denoting u �→ gu the action of G,

tu = χk(t)u

for some character χk of T, so that

tJu = J tu = χk(t)Ju = χ−k(t)Ju. (5.2)

Therefore it is easy to see that an orthonormal basis of H associated to T can be chosen in such a way that it is
self-conjugated with respect to J . We shall denote by (hk)−�≤k≤� such an orthonormal basis associated to T, where
the index k ranges among the corresponding characters of T appearing in the decomposition (3.5). Then it is clear that
if the relation∣∣〈ghk,hmi

〉∣∣ �= ∣∣〈gh−k, hmi
〉∣∣, for some g ∈ G and for every k �= 0 (5.3)
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holds for the basis (hk)−�≤k≤�, then it holds also for every other basis that is associated to T, as two such bases only
differ by multiplication by a unitary complex number.

It is also clear that if H ⊂ L2(X ) with the usual conjugation J and (5.3) holds, then also Assumption 4.3 holds
for the basis (hk)−�≤k≤�.

It is immediate that if H is T-simple then it is also T̃-simple for any other maximal torus T̃. Actually, T and T̃

being conjugated, if T̃ = g−1Tg, a basis (hk)−�≤k≤� is associated to T if and only if (ghk)−�≤k≤� is associated to T̃.
Thanks to Remark 5.1(a), if (5.3) is satisfied for a basis associated to T, then it is also satisfied by all bases associated
to T̃.

The following result states that if an irreducible G-module H is T-simple and satisfies (5.3), then the same is true
for every irreducible G-module that is equivalent to H .

Proposition 5.5. Let V ⊂ L2(X ) an irreducible G-module with V = V and H a T-simple G-module equivalent
to V . Then also V is T-simple. Moreover if (5.3) is satisfied by the orthonormal bases of H associated to T, then the
same is true for V and every self-conjugated basis of V associated to a maximal torus is mixing.

The proof is straightforward.

6. The sphere S
2 and related examples

In this section we prove first that, for every irreducible G-module, G = SO(3), of dimension > 3 of L2(S2), every
self-conjugated orthonormal basis is mixing. This extends previous results: see [9], p. 144, where this is proved for
the basis of the spherical harmonics. We also give a proof of the fact that the statement of Theorem 4.4 is true for
every self-conjugated orthonormal basis of the irreducible d-dimensional SO(d)-module of L2(Sd−1). This covers in
particular the case of the 3-dimensional SO(3)-module of L2(S2) a situation in which we know that Assumption 4.3
is not satisfied (Remark 5.1(b)).

Let us recall that in the Peter–Weyl decomposition of L2(Sd), d ≥ 3, all the irreducible modules for the action of
SO(d + 1) are self-conjugated (see [5], pp. 196–197), so that, when dealing with a real random field, in order to apply
Theorem 4.4 the validity of Assumption 4.3 must be checked.

It is well-known that SO(3) = SU(2)/{id,−id} so that the irreducible representations of SO(3) are the represen-
tations of SU(2) which are trivial on {id,−id} (see again [3] or [5]). The group G = SU(2) acts on the modules H�

formed by the homogeneous polynomials in 2 complex variables z1, z2 of degree � in the following way: if p ∈ H�,
then, if z = (z1, z2),

gp(z1, z2) = p(az1 − bz2, bz1 + az2) = p(zg), (6.1)

where

g =
(

a b

−b a

)
, a, b ∈C, |a|2 + |b|2 = 1 (6.2)

denotes a generic element of G = SU(2). The SU(2)-modules H� are irreducible and every irreducible SU(2)-module
is equivalent to H� for some � = 0,1, . . . . The action of −id in these representations is trivial if and only if � is even,
so that every irreducible representation of SO(3) is equivalent to H� for some � even.

Lemma 6.1. Let P,Q be homogeneous polynomials of degree � ≥ 1 in the two complex variables z1, z2. Let

D(P,Q) := det

( ∂P
∂z1

∂P
∂z2

∂Q
∂z1

∂Q
∂z2

)
. (6.3)

Then D(P,Q) is a homogeneous polynomial of degree 2� − 2 which vanishes if and only if P = 0 or if Q = λP for
some λ ∈ C.

We give the proof of Lemma 6.1 after the following main result.
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Theorem 6.2. Let V ⊂ L2(G), G = SO(3), an irreducible self-conjugated G-module of dimension 2m + 1. Then, if
m > 1, every self-conjugated orthonormal basis of V is mixing.

Proof. The proof relies on the characterization of Corollary 5.4. Let � = 2m and H� as above. Then (6.3) defines a
map (P,Q) �→ D(P,Q) from H� ⊗H� to H2�−2 which is obviously bilinear and antisymmetric. It is also equivariant
with respect to the action of SU(2) (acting both on H� ⊗ H� and H2�−2). Actually, denoting ∂zP = ( ∂P

∂z1
, ∂P

∂z2
),

∂z(gP )(z) = ∂zP
(
gt ·)(z) = (∂zP )

(
gtz

)
gt

and one concludes easily, as detgt = 1. L(P ∧ Q) = D(P,Q) therefore defines a linear equivariant map
∧2

H� →
H2�−2, such that L(P ∧ Q) = 0 if and only if P ∧ Q = 0 (thanks to Lemma 6.1).

Let us prove that every orthonormal basis self-conjugated with respect to some conjugation J̃ :H� → H� (i.e.
such that J̃ (f−r ) = fr ) is J̃ -mixing. Let (f−m, . . . , fm) such a J̃ -self-conjugated orthonormal basis. If it were not
J̃ -mixing, then by Corollary 5.4 there would exist r, s > 0 and two mutually orthogonal invariant subspaces U1,U2
of

∧2
H� such that fr ∧ f−r ∈ U1, fs ∧ f−s ∈ U2 (recall that we assume m > 1). As fr and f−r are orthogonal,

L(fr ∧ f−r ) �= 0, so that L does not vanish on U1 and by Schur lemma U1 must contain a G-submodule equivalent to
H2�−2. By the same argument also U2 must contain a G-submodule equivalent to H2�−2, which is not possible, as, by
the Clebsch–Gordan decomposition (see [9], Section 3.5, or (7.1) below) the representation H2�−2 appears only once
in H� ⊗ H� and, a fortiori, in

∧2
H�.

Therefore, by Corollary 5.4, the basis (f−m, . . . , fm) is J̃ -mixing.
Now let (v−m, . . . , vm) an orthonormal self-conjugated (in the sense of ordinary conjugation, noted J ) basis of V .

The actions of G = SO(3) on V and H2m are equivalent and therefore there exists a map A :V → H2m that intertwines
the two actions, that is such that ALgv = gAv for every g ∈ G, v ∈ V . Up to multiplication by a constant we can
assume that A preserves the scalar product. If we note J̃ f = AJA−1f , J̃ defines a conjugation on H2m with respect
to which fr = Avr is a self-conjugated orthonormal basis. By the first part of the proof we know that such a basis is
J̃ -mixing. Therefore there exists g ∈ SO(3) such that∣∣〈Lgvr, vs〉V

∣∣ = ∣∣〈gfr, fs〉H2m

∣∣ �= ∣∣〈gfr, f−s〉H2m

∣∣ = ∣∣〈Lgvr , v−s〉V
∣∣

and (v−m, . . . , vm) is mixing itself. �

Proof of Lemma 6.1. Assume P �≡ 0. If D(P,Q) = 0 and ∂zP �≡ 0, then there exists a function λ :C2 → C such
that, for every z ∈ C,

∂zQ = λ(z)∂zP . (6.4)

Recall Euler formula for homogeneous functions of exponent �:

∂P

∂z1
z1 + ∂P

∂z2
z2 = �P

and similarly for Q, so that from (6.4) we get Q = λP . On the open set C2 \ �, where � is the set of zeros of P , we
have λ = Q

P
, so that, on C

2 \ �,

∂zQ = Q

P
∂zP.

But from λ = Q
P

we have also, for j = 1,2,

∂λ

∂zj

= 1

P 2

(
P

∂Q

∂zj

− Q
∂P

∂zj

)
= 1

P 2

(
P

(
Q

P

∂P

∂zj

)
− Q

∂P

∂zj

)
= 0.

As λ is analytic on C
2 \ �, this implies that Q = constP on a nonempty open set of C2 and therefore Q = constP

everywhere. �
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We address now the question of the 3-dimensional irreducible G-module of L2(S2) to which the previous result
does not apply and for which Assumption 4.3 is not satisfied (see Remark 5.1(b)). Actually we prove a more general
statement. The key argument is the following classical characterization of the normal distribution.

Proposition 6.3. Let X = (X1, . . . ,Xm) a R
m-valued r.v. such that:

(a) the distribution of X is invariant with respect to the action of SO(m);
(b) there exist i, j,1 ≤ i, j ≤ m such that Xi and Xj are independent.

Then X is Gaussian.

Proof. We can assume for simplicity that X1,X2 are independent. Let

A =

⎛⎜⎜⎜⎜⎝
1√
2

− 1√
2

0 · · · 0
1√
2

1√
2

0 · · · 0
0 0 1 · · · 0

· · ·
0 · · · 0 1

⎞⎟⎟⎟⎟⎠ .

Then A ∈ SO(d) and, by assumption, X and AX have the same distribution. In particular (X1,X2) and ( 1√
2
(X1 −

X2),
1√
2
(X1 + X2)) have the same distribution, so that 1√

2
(X1 − X2) and 1√

2
(X1 + X2) are independent. By the

classical Bernstein–Kac characterization of Gaussian measures, X1 and X2 are therefore Gaussian (see [4], pp. 74 and
85 for a simple proof). In order to prove joint Gaussianity of X, just remark that rotational invariance implies that the
characteristic function of X is of the form

φX(θ) = ψ
(|θ |), θ ∈R

d

for some function ψ :R→ R. But, as X1 is Gaussian, by choosing θ = (θ1,0, . . . ,0) we have

ψ
(|θ |) = φX(θ) = e−σ 2θ2

1 /2 = e−σ 2|θ |2/2,

where σ 2 = Var(X1), which allows to conclude. �

Recall that in the Peter–Weyl decomposition of L2(Sd−1) the smallest irreducible G-module besides the constants,
Vd say, has always dimension d exactly (see [5], p. 197, e.g.).

Theorem 6.4. Let (vd/2, . . . , v−1, v1, . . . , v−d/2) for d even (resp. (v(d−1)/2, . . . , v0, . . . , v−(d−1)/2) for odd d) be
a self-conjugated orthonormal basis of the SO(d)-module Vd ⊂ L2(Sd−1). Let T a real invariant random field on
L2(Sd−1) such that its coefficients (ad/2, . . . , a1) (resp. (a(d−1)/2, . . . , a0)) with respect to this basis are independent.
Then they are Gaussian.

Proof. Let us make the proof for d odd, d = 2m+ 1. By assumption we can write ak = Xk + iYk , a−k = Xk − iYk for
1 ≤ k ≤ d , a0 = Z, where the r.v.’s Z, (X1, Y1), . . . , (Xm,Ym) are independent.

Let a = (a−m, . . . , a0, . . . , am)t and denote by D(g), g ∈ G, the matrices of the left regular action of G = SO(d)

on the G-module Vd with respect to the given orthonormal basis. By assumption the random vectors a and D(g)a
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have the same distribution for every g ∈ G. Let now A be the matrix Cd → Cd defined as in (4.7) (with � replaced by
m) so that

Aa =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2Xm
...√

2X1
Z√
2Y1
...√

2Ym

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:= ã.

Thanks to Lemma 4.8 the matrices D̃(g) = AD(g)A−1 are orthogonal. Moreover g �→ D̃(g) is an irreducible rep-
resentation of G of dimension d , the representations D and D̃ being equivalent. As there is only one d-dimensional
irreducible representation of SO(d) (up to equivalence), g �→ A−1D(g)A is equivalent to the natural action of SO(d)

on C
d and therefore 1 = det(D(g)) = det D̃(g) so that D̃(g) ∈ SO(d) and the image of D̃ is SO(d) itself, as the map

g �→ D̃(g) is injective.
Therefore invariance of the distribution of a with respect to the matrices D(g) entails invariance of the distribution

of ã with respect to SO(d). As the r.v.’s X1 and Z, for instance, are independent, Proposition 6.3 implies that ã is
Gaussian, and therefore also a. �

The previous theorem ensures that, if T is an invariant random field on S
2 and V is an irreducible G-module of

L2(S2) of dimension 3, independence of the coefficients a1 and a0 with respect to any self-conjugated orthonormal
basis of V entails Gaussianity of TV , even if Assumption 4.3 is not true for such V .

Remark 6.5. In the case where Vd ⊂ L2(Sd−1) is the d-dimensional irreducible SO(d)-module and if d ≥ 4, the
conclusion of Theorem 6.4 follows from Theorem 4.4 since, as a consequence of Corollary 5.4, every self-conjugated
orthonormal basis is mixing. In fact for d ≥ 5 the module

∧2
Vd is irreducible whereas, for d = 4,

∧2
Vd has two

irreducible non-isomorphic components which are the eigenspaces of the Hodge ∗ operator. Therefore a non-zero real
vector of the form iv ∧ v cannot be contained in either eigenspace (see [3], pp. 272–274).

Example 6.6 (SO(3) and SU(2)). In the same line of arguments it is easy to check that, for a real invariant random
field, independence of the coefficients entails Gaussianity in the cases X = G = SO(3) and X = G = SU(2).

Actually if X = G = SO(3) this is partially known when considering the basis given by the normalized columns
(or rows) of the Wigner matrices: in every isotypical submodule one of the columns is generated by the spherical
harmonics for which it is known that, for � > 1, Assumption 4.3 holds so that Theorem 4.4 applies. As for the other
columns, they are not self-conjugated but conjugated pairwise, so that one can apply Theorem 4.1.

However Theorems 6.2 and 6.4 ensure that, even considering a different decomposition of the isotypical spaces, it
is not possible to simulate an invariant non-Gaussian random field using independent coefficients.

This is true also for X = G = SU(2) as in the Peter–Weyl decomposition, in addition to those already considered
for G = SO(3), other representations appear that are quaternionic, so that the corresponding isotypical modules
cannot contain self-conjugated irreducible modules (recall Remark 2.5).

7. The sphere S
3

In this section we prove that for every irreducible G-module, G = SO(4), of L2(S3) every basis adapted to a maximal
torus is mixing.

We shall need some known facts about the group SO(4) and its representations. G = SO(4) is isomorphic to
SU(2)×SU(2)/{(id, id), (−id,−id)}. Therefore its irreducible representations are of the form H� ⊗Hk , H�,Hk being
the irreducible modules of SU(2) introduced at the beginning of Section 6, with the condition that the action of
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(−id,−id) is trivial. As these modules are formed by the homogeneous polynomials of degree � and k respectively in
the complex variables z1, z2, one has

(−id,−id)(p ⊗ q) = (−1)�+kp ⊗ q

and therefore the irreducible modules of SO(4) are of the form H� ⊗ Hk with � + k even. In order to determine the
Peter–Weyl decomposition of L2(S3), S3 = SO(4)/SO(3), one must recall that, in the isomorphism G � SU(2) ×
SU(2)/{(id, id), (−id,−id)}, SO(3) is mapped into the diagonal and therefore the action of SO(3) on H� ⊗ Hk is
g(p ⊗ q) = gp ⊗ gq of SU(2). By the Clebsch–Gordan formula for SU(2), the action of SU(2) on the tensor product
H� ⊗ Hk can be decomposed as

H� ⊗ Hk =
dq⊕

j=0

H�+k−2j , dq = min(�, k) (7.1)

and therefore the trivial representation appears in this decomposition if and only if

� + k is even,
� + k

2
≤ �,

� + k

2
≤ k

that is if and only if � = k. We have therefore found that the representations of SO(4) appearing in the Peter–Weyl
decomposition of L2(S3) are exactly those that are equivalent to H� ⊗ H�. Remark that the smallest dimension of
these, besides the case � = 1 of the constants, is 4, so that we do not have to bother with the problem of dimension 3
appearing for the sphere S

2, as discussed in Remark 5.1(b).
On the SU(2)-module H� introduced in Section 5 let us consider the polynomials ps(z1, z2) = zs

1z
�−s
2 , s = 0, . . . , �

which form an orthogonal basis with respect to the scalar product

〈ps,pr 〉 = s!(� − s)!
�! δs,r = 1(

l
s

)δs,r (7.2)

which turns out to be SU(2)-invariant. Therefore the polynomials es = csps , s = 0, . . . , � with cs =
√(

�
s

)
form an

orthonormal basis of the unitary SU(2)-module H�.
A maximal torus of SU(2) is the subgroup of the elements

tθ =
(

eiθ 0
0 e−iθ

)
whose action on the polynomials ps(z1, z2) = zs

1z
�−s
2 is

tθps = ei(2s−�)θps.

Thus, with respect to the invariant scalar product (7.2), the elements es = csps with cs =
√(

�
s

)
form an orthonormal

basis of H� that is adapted to the maximal torus T. In particular H� is T-simple.
The following computation is our key argument. We have

ges = cs(az1 − bz2)
s(bz1 + az2)

�−s = cs

�∑
r=0

∑
h+k=r

0≤h≤s

0≤k≤�−s

(
s

h

)(
� − s

k

)
aha�−s−kbk(−b)s−h

︸ ︷︷ ︸
:=Hr,s

zr
1z

2m−r
2

= cs

�∑
r=0

Hr,sz
r
1z

�−r
2 = cs

m∑
�=−m

1

cr

Hr,ser
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and therefore

〈ges, ej 〉 = cs

cj

Hj,s = cs

cj

∑
h+k=j

0≤h≤s

0≤k≤�−s

(
s

h

)(
� − s

k

)
aha�−s−kbkb

s−h
(−1)s−h.

Taking into account the condition h + k = j this can be written

〈ges, ej 〉 = cs

cj

Hj,s = cs

cj

∑
0≤h≤s

0≤j−h≤�−s

(
s

h

)(
� − s

j − h

)
aha�−s−j+hbj−hb

s−h
(−1)s−h

= cs

cj

a�−s−j b
s−j

∑
0≤h≤s

0≤j−h≤�−s

(
s

h

)(
� − s

j − h

)
|a|2h|b|2(j−h)(−1)s−h

and therefore∣∣〈ges, ej 〉
∣∣2

= c2
s

c2
j

|a|2(�−s−j)|b|2(s−j)

( ∑
0≤h≤s

0≤j−h≤�−s

(
s

h

)(
� − s

j − h

)
|a|2h|b|2(j−h)(−1)s−h

)2

= c2
s

c2
j

( ∑
0≤h≤s

0≤j−h≤�−s

(
s

h

)(
� − s

j − h

)
|a|�−s−j+2h|b|s+j−2h(−1)s−h

)2

:= P�
s,j

(|a|, |b|) (7.3)

which is a homogeneous polynomial of degree 2� in the variables |a|, |b|. Let us point out that in the sum inside the
square defining P�

s,j the range of h is

max(0,−� + s + j) ≤ h ≤ min(s, j). (7.4)

Let us assume first � even, � = 2m. Let

fk = em+k.

(fk)−m≤k≤m is also an orthonormal basis with respect to the SU(2)-invariant scalar product (7.2) and adapted to T.
The maximal torus of SU(2) × SU(2) is T×T. As

(tθ1, tθ2)fk1 ⊗ fk2 = ei(2k1θ1+2k2θ2)︸ ︷︷ ︸
χk1,k2 (tθ1 ,tθ2 )

fk1 ⊗ fk2 , −m ≤ k1, k2 ≤ m,

H� ⊗H� is simple with respect to T×T and the basis (fk1 ⊗fk2)k1,k2 is adapted to the maximal torus above. Moreover
if fk1 ⊗fk2 is the eigenvector of the character χk1,k2 of T×T, then f−k1 ⊗f−k2 is an eigenvector of χk1,k2

. We proceed
now to check condition (5.3) in view of taking advantage of Proposition 5.5. We must show that for some m1 > 0,
m2 > 0∣∣〈(g1, g2)(fm1 ⊗ fm2), fr1 ⊗ fr2

〉∣∣2
�= ∣∣〈(g1, g2)(fm1 ⊗ fm2), f−r1 ⊗ f−r2

〉∣∣2 for every − m ≤ r1, r2 ≤ m (7.5)

for some g1, g2 ∈ SU(2). We have∣∣〈(g1, g2)(fm1 ⊗ fm2), fr1 ⊗ fr2

〉∣∣2 = ∣∣〈g1fm1, fr1〉
∣∣2∣∣〈g2fm2, fr2〉

∣∣2
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and taking into account (7.3)∣∣〈gfk, fr 〉
∣∣2 = ∣∣〈gek+m, er+m〉∣∣2 = P �

k+m,r+m

(|a|, |b|)
so that, denoting by a1, b1 and a2, b2 the coordinates of g1 and g2 in the representation (6.1),∣∣〈(g1, g2)(fm1 ⊗ fm2), fr1 ⊗ fr2

〉∣∣2 = P2m
m+m1,m+r1

(|a1|, |b1|
)
P2m

m+m2,m+r2

(|a2|, |b2|
)

(7.6)

and ∣∣〈(g1, g2)(fm1 ⊗ fm2), f−r1 ⊗ f−r2

〉∣∣2 = P2m
m+m1,m−r1

(|a1|, |b1|
)
P2m

m+m2,m−r2

(|a2|, |b2|
)
. (7.7)

In order to conclude we must prove that for some values of a1, b1, a2, b2 with |a1|2 + |b1|2 = |a2|2 + |b2|2 = 1 the
right-hand sides in (7.6) and (7.7) are different. For every r �= 0 if the two polynomials P�

m+mi,m−r and P�
m+mi,m+r ,

both homogeneous of degree 4m, coincide on the circle |a|2 + |b|2 = 1, they would coincide on the whole of R2. In
order to see that this cannot happen we look at the monomial that exhibits the highest exponent in |a| and see that the
degrees are different. Recalling (7.4), we must show that the two values

h1 = min(m + mi,m + r) and h2 = min(m + mi,m − r)

are different. This is done by checking directly all possibilities: as mi > 0, then

h1 h2

0 < r ≤ mi m + mi m − r

mi < r ≤ m m + r m − r

−mi ≤ r < 0 m + r m + mi

−m ≤ r < −mi m − r m + r

Therefore, unless r = 0 of course, h1 �= h2 in all possible occurrences. Therefore the two polynomials at the right-hand
side of (7.6) and (7.7) are different if one at least between r1 and r2 is different from 0.

Along the same lines goes the proof for � odd. Thanks to Proposition 5.5, we have

Theorem 7.1. Let V ⊂ L2(S3) a irreducible G-module of dimension > 1. Then every self-conjugated basis of V

associated to a maximal torus is mixing.

8. Some open questions

This paper gives some precisions about properties of the Fourier coefficients of an invariant random field and clarifies
some important points in the direction of characterizing the random fields on a homogeneous space whose coefficients
in their Fourier development are independent (or at least that can be simulated through the generation of independent
r.v.’s) on the track of [1] and [2].

However it also points out some natural questions that remain open to conjecture. We make here a tentative list.
(1) In order to prove Gaussianity of such random fields we used the Skitovitch–Darmois theorem whose application

in turn requires, in many cases of interest, to ascertain that Assumption 4.3 is verified. But we have also remarked
that Gaussianity still holds in situations where Assumption 4.3 is not true (see Remark 5.1(b)). So one might think
of taking advantage of a characterization of Gaussianity different form the one that is provided by the Skitovitch–
Darmois theorem, and thus be ridden of Assumption 4.3.

(2) It is nevertheless of interest also to investigate the validity of Assumption 4.3. Is it always true (at least for
self-conjugated G-modules of dimension > 3)? We do not know of counterexamples so far.

(3) In a less ambitious perspective, is Assumption 4.3 true for the groups SO(d) and for the spheres Sd−1, d ≥ 5?
For which classes of orthonormal bases? Intuition should point towards the positive: as these structures contain SO(3)

and SO(4) for which the result is proved. Remark that one possible way of attacking this problem is through an
extension of Proposition 6.3: does its statement remain true if the assumption of invariance with respect to the group
SO(d) is replaced by invariance with respect to a subgroup of SO(d) that acts irreducibly on Rd?
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