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Abstract. We consider the q-TASEP that is a q-deformation of the totally asymmetric simple exclusion process (TASEP) on Z

for q ∈ [0,1) where the jump rates depend on the gap to the next particle. For step initial condition, we prove that the current
fluctuation of q-TASEP at time τ is of order τ1/3 and asymptotically distributed as the GUE Tracy–Widom distribution, which
confirms the KPZ scaling theory conjecture.

Résumé. On considère le modèle du q-TASEP, qui est une modification du processus d’exclusion totalement asymétrique (TASEP)
sur Z. Le taux des sauts d’une particule dépend de la distance avec la particule à sa droite et d’un paramètre q ∈ [0,1). Dans cet
article on considère la condition initiale où Z− est completement occupé par les particules. On montre que les fluctuations du
courant au temps τ sont d’ordre τ1/3 et la distribution asymptotique est la distribution de Tracy–Widom GUE. Ce résultat confirme
la conjecture KPZ.
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1. Introduction

The totally asymmetric simple exclusion process (TASEP) is the simplest non-reversible stochastic interacting particle
system on Z. Particles try to jump to the right by 1 according to independent Poisson processes with rate 1 and the
jumps are allowed only if the target site is empty (due to the exclusion constraint). There has been a lot of studies
around this model (and its discrete time versions). For instance, the limiting process for particles positions or for the
current fluctuations are given by the Airy processes. This was obtained using determinantal structures of correlation
functions [7,8,13,16].

The q-TASEP is a generalization of TASEP defined as follows. For a parameter q ∈ [0,1), the jumps of the particles
on Z are still independent of each other, but the jump rate is 1 − qgap where the gap is the number of consecutive
vacant sites next to the particle on its right. In the q = 0 case, q-TASEP reduces to TASEP.

As a natural generalization of TASEP, the q-TASEP also belongs to the Kardar–Parisi–Zhang (KPZ) universality
class, hence by the universality conjecture it is expected to show the characteristic asymptotic fluctuation statistics of
the KPZ class. Indeed, in Theorem 2.4 we prove that the large time current fluctuations are governed by the (GUE)
Tracy–Widom distribution. This confirms the KPZ scaling theory conjecture, see also [18].

The q-TASEP was first introduced by Borodin and Corwin in [3]. They investigated the q-Whittaker 2d growth
model which is an interacting particle system in two space dimensions on the space of Gelfand–Tsetlin patterns. The
q-TASEP is a Markovian subsystem of this two-dimensional process. The key idea to study the q-Whittaker 2d growth
model was to exploit its connection to the q-Whittaker process. This connection was first observed by O’Connell in
[15] for a special case which can be obtained from q ∈ [0,1) in the q → 1 limit in a rather careful way as explained
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in [3]. The Macdonald process is above the q-Whittaker process in the algebraic hierarchy, hence from the study of
Macdonald processes, explicit formulas could be derived for expectations of relevant observables of the q-TASEP for
a special class of initial conditions. In particular for step initial condition, a Fredholm determinant formula was given
by Borodin, Corwin and Ferrari in [4] for the q-Laplace transform of the particle position which is the starting point
of the asymptotic analysis performed in this paper and it is cited as Theorem 4.2 below.

The totally asymmetric zero range process with a special choice of rate function which is also known as q-TAZRP
was first introduced by Sasamoto and Wadati in [17]. The duality of q-TASEP and q-TAZRP was proved in [6] and
as a consequence, joint moment formulas for multiple particle positions were obtained for q-TASEP however they
are not of Fredholm determinant form. An explicit formula for the transition probabilities of q-TAZRP with a finite
number of particles was recently found in two different ways: in [5] by using the spectral theory for the q-Boson
particle system and in [14] by using the Bethe ansatz. In these two papers, the distribution of the left-most particle’s
position after a fixed time for general initial condition was also characterized. In [2], two natural discrete time versions
of q-TASEP were introduced and Fredholm determinant expressions were proved for the q-Laplace transform of the
particle positions. A further extension of q-TASEP appears in [10], the q-PushASEP which is yet another integrable
particle system, a q-generalization of the PushASEP studied in [7]. An explicit contour integral formula was derived
for the joint moment of particle positions, but it is not completely clear how to turn it into a Fredholm determinant
expression even for a single position.

Finally, let us point out the technical issues of this paper which are new and were not present for in the asymptotic
analysis of the semi-discrete directed polymer in [4]. One difficulty lies in the choice of the contour for the Fredholm
determinant: it has to be a steep descent path for the asymptotic analysis but also be such that the extra residues coming
from the sine inverse can be controlled. The contours that we have chosen are shown on Figure 2. Further, the real
part of the function that gives asymptotically the main exponential contribution is periodic in the vertical direction.
The contour for the Fredholm determinant stays within one period, but the contour in the integral representation of
the kernel is vertical, and the convergence of this integral comes from the extra sine factor in the denominator of the
integrand.

The paper is organized as follows. Section 2 contains the main result of the paper with explanation. The behaviour
of the hydrodynamic limit of q-TASEP stated in Proposition 2.3 is verified in Section 3. Theorem 4.2, the starting
formula of our investigations with the necessary notation is given in Section 4. The main result of the paper follows
from Theorem 4.2 in two steps: we prove in Section 5 that under proper scaling the q-Laplace transform converges
to the distribution function, and in Section 6 we show that the Fredholm determinant that appears in Theorem 4.2
converges to that of the Airy kernel. Section 7 is devoted to show that the KPZ scaling theory conjecture is satisfied
for q-TASEP.

2. Model and main result

We start with the definition of the q-TASEP with step initial condition and further notation. Let q ∈ (0,1). The
q-TASEP is a continuous time interacting particle system on Z that consists of the evolution of particles X(τ ) =
(XN(τ): N ∈ Z or N ∈N) for τ ≥ 0. The particles are numbered from right to left. Each particle XN(τ) jumps to the
right by 1 independently of the others with rate 1 − qXN−1(τ )−XN(τ)−1. The infinitesimal generator of the process is
given by

(Lf )(x) =
∑

k

(
1 − qxk−1−xk−1)(f (

xk
) − f (x)

)
, (2.1)

where x = (xN : N ∈ Z or N ∈ N) is a configuration of particles such that xN < xN−1 for all N and xk is the
configuration where xk is increased by one. Note that this only happens when the position xk−1 is not at xk + 1
and that the dynamics preserves the order of particles. Step initial condition means that the particles are ini-
tially filling the negative integers, i.e., there are only particles with labels N = 1,2, . . . and they are initially at
XN(0) = −N .
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Definition 2.1. Fix q ∈ (0,1). The infinite q-Pochhammer symbol is given by

(a;q)∞ =
∞∏

k=0

(
1 − aqk

)
(2.2)

for any a ∈ C. Let

�q(z) = (1 − q)1−z (q;q)∞
(qz;q)∞

(2.3)

be the q-gamma function. Then the q-digamma function is defined by

Ψq(z) = ∂

∂z
log�q(z). (2.4)

Definition 2.2. Let q ∈ (0,1) be fixed and choose a parameter θ > 0. To these values, we associate the parame-
ters

κ ≡ κ(q, θ) = Ψ ′
q(θ)

(logq)2qθ
, (2.5)

f ≡ f (q, θ) = Ψ ′
q(θ)

(logq)2
− Ψq(θ)

logq
− log(1 − q)

logq
, (2.6)

χ ≡ χ(q, θ) = Ψ ′
q(θ) logq − Ψ ′′

q (θ)

2
. (2.7)

The parameters f and κ describe the global behaviour of the particle system as explained below. In turns out that
explicit formulas are available for them only in terms of the parameter θ which appears naturally in the asymptotic
analysis of the problem. To keep the notation simple, we will not write the (q, θ) dependence of κ , f and χ in the
sequel. For κ and f , there are the following series representations

κ =
∞∑

k=0

qk

(1 − qθ+k)2
, f =

∞∑
k=0

q2θ+2k

(1 − qθ+k)2
. (2.8)

The macroscopic picture of q-TASEP is as follows. Due to particle conservation, under hydrodynamic limit, one
expects that the (macroscopic) particle density ρ(t, x) satisfies the PDE

∂

∂t
ρ(t, x) + ∂

∂x
j (ρ)(t, x) = 0 (2.9)

with initial condition ρ(0, x) = 1(x < 0) where j (ρ) is the particle current at density ρ.
It was shown in [3] that in the stationary distribution of the q-TASEP dynamics, gaps between consecutive particles

are i.i.d. q-geometric random variables with some parameter α ∈ [0,1), i.e. with distribution

P(gap = k) = (α;q)∞
αk

(q;q)k
, k = 0,1,2, . . . . (2.10)

The local stationarity assumption is that the gaps between particles have locally q-geometric distribution with some
parameter α. Under this assumption, the macroscopic behaviour of q-TASEP can be deduced from the PDE (2.9) as
follows.
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Proposition 2.3.

1. Under the local stationarity assumption where the parameter of the q-geometric distribution is α, the particle
density ρ and the particle current j (ρ) are given by

ρ = logq

logq + log(1 − q) + Ψq(logq α)
, j (ρ) = αρ. (2.11)

2. The function

ρ

(
t,

f − 1

κ
t

)
= logq

logq + log(1 − q) + Ψq(θ)
(2.12)

solves the PDE (2.9) with the corresponding j (ρ) given by (2.11) and with κ and f defined in (2.5)–(2.6) under-
stood as functions of θ .

3. Fix a θ > 0 and assuming local stationarity. Then (2.11) with α = qθ gives the local particle density ρ at time τ

and position (f (θ) − 1)τ/κ(θ) as well as the particle current j (ρ) at position (f (θ) − 1)τ/κ(θ).
4. Consequently, under the assumption of local stationarity, the law of large numbers

XN(τ = κN)

N
� f − 1 (2.13)

holds for the position of the N th particle after time κN as N → ∞.

In order to visualize the macroscopic behaviour predicted by (2.13), consider the evolution of the points (XN(τ)+
N,N) in the coordinate system. For τ = 0, these points all lie on the positive half of the vertical axis. For τ large
and after rescaling the picture by τ , the points are macroscopically around (f/κ,1/κ) which is a curve that can be
parameterized by θ and it is shown on Figure 1. It can easily be seen from the series representation of κ and f (2.8)
that the curve touches the axes at (1,0) for θ → 0 and at (0,1−q) for θ → ∞. It is clear that the right-most q-TASEP
particle has speed 1 hence the touching point (1,0), whereas it follows from the above calculation that the left-most
particle which has already started moving after time τ is around the position −(1 − q)τ .

It is also possible to parameterize the macroscopic position by κ . Indeed, from the series representation for κ given
in (2.8) one sees that θ 	→ κ(θ) is strictly decreasing from ∞ to 1/(1 − q) as θ ranges from 0 to ∞. Hence the inverse
function θ(κ) is well-defined however it is not explicit. The present parametrization is also natural, because θ is the
position of the double critical point of the function that gives the main contribution in the exponent of the correlation
kernel as seen in Section 6.

The main objective of the present paper is the study of the fluctuations of particle XN around the macroscopic (de-
terministic) behaviour given by (2.13). By KPZ universality, one expects that these fluctuations are of order O(N1/3)

and have Tracy–Widom statistics (see the review [11]). Further, at a given time τ = κN , particles are correlated over a

Fig. 1. The macroscopic shape of the positions of q-TASEP particles for q = 0.6 which is the parametric curve (f/κ,1/κ).
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scale O(N2/3) with the Airy2 process as limit process. The same limit process is expected to arise [9] for the position
of a tagged particle XN at times of order N2/3 away from κN (as it was shown for TASEP in [12]). More precisely,
for any c ∈R consider the scaling

τ(N, c) = κN + cq−θN2/3, (2.14)

p(N, c) = (f − 1)N + cN2/3 − c2 (logq)3

4χ
N1/3 (2.15)

with κ , f and χ given in Definition 2.2. p(N, c) is the macroscopic approximation of the particle position, obtained
as follows. Let θ̃ be such that τ(N, c) = κ(θ̃)N . Then p(N, c) = (f (θ̃) − 1)N +O(1). The rescaled tagged particle
position given by

c 	→ ξN(c) = XN(τ(N, c)) − p(N, c)

χ1/3(logq)−1N1/3
(2.16)

is expected to converge to the Airy2 process. Our main result is the convergence of one-point distribution of ξN to the
Tracy–Widom distribution function [19].

Theorem 2.4. Let q ∈ (0,1) and θ > 0 be fixed such that qθ ≤ 1/2. For any c, x ∈R and with the notation above, the
rescaled position ξN converges in distribution, i.e.,

lim
N→∞ P(ξN < x) = FGUE(x), (2.17)

where FGUE is the GUE Tracy–Widom distribution function.

Remark 2.5. We believe that the condition qθ ≤ 1/2 is technical and that Theorem 2.4 holds for any θ > 0. This tech-
nical restriction comes from the difficulty of controlling the simple poles arising from the sine inverse in representation
of the kernel and at the same time to prove that one has a steep descent path. It could be possible to obtain Tracy–
Widom asymptotics for small values of θ using the small contour representation Theorem 3.2.11 of [3] instead of the
infinite contour representation Theorem 4.13 of [4]. However this other representation can not be used to analyze the
whole qθ > 1/2 case, so we do not pursue in this direction.

Remark 2.6. One can choose the time τ of the q-TASEP process to be the free parameter that tends to ∞. It means
that (2.16) can be rewritten as

XN(τ,c)(τ ) = p̃(τ, c) + χ1/3

κ1/3 logq
ξτ τ

1/3 (2.18)

with

N(τ, c) = τ

κ
− c

τ 2/3

κ5/3qθ
+ 2c2

3κ7/3q2θ
τ 1/3, (2.19)

p̃(τ, c) = f − 1

κ
τ + c

(
1

κ2/3
− f − 1

κ5/3qθ

)
τ 2/3 − c2

(
(logq)3

4χκ1/3
+ 2

3κ4/3qθ
+ 2(f − 1)

3κ7/3q2θ

)
τ 1/3, (2.20)

where ξτ has also asymptotically GUE Tracy–Widom distribution. In order to keep the notation simpler, we do not
write integer part in (2.19).

Remark 2.7. Theorem 2.4 can be interpreted as a statement about the current fluctuation as follows. Let H(t, y)

be the number of particles on the right of position y at time t . Then the event {XN(t) ≤ y} is clearly the same as
{H(t, y) < N}. Therefore the result of Theorem 2.4 is equivalent with

lim
τ→∞ P

(
H

(
τ, p̃(τ, c) + χ1/3

κ1/3 logq
xτ 1/3

)
< N(τ, c)

)
= FGUE(x). (2.21)
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One can associate the height profile h(t, y) to the q-TASEP in the way as usual for TASEP as follows. The height
difference h(t, y + 1) − h(t, y) is either −1 or +1 if there is a particle at position y at time t or not respectively. The
initial profile is set to be h(0, y) = |y|. Then the relation

h(t, y) = 2H(t, y + 1) + y (2.22)

clearly holds and the above statement (2.21) along with Theorem 2.9 below can easily be rephrased in terms of the
height profile h(t, y).

Next we show that the KPZ scaling theory conjecture is satisfied for q-TASEP. To state the scaling conjecture,
we introduce the notations and follow the formalization of [18]. Suppose that η ∈ {−1,1}Z is a configuration of the
system where the component ηj = hj+1 − hj can be understood as the height difference between positions j + 1 and
j in a growth model of a surface. The Markov generator of the process is given by

Lf (η) =
∑
j∈Z

cj,j+1(η)
(
f

(
ηj,j+1) − f (η)

)
, (2.23)

where ηj,j+1 is the configuration obtained from η by interchanging the slopes at j and j + 1. Wedge initial condition
is imposed, i.e. h(j,0) = |j |. It is assumed that there is a family of spatially ergodic and time stationary measures μ

of the process η(t) labelled by the average slope

 = lim
a→∞

1

2a + 1

∑
|j |≤a

ηj . (2.24)

The average steady state current and the integrated covariance of the conserved slope field are given by

j () = μ

(
c0,1(η)(η0 − η1)

)
, A() =

∑
j∈Z

(
μ(η0ηj ) − μ(η0)

2). (2.25)

The deterministic profile function of the surface can be computed by the Legendre transform φ(y) = sup||≤1(y −
j ()). Then

Conjecture 2.8 (KPZ class, [18]). Suppose that φ is twice differentiable at y with φ′′(y) �= 0 and set  = φ′(y) for
|| < 1. If A() < ∞ and λ() = −j ′′() �= 0, then

lim
t→∞ P

(
h(yt, t) − tφ(y) ≥ −

(
−1

2
λA2

)1/3

st1/3
)

= FGUE(s). (2.26)

The following theorem is a consequence of Theorem 2.4. It provides a form of Theorem 2.4 in terms of the current
fluctuations and it confirms Conjecture 2.8. The result is proved in Section 7.

Theorem 2.9. Consider the current H(t, y) defined in Remark 2.7 and let ξτ be defined through

H

(
τ,

f − 1

κ
τ

)
= τ

κ
+ 1

qθκ − f + 1

χ1/3

κ1/3 logq
ξτ τ

1/3. (2.27)

If qθ ≤ 1/2, then

lim
τ→∞ P(ξτ < x) = FGUE(x). (2.28)

Further, the convergence (2.28) confirms the KPZ scaling theory conjecture for q-TASEP.
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Corollary 2.10. The expressions in Proposition 2.3 for the local particle density after time τ at position (f −1)τ/κ is
confirmed for qθ ≤ 1/2 without assuming local stationarity. In particular, the particle density after time τ at position
pτ for p ∈ (−(1 − q),0] is recovered. Under the local stationarity assumption, the current through the origin is the
same as the one obtained at the end of Chapter 3 in [3].

Remark 2.11. The condition qθ ≤ 1/2 is equivalent to θ ≥ logq(1/2) and the function θ 	→ f (q, θ) is decreasing.
But for θ = logq(1/2), f − 1 = ∑∞

k=1 q2k/(2 − qk)2 ≥ 0 for any q ∈ (0,1). Therefore, for any q ∈ (0,1), for the θ

given by (f − 1)/κ = p, the condition qθ ≤ 1/2 holds for all p ≤ 0. However we expect Corollary 2.10 to hold for
any p ∈ (−(1 − q),1).

3. Hydrodynamic limit

The goal of the present section is to show that under the local stationarity assumption, the law of large numbers (2.13)
holds for the particle positions. In particular, we give the proof of Proposition 2.3 below. The law of large numbers
(2.13) also follows from Theorem 2.4, but we give a direct argument here without the whole asymptotic analysis of
the problem.

Proof of Proposition 2.3.

1. If the gaps between particles have q-geometric distribution with parameter α given in (2.10), then under the local
stationarity assumption, the particle density is given by

ρ = 1

1 + E(gap)
. (3.1)

The expectation above can be computed as follows:

E(gap) = (α;q)∞α
d

dα

∞∑
k=0

αk

(q;q)k
= (α;q)∞α

d

dα

1

(α;q)∞
= α

∞∑
k=0

qk

1 − αqk
. (3.2)

Using the series representation of the q-digamma function (6.20) on the right-hand side of (3.2) and substituting it
into (3.1) leads to ρ in (2.11).

The particle current in local stationarity is the product of the particle density and the expected rate of jump. The
latter is equal to

E
(
1 − qgap) = (α;q)∞

∞∑
k=0

(
1 − qk

) αk

(q;q)k
= α(α;q)∞

∞∑
k=1

αk−1

(q;q)k−1
= α. (3.3)

The formula for the current j (ρ) in (2.11) now follows.
2. From the derivatives of the two sides of (2.12) with respect to t and θ , one can express

ρt

(
t,

f − 1

κ
t

)
= 1

t

f − 1

κ

(
d

dθ

f − 1

κ

)−1 Ψ ′
q(θ) logq

(logq + log(1 − q) + Ψq(θ))2
. (3.4)

Using the fact that the corresponding j (ρ) is given by (2.11), a similar calculation as above shows that

jx

(
t,

f − 1

κ
t

)
= 1

t

(
d

dθ

f − 1

κ

)−1(
qθ logq

logq + log(1 − q) + Ψq(θ)
− qθΨ ′

q(θ) logq

(logq + log(1 − q) + Ψq(θ))2

)
. (3.5)

Finally, (2.5)–(2.6) imply that the sum of (3.4) and (3.5) is 0.
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3. Is follows immediately from the previous part of the proposition.
4. What remains to show is that the number of particles to the right of position (f − 1)τ/κ after time τ is about τ/κ ,

i.e. the integral of the particle density between (f − 1)/κ and 1 is 1/κ . By parameterizing the integration interval
by θ̃ that ranges from θ to 0, the integral can be written as∫ θ

0
− logq

logq + log(1 − q) + Ψq(θ̃)

(
d

dθ̃

f − 1

κ

)
(θ̃ )dθ̃ . (3.6)

By (7.5) and (7.2), the negative ratio in the integrand of (3.6) can be rewritten as the ratio of the derivatives on the
left-hand side of (7.2) taken at θ̃ . This yields that the integral (3.6) is equal to 1/κ as required. �

4. Finite time formula

In order to introduce the kernel that appears in our finite time formula, we define some integration contours in the
complex plane. Some of them are also shown on Figure 2.

Definition 4.1 (Contours). Let us fix a q ∈ (0,1) and a θ > 0. For a ϕ ∈ (0,π/2], we define the contour C̃ϕ = {qθ +
eiϕ sgn(y)|y|: y ∈ R}. Let Cϕ be its image under the map x 	→ logq x, that is, Cϕ = {logq(qθ + eiϕ sgn(y)|y|): y ∈ R}.
See Figure 2.

For every w ∈ C̃ϕ , define the contour D̃w that goes by straight lines from R − i∞ to R − id , to 1/2 − id , to
1/2 + id , to R + id and to R + i∞ where R,d > 0 are such that the following holds: let b = π/4 − ϕ/2, then
arg(w(qs − 1)) ∈ (π/2 + b,3π/2 − b); and qsw, s ∈ D̃w stays to the left of C̃ϕ .

Let σ > 0 be a small but fixed number, its value to be chosen later. For W ∈ Cϕ , let d > 0 sufficiently small and define
the contour DW as the previous contour shifted by W . More precisely, DW consists of straight lines from θ + σ − i∞
to θ + σ + i(Im(W) − d), to W + 1/2 + i(Im(W) − d), to W + 1/2 + i(Im(W) + d), to θ + σ + i(Im(W) + d) and
to θ + σ + i∞ such that DW does not intersect Cϕ .

The starting formula for the calculations of the present paper is a consequence of Theorem 4.13 in [4].

Theorem 4.2. Let ζ ∈C \R+, then

E
(

1

(ζqXN(τ)+N ;q)∞

)
= det(1 − K̃ζ )L2(C̃ϕ) (4.1)

for any ϕ ∈ (0,π/4). The operator K̃ζ is defined in terms of its integral kernel

K̃ζ

(
w,w′) = 1

2πi

∫
D̃w

ds�(−s)�(1 + s)(−ζ )sgw,w′
(
qs

)
, (4.2)

Fig. 2. The integration contours of the kernels. The right-hand side is the image of the left-hand side under the map x 	→ logq x: Cϕ = logq C̃ϕ ; the

circle around the origin on the left-hand side is the inverse image of the vertical line of DW with the small modifications at θ and at qθ ; the images
of the residues are also indicated.
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where

gw,w′
(
qs

) = exp(τw(qs − 1))

qsw − w′

(
(qsw;q)∞
(w;q)∞

)N

(4.3)

and the contours C̃ϕ and D̃w are as in Definition 4.1.

To see how Theorem 4.2 above follows from Theorem 4.13 of [4], the key ingredient is the following proposition
(see Remark 3.3.4 in [3]). The Macdonald measure with specialization (1, . . . ,1; τ) is supported on partitions (λ1 ≥
λ2 ≥ · · · ≥ λN ≥ 0) of length at most N if the number of 1s in the specialization is N .

Proposition 4.3. Let q ∈ [0,1), τ > 0 and N integer be fixed. The marginal λN under the Macdonald measure with
parameters q and t = 0 under the specialization (1, . . . ,1; τ) where the number of 1s in the specialization is N equals
in distribution to XN(τ) + N under the q-TASEP law.

Proof of Theorem 4.2. Starting from Theorem 4.13 in [4] with ãi = 1 for i = 1, . . . ,N , we can apply Proposition 4.3
to get Theorem 4.2. �

For later use, we first do the following change of variables in (4.1)–(4.2):

w = qW , w′ = qW ′
, s + W = Z. (4.4)

We obtain the kernel

K̂ζ

(
W,W ′) = qW logq

2πi

∫
DW

dZ

qZ − qW ′
π

sin(π(W − Z))

(−ζ )Z exp(τqZ + N log(qZ;q)∞)

(−ζ )W exp(τqW + N log(qW ;q)∞)
, (4.5)

where the contour for W and W ′ is now Cϕ for some ϕ ∈ (0,π/4) and the Z-contour can be chosen to be DW as in
Definition 4.1, since we do not cross any singularity of the integrand and the Z-integral remains bounded due to the
exponential decay of the sine inverse along a vertical line.

Note that DW can be replaced by a vertical line and sufficiently small circles around the residues coming from the
sine at W + 1,W + 2, . . . ,W + kW where kW is the number of residues. More precisely, for fixed but arbitrarily small
σ > 0 and for each W ∈ Cϕ , the corresponding vertical line will be either θ + σ + iR or θ + 2σ + iR such that it is at
distance at least σ/2 from the closest pole of the sine inverse. It is also possible to modify the vertical line in a small
neighbourhood of θ and replace it by the wedge {θ + eiϕ sgn(y)|y|: y ∈ [−δ, δ]}. We will refer also to this new contour
as DW which now consists of the vertical line perturbed at θ and the small circles.

The contours Cϕ and DW for the kernel K̂ζ are on the right-hand side of Figure 2. The left-hand side of the figure
is the inverse image of these contours under the map x 	→ logq x. After transforming the Fredholm determinant to
the contours shown on the right-hand side of Figure 2, we will mostly work with these variables, but a part of the
argument can be seen more easily in terms of the variables on the left-hand side of the figure.

5. Convergence of q-Laplace transform

Let us choose

ζ = −q−f N−cN2/3+βxN1/3/logq ∈ C \R+, (5.1)

where

βx = c2 (logq)4

4χ
− χ1/3x. (5.2)
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With the definition (2.16) and the choice of ζ above, the left-hand side of (4.1) becomes

E
(

1

(ζqXN(τ)+N ;q)∞

)
= E

(
1

(−q(χ1/3/logq)N1/3(ξN−x);q)∞

)
. (5.3)

The function which appears on the right-hand side under the expectation above, has the following asymptotic property.

Lemma 5.1.

1. The function

ft (y) = 1

(−qyt ;q)∞
(5.4)

is increasing for all t > 0 and it is decreasing for all t < 0.
2. For each δ > 0, ft (y) → 1(y > 0) converges uniformly on y ∈ R \ [−δ, δ] as t → ∞.

Proof. By the definition of the q-Pochhammer symbol (2.2), the factor 1
1+qyt+k increases in y for positive values of t

and decreases for negative values of t for each k. This proves the monotonicity.
The factor 1

1+qyt+k is uniformly close to 1 or to 0 on y ∈ (δ,∞) or on y ∈ (−∞,−δ) respectively for each k if t is
large enough. Hence one can easily get the uniform convergence as stated in the lemma. �

We can use the next elementary probability lemma.

Lemma 5.2 (Lemma 4.1.39 of [3]). Consider a sequence of functions (fn)n≥1 mapping R → [0,1] such that for each
n, fn(y) is strictly decreasing in y with a limit of 1 at y = −∞ and 0 at y = ∞, and for each δ > 0, on R \ [−δ, δ],
fn converges uniformly to 1(y < 0). Consider a sequence of random variables Xn such that for each r ∈R,

E
[
fn(Xn − r)

] → p(r) (5.5)

and assume that p(r) is a continuous probability distribution function. Then Xn converges weakly in distribution to a
random variable X which is distributed according to P(X < r) = p(r).

Proof of Theorem 2.4. The sequence of functions

fN(y) = 1

(−q(χ1/3/logq)N1/3y;q)∞

satisfies the requirements of Lemma 5.2 by Lemma 5.1 since logq < 0. By Theorem 6.1 below and the equation (4.1),
(5.3) also converges to FGUE(x) the Tracy–Widom distribution function, hence we can use Lemma 5.2 to conclude
that the sequence ξN converges in law to the Tracy–Widom distribution. �

6. Asymptotic analysis

This section is devoted to prove the next convergence result for Fredholm determinants which is the key fact for the
Tracy–Widom limit of the current fluctuation of q-TASEP.

Theorem 6.1. Let x ∈R be fixed and choose ζ according to (5.1). Then

det(1 − K̃ζ )L2(C̃ϕ) → FGUE(x) (6.1)

as N → ∞.
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If we substitute (2.14) and (5.1) into (4.5), then

det(1 − K̃ζ )L2(C̃ϕ) = det(1 − Kx)L2(Cϕ), (6.2)

where

Kx

(
W,W ′) = qW logq

2πi

∫
DW

dZ

qZ − qW ′
π

sin
(
π(W − Z)

) eNf0(Z)+N2/3f1(Z)+N1/3f2(Z)

eNf0(W)+N2/3f1(W)+N1/3f2(W)
(6.3)

with

f0(Z) = −f (logq)Z + κqZ + log
(
qZ;q)

∞, (6.4)

f1(Z) = −c(logq)Z + cqZ−θ , (6.5)

f2(Z) = βxZ (6.6)

and βx as in (5.2). Then Theorem 6.1 is proved via the following series of propositions.

Proposition 6.2. For fixed q ∈ (0,1), θ > 0 and N large enough, the contour Cϕ with ϕ ∈ (0,π/4) for the kernel Kx

can be extended to any ϕ ∈ (0,π/2) without effecting the Fredholm determinant det(1 − Kx)L2(Cϕ).

Proposition 6.3. For any fixed δ > 0 and ε > 0 small enough, there is an N0 such that∣∣det(1 − Kx)L2(Cϕ) − det(1 − Kx,δ)L2(Cδ
ϕ)

∣∣ < ε (6.7)

for all N > N0 where Cδ
ϕ = Cϕ ∩ {w: |w − θ | ≤ δ} and

Kx,δ

(
W,W ′) = qW logq

2πi

∫
Dδ

W

dZ

qZ − qW ′
π

sin(π(W − Z))

eNf0(Z)+N2/3f1(Z)+N1/3f2(Z)

eNf0(W)+N2/3f1(W)+N1/3f2(W)
(6.8)

and Dδ
W =DW ∩ {z: |z − θ | ≤ δ}.

It follows immediately from the Cauchy theorem that in the Fredholm determinant det(1 − Kx)L2(Cδ
ϕ), the contour

Cδ
ϕ can be deformed to {θ + ei(π−ϕ̃) sgn(y)|y|, y ∈ [−δ, δ]} with another angle ϕ̃ close to π/2 chosen such that the

two contours have the same endpoints. With a slight abuse of notation, we also use ϕ for the new angle ϕ̃. Similarly,
the integration contour for Z in (6.8) can be deformed without changing the integral to the contour Dδ

ϕ = {θ +
eiϕ sgn(t)|t |: t ∈ [−δ, δ]} if σ in Definition 4.1 is chosen such that the endpoints of the two contours are the same.

Let us consider the rescaled kernel

KN
x,δ

(
w,w′) = N−1/3Kx,δN1/3

(
θ + wN−1/3, θ + w′N−1/3) (6.9)

with Dδ
W replaced by Dδ

ϕ in the definition (6.8) of the kernel Kx,δN1/3 . Let us also define the contour Cϕ,L =
{ei(π−ϕ) sgn(y)|y|, y ∈ [−L,L]} for any L > 0 including also L = ∞ in which case we mean the infinite contour
with y ∈ R in the definition. Note that by the above deformation argument and by simple rescaling,

det(1 − Kx,δ)L2(Cδ
ϕ) = det

(
1 − KN

x,δ

)
L2(C

ϕ,δN1/3 )
. (6.10)

Therefore, the proof of Theorem 6.1 is a consequence of the following assertions which are proved in subsequent
sections.
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Proposition 6.4. Let ϕ ∈ (0,π/2) be sufficiently close to π/2 and let ε > 0 be fixed. There is a small δ > 0 and an
N0 such that for any N > N0,∣∣det

(
1 − KN

x,δ

)
L2(C

ϕ,δN1/3 )
− det

(
1 − K ′

x,δN1/3

)
L2(C

ϕ,δN1/3 )

∣∣ < ε, (6.11)

where

K ′
x,L

(
w,w′) = 1

2πi

∫
Dϕ,L

dz

(z − w′)(w − z)

eχz3/3+c(logq)2z2/2+βxz

eχw3/3+c(logq)2w2/2+βxw
(6.12)

on the contour Dϕ,L = {eiϕ sgn(y)|y|: y ∈ [−L,L]} for L > 0 including also L = ∞ in which case we mean the infinite
contour with y ∈ R in the definition and the corresponding kernel.

Proposition 6.5. With the notation as above,

det
(
1 − K ′

x,δN1/3

)
L2(C

ϕ,δN1/3 )
→ det

(
1 − K ′

x,∞
)
L2(Cϕ,∞)

(6.13)

as N → ∞.

Proposition 6.6. We can rewrite the Fredholm determinant

det
(
1 − K ′

x,∞
)
L2(Cϕ,∞)

= det(1 − KAi,x)L2(R+) = FGUE(x), (6.14)

where

KAi,x(a, b) =
∫ ∞

0
dλAi(x + a)Ai(x + b) (6.15)

and FGUE is the GUE Tracy–Widom distribution function.

Remark 6.7. The reason for extending the Fredholm determinant formula for ϕ ∈ (0,π/2) in Proposition 6.2 is that
for ϕ < π/4 the contour Cϕ is not steep descent for −Re(f0). Not only the proof of Lemma 6.8 breaks down, but it
happens in general for ϕ < π/4 that there are higher values of −Re(f0) along Cϕ than at θ .

6.1. Steep descent contours

Using the values of κ , f and χ from Definition 2.2 and the formulas from Definition 2.1, one can rewrite the deriva-
tives of the functions f0, f1 and f2 in terms of q-digamma functions. One has the following Taylor expansions of
these functions around θ :

f0(Z) = f0(θ) + χ

3
(Z − θ)3 +O

(
(Z − θ)4), (6.16)

f1(Z) = f1(θ) + c(logq)2

2
(Z − θ)2 +O

(
(Z − θ)3), (6.17)

f2(Z) = f2(θ) + βx(Z − θ). (6.18)

For the asymptotic analysis, the behaviour of the function Re(f0) is crucial, since it governs the leading term of
the exponent in the kernel, see (6.3). A contour plot of this function is shown on Figure 3. An interesting feature of
Re(f0) is that it is vertically periodic with period i2π/| logq|. As it can be seen on the figure, the imaginary part of a
point along the contour Cϕ remains bounded, therefore the convergence of the Fredholm determinant does not come
from the decay of the sine inverse but from that of the term qW in f0(W). On the other hand, because of the vertical
periodicity of Re(f0), to show the convergence of the integral in Z, we need to use the decay from the sine inverse.
A similar issue of periodicity does not appear in [4], hence it was not needed at the corresponding point of the analysis
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Fig. 3. The contour plot of the function Re(f0) and the integration contour Cϕ in thick black. The function Re(f0) is periodic in the vertical
direction, one period is shown. The steep descent property of Cϕ can be seen.

for the semi-discrete directed polymers to use the decay from the sine inverse. However this decay was used in the
derivation of the pre-asymptotic Laplace transform formula for the semi-discrete directed polymer partition function
in [4] and also in [3].

The derivative f ′
0 can be expressed as

f ′
0(Z) = Ψ ′

q(θ)

logq

(
qZ−θ − 1

) + Ψq(θ) − Ψq(Z). (6.19)

It follows by derivation from Definition 2.1 that the q-digamma function and its derivative have the useful series
representations

Ψq(Z) = − log(1 − q) + logq

∞∑
k=0

qZ+k

1 − qZ+k
, (6.20)

Ψ ′
q(Z) = (logq)2

∞∑
k=0

qZ+k

(1 − qZ+k)2
. (6.21)

Combining (6.19) with (6.20)–(6.21), we get

f ′
0(Z) = − logq

∞∑
k=0

q2k(qθ − qZ)2

(1 − qθ+k)2(1 − qZ+k)
. (6.22)

Note that the series (2.8) for κ and f also follow from (6.20)–(6.21).
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Lemma 6.8.

1. If ϕ ∈ [π/4,π/2] and qθ ≤ 1/2, then the contour Cϕ given in Definition 4.1 is steep descent for the function
−Re(f0) in the sense that −Re(f0) attains its maximum at θ and it is decreasing along Cϕ towards both ends.

2. The function Re(f0) is periodic on {θ + γ + it, t ∈ R} with period 2π/| logq|. The contour {θ + γ + it, t ∈
[π/ logq,−π/ logq]} for any γ ≥ 0 is steep descent for the function Re(f0) in the same sense as above.

Proof.

1. Consider W(s) = logq(qθ + eiϕs) for s ≥ 0 which parameterizes the part of Cϕ above the real axis. It is elementary
to see using (6.22) that

− d

ds
Re

(
f0

(
W(s)

)) = Re
∞∑

k=0

q2ke3iϕs2

(1 − qθ+k)2(1 − qθ+k − eiϕsqk)(qθ + eiϕs)

=
∞∑

k=0

q2ks2(−qks2 cosϕ + (1 − 2qθ+k)s cos 2ϕ + qθ (1 − qθ+k) cos 3ϕ)

(1 − qθ+k)2|1 − qθ+k − eiϕsqk|2|qθ + eiϕs|2 . (6.23)

It is clear that for the given choice of ϕ, q and θ , all the three terms in the numerator of (6.23) are non-positive,
hence the derivative (6.23) is non-positive (and negative except for s = 0). The proof for negative values of s is
similar.

2. Periodicity is obvious. Let Z(t) = θ + γ + it . Then it can be seen that

d

dt
Re

(
f0

(
Z(t)

)) = − sin(t logq) logq

∞∑
k=0

qθ+γ+k

(
1

(1 − qθ+k)2
− 1

|1 − qθ+γ+it+k|2
)

. (6.24)

As long as γ ≥ 0, the difference in parentheses on the right-hand side of (6.24) is also non-negative (and positive
except for t = 0). Keeping in mind that logq < 0, this proves the steep descent property. �

Remark 6.9. Remark that for ϕ = π/4, Lemma 6.8 holds for any θ > 0.

6.2. Contour deformation and localization

In this section, we prove Propositions 6.2 and 6.3 about the deformation and localization of the Fredholm determinant
of the kernel Kx . In both proofs we will parameterize the variable W as

W(s) = logq

(
qθ + eiϕ sgn(s)|s|), (6.25)

but we only focus on the values s ≥ 0 since the argument for s < 0 is the same by symmetry.

Lemma 6.10. The kernel Kx(W(s),W ′) is exponentially small in s. More precisely,∣∣Kx

(
W(s),W ′)∣∣ ≤ exp(−cNs) (6.26)

for some constant c > 0 which is uniformly positive if ϕ is bounded away from π/2 and for all N > N0 and s > s0
with some thresholds N0 and s0.

Proof. We use the form (6.3) for the kernel Kx(W,W ′) and we investigate its behaviour as W = W(s) for s large. By
(6.23), for any fixed ϕ ∈ [π/4,π/2), the derivative − d

ds
Re(f0(W(s))) converges to a negative constant

−cϕ = − cosϕ

∞∑
k=0

qk

(1 − qθ+k)2
. (6.27)
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Fig. 4. For a W(s) ∈ Cϕ , the poles are at positions W(s)+1,W(s)+2, . . . , the points W(s1),W(s2), . . . are the vertical projections of the positions
of the poles to Cϕ .

The constant cϕ is uniformly positive as long as ϕ is bounded away from π/2. The derivatives of Re(f1(W(s))) and
Re(f2(W(s))) are also at most constants, but since their prefactor is a lower power of N , they are negligible if N is
large enough.

Let s be large and take W = W(s) with (6.25). We rewrite the integral over DW as the integral over the vertical line
θ +δ+ iR and some residues coming from the sine function in the denominator. The integrand in Z has an exponential
decay in Z along the vertical line due to the sine in the denominator for any W . Hence by the observations above, the
integral over the vertical part of the Z contour can be bounded by exp(−cNs) for some c > 0 and for N and s large
enough. Therefore it is enough to prove the same for the residues in order to establish (6.26).

We prove in what follow that the residues are each at most exp(−cNs), however the number of residues is only
logarithmic in s. The positions of the poles corresponding to W(s) are W(s) + 1, . . . ,W(s) + kW where kW is the
number of the poles (which might also be 0). Let us choose sj > 0 for j = 1, . . . , kW such that ReW(sj ) = ReW(s)+
j , i.e., W(sj ) is the vertical projection of the j th pole to Cϕ , see Figure 4. The strategy is to approach the residue at
W(s) + j in two steps: first we go along the contour Cϕ until W(sj ), then we proceed along a vertical line to the pole.
This enables us to use the information about Re(f0) given in the proof of Lemma 6.8.

We now show that Re(f0(W(s)) − f0(W(s1)))  s where  means that the ratio of the two sides goes to a non-
trivial constant as s → ∞. By the definition of s1, we have |qW(s)| = q−1|qW(s1)| where qW(s) is the image of
W(s) on the left-hand side of Figure 2. Since the contour C̃ϕ is parameterized by arc length, for large s, |qW(s)|  s

and |qW(s1)|  s1, that is, s − s1  s. Since for large s, d
ds

Re(f0(W(s)))  −cϕ , we also get that Re(f0(W(s)) −
f0(W(s1)))  s.

Next we show that Re(f0(W(s) + 1)) is even smaller than Ref0(W(s1)). For this end, we consider the function
Re(f0) along a vertical line, so we can use the derivative (6.24) computed in the proof of Lemma 6.8. There, it was
used for γ ≥ 0, but if s is large in our case, γ is negative with large absolute value, hence the derivative of Re(f0) is
non-positive. Therefore the contribution of the first residue is exponentially small.

The first part of this argument, i.e., Re(f0(W(s)) − f0(W(sj )))  s remains true for all the poles j = 1, . . . , kW .
But there is a finite integer L which does not depend on s or N such that the second half of the argument (that is,
Re(f0(W(s) + j) − f0(W(sj ))) ≤ 0) works for all but the last L poles. The existence of such an L is simply because
for a fixed q and θ , the sum on the right-hand side of (6.24) is positive uniformly in t ∈ R if γ is smaller than a fixed
negative constant. For those poles which have real part ReW(s) + j in the L neighbourhood of θ , Re(f0(W(s) + j))

might not be smaller than Re(f0(W(sj ))), but as we will see that the difference can be upper bounded by a fixed
amount. We again consider the derivative of Re(f0) along a vertical line as in (6.24), but now in the domain Gϕ where
Gϕ is {W : Im(W) ∈ [π/ logq,−π/ logq]} without the domain on the left-hand side of Cϕ seen in the direction of its
orientation.

It is enough to show that the derivative of Re(f0) along a vertical line can be uniformly upper bounded on the
domain Gϕ , since the distance of W(sj ) and W(s) + j is at most 2π/| logq|, the vertical period of Re(f0). In terms
of Figure 2, the image of the domain Gϕ on the left-hand side of the figure is on the left-hand side of the contour C̃ϕ

which has a uniformly positive distance from 1, that is, the difference in parentheses on the right-hand side of (6.24)
can be uniformly upper bounded. Therefore we get that the difference Re(f0(W(s) + j) − f0(W(sj ))) is at most a
bounded amount.

It may also happen that the last residue W(s) + kW on the left-hand side of the vertical part of DW (which is at
θ + σ + iR or θ + 2σ + iR, but σ is as small as we want) has a larger real part than θ . In this case, we approach it
from W(s) as follows. We first proceed to θ along Cϕ where Re(f0) decreases. Then we continue on a short horizontal
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line which is not longer than 2σ until ReW(s) + kW , the derivative of Re(f0) (6.22) is bounded here. Finally we go
vertically to W(s)+ kW where Re(f0) is again non-increasing by the steep descent property. Also in this case, Re(f0)

can only increase by a bounded amount. Therefore if s is large enough, Re(f0(W(sj )) − f0(W(s))) dominates and
we get exponential decay of the kernel Kx(W(s),W ′) in N and s as stated. �

Remark 6.11. In order to control the values of Re(f0) at the residues, we follow the contour Cϕ first and then go
along a vertical line, since the derivative of the function along a vertical line given in (6.24) is relatively simple. It
could be a natural choice to look at the derivative of the function along a horizontal line, but unlike in [4], the function
is not monotonic along these lines, hence we found it more difficult to analyse.

The proof of Proposition 6.2 now easily follow from Lemma 6.10.

Proof of Proposition 6.2. We give an integrable bound (6.28) on the kernel Kx along the contour Cϕ . Let N be large
and fixed such Lemma 6.10 ensures that (6.26) holds uniformly in |s| ≥ s0 for some threshold s0. If s varies in the
compact interval |s| ≤ s0, the kernel K(W(s),W ′) diverges logarithmically in the neighbourhood of s = 0, but it is
bounded otherwise. The behaviour in the second variable of the kernel Kx is similar, therefore we have∣∣Kx

(
W(s),W(s′)

)∣∣ ≤ Ce−cNs + C
(
log |s|)−

(
log |s′|)−. (6.28)

Hence the series expansion of the Fredholm determinant can be uniformly bounded by a convergent series as ϕ varies
in any given closed subinterval of (0,π/2). Therefore, by the dominated convergence theorem, one can perform
the contour deformation in each term of the series expansion of the determinant yielding the validity of the contour
deformation in the determinant. �

Lemma 6.12. For any W ∈ Cϕ , let W +j be the positions of poles of the sine from which there is a residue contribution
for j = 1, . . . , kW . The angle ϕ can be chosen so close to π/2 that Re(f0(W)−f0(W +j)) ≥ εϕ for all j = 1, . . . , kW

with some εϕ > 0 which does not depend on W .

Proof. The strategy is similar to the proof of Lemma 6.10. For a fixed W ∈ Cϕ , let Wj ∈ Cϕ be the unique point on
the same side of the real axis such that ReWj = ReW + j for j = 1, . . . , kW . As in the proof of Lemma 6.10, if W is
far enough from θ along Cϕ , then the decay along Cϕ is much larger than the possible increase along the vertical line
which is proved to be at most bounded, hence Re(f0(W) − f0(W + j)) ≥ εϕ holds for all j = 1, . . . , kW .

So it is enough to prove the lemma for W in a compact neighbourhood of θ . In this compact set, the verti-
cal distances |W + j − Wj | can be uniformly lower bounded. By the steep descent property stated in Lemma 6.8,
Re(f0(W) − f0(Wj )) > 0. In what follows, we choose ϕ such that also

Re
(
f0(Wj ) − f0(W + j)

) ≥ εϕ > 0 (6.29)

which is enough to complete the proof. There is a horizontal strip around the real axis such that if ϕ ∈ [π/4,π/2], then
there is no residue term for W ∈ Cϕ in this strip, i.e., kW = 0, because the position of the first pole at W +1 is already on
the right-hand side of DW . This strip on the right-hand side of Figure 2 corresponds to a sector {w: arg(w) ∈ [−ψ,ψ]}
on the left-hand side for some angle ψ > 0 which can be chosen uniformly for ϕ ∈ [π/4,π/2] (see Figure 5). So it is
enough to prove the lemma for the complement of the sector.

Since Wj and W + j are on the same vertical line t 	→ θ + γ + it in the complex plane for some γ < 0, in order
to show (6.29), we can use again the formula (6.24) for the derivative of Re(f0) along a vertical line. For t > 0, the
summands in the sum on the right-hand side of (6.24) are negative if∣∣1 − qθ+k

∣∣ <
∣∣1 − qθ+kqγ+it

∣∣. (6.30)

This is equivalent to qθ+kqγ+it being outside the circle of radius 1 − qθ+k around 1. Let Sk
ϕ be the domain on the left-

hand side of qkC̃ϕ intersected with the complement of the sector {w: arg(w) ∈ [−ψ,ψ]}. As illustrated on Figure 5,
ϕ can be chosen so close to π/2 that Sk

ϕ has a positive distance from the circle of radius 1 − qθ+k around 1. It makes
it possible to ensure that the kth summand in (6.24) is negative for k = 0, . . . ,K and that they add up to something
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Fig. 5. The angle ϕ can be chosen so close to π/2 that the domain on the left-hand side of qk C̃ϕ without the sector {w ∈ C̃ϕ : arg(w) ∈ [−ψ,ψ]}
does not intersect the circle of radius 1 − qθ+k around 1.

less than −ε with ε > 0. By the exponential decay in the sum on the right-hand side of (6.24), we can find K large
enough that makes the tail smaller than ε/2 in absolute value which ensure that the whole sum is uniformly negative.
(Increasing K might require another ϕ which is closer to π/2, but with this the sum of the first finitely many negative
terms will not increase.)

Since the vertical distances have a lower bound, the argument gives a lower bound on Re(f0(Wj ) − f0(W + j))

which is independent of W . The case when the position of the last pole has larger real part than θ can be similarly
handled as in the proof of Lemma 6.10, since the difference can be at most 2σ which can be made arbitrarily small.
This completes the proof. �

Proof of Proposition 6.3. We consider the Fredholm determinant expansion

det(1 − Kx)L2(Cϕ) =
∞∑

k=0

(−1)k

k!
∫
R

ds1 . . .

∫
R

dsk det

(
Kx

(
W(si),W(sj )

) d

dsi
W(si)

)k

i,j=1
. (6.31)

We use the bound (6.28) as in the proof of Proposition 6.2 which is integrable and summable. Hence the above
Fredholm determinant is well-defined. As N → ∞, the kernel Kx(W,W ′) converges to 0 for W ∈ Cϕ \ Cδ

ϕ also
because of Lemma 6.12. Hence if we replace all the integrations in (6.31) on R by integrals on a fixed neighbourhood
of 0, then the error what we make goes to 0 by dominated convergence.

On the other hand, by a similar argument, one can localize the Z integrals as well. By linearity, one can take out
the Z integrations from the determinant in (6.31) to obtain a sum where the kth term is a 2k-fold integration. It is still
integrable, since the behaviour in the Z variables is e−π Im(Z) due to the sine in the denominator. The function Re(f0)

is steep descent along vertical lines by Lemma 6.8, and if we choose σ small enough, then the steep descent property
remains valid along DW by Taylor expansion. In a similar way as for the W variable, the Z integration can also be
localized. The steep descent property and the periodicity implies that by making a small error we can restrict the Z

integral to the set
⋃

k∈Z Ik where Ik = DW ∩ {z: |z − (θ + ik2π/ logq)| ≤ δ}, in particular, I0 =Dδ
ϕ .

The integral over
⋃

k∈Z Ik reduces to the integral over I0 in the limit, because if Z ∈ Ik for k �= 0, then

N−1/3

sin(π(W − Z))
 N−1/3e−π| ImZ|  N−1/3e(−2π2/| logq|)|k| (6.32)

which is summable and gives an O(N−1/3) error uniformly in W . For Z ∈ I0, we are in the neighbourhood of the pole
of the sine inverse, so the integral on I0 is not negligible. This completes the proof. �

6.3. Convergence of the kernel

Proof of Proposition 6.4. We apply the change of variables

W = θ + wN−1/3, W ′ = θ + w′N−1/3, Z = θ + zN−1/3 (6.33)
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as in (6.9) and use the Taylor expansions (6.16)–(6.18) to see that KN
x,δ(w,w′) gets arbitrarily close to K ′

x,δN1/3(w,w′)
for any w,w′ ∈ Cϕ,δN1/3 as N → ∞.

In order to get that the Fredholm determinants are also close, we need a uniform fast decaying bound on
KN

x,δ(w,w′). The main term in the exponent is

−N Ref0(W) = −χ Re
w3

3
+Oε

(
N−1/3w4) = −χ Re

w3

3
+Oε

(
w3), (6.34)

where Oε(w
3) means that the error term is at most εw3. By taking δ small enough, ε can be arbitrarily small, hence

the error term is negligible compared to the cubic behaviour of −χ Rew3/3. The lower order error terms are similarly
dominated. Hence the difference of the Fredholm determinants goes to 0 as N → ∞ by dominated convergence,
which proves the proposition. �

Proof of Proposition 6.5. Since the integrand in (6.12) has cubic exponential decay in w and z along the given con-
tours Cϕ,∞ and Dϕ,∞ respectively, the convergence of the Fredholm determinants follows by dominated convergence
similarly to the earlier proofs. �

6.4. Reformulation of the kernel

Proof of Proposition 6.6. By definition (6.12), we can write the kernel K ′
x,∞ on L2(Cϕ,∞) as

K ′
x,∞

(
w,w′) = (AB)(w,w′), (6.35)

where

A(w,λ) = e−χw3/3−c(logq)2w2/2−βxw+λw, (6.36)

B
(
λ,w′) = 1

2πi

∫
Dϕ,∞

dz

z − w′ e
χz3/3+c(logq)2z2/2+βxz−λz (6.37)

with λ ∈ R+ and the composition AB on the right-hand side of (6.35) is also meant on L2(R+). The equality (6.35)
can be seen since

1

z − w
=

∫ ∞

0
dλe−λ(z−w)

as long as Re(z − w) > 0.
Hence we can write

det
(
1 − K ′

x,∞
)
L2(Cϕ,∞)

= det(1 − AB)L2(Cϕ,∞) = det(1 − BA)L2(R+) (6.38)

with

(BA)(a, b) =
∫ ∞

0
dλ

1

(2πi)2

∫
Cϕ,∞

dw

∫
Dϕ,∞

dz
eχz3/3+c(logq)2z2/2+(βx−a−λ)z

eχw3/3+c(logq)2w2/2+(βx−b−λ)w
. (6.39)

Using the general formula

1

2πi

∫
Dϕ,∞

exp

(
a
z3

3
+ bz2 + cz

)
dz = a−1/3 exp

(
2b3

3a2
− bc

a

)
Ai

(
b2

a4/3
− c

a1/3

)
, (6.40)

we get that

(BA)(a, b) = χ−1/3ec(logq)2(a−b)/(2χ)

∫ ∞

0
dλAi

(
a

χ1/3
+ x + λ

)
Ai

(
b

χ1/3
+ x + λ

)
(6.41)
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by (5.2) and after a change of variable. After conjugation by the exponential prefactor and by rescaling the Fredholm
determinant, we get that

det(1 − BA)L2(R+) = det(1 − KAi,x)L2(R+) = FGUE(x) (6.42)

as required. �

With the proof of Proposition 6.6, we also conclude Theorem 6.1 which is the key for the main result of the present
paper. We add a final remark on an alternative way of proving Theorem 6.1.

Remark 6.13. There is a slightly different way of proving Theorem 6.1. Instead of choosing ϕ to be very close to
π/2, it is also possible to take ϕ = π/2. This alternative requires about the same complexity of the proof as the way
followed here and it yields the following differences. The limit of the contour Cϕ as one rescales the neighbourhood
of θ is iR, so the contour Cϕ has to be locally modified to another steep descent contour before the localization of
the integral in Proposition 6.3. This needs more argument. The decay of the kernel Kx along Cπ/2 in Lemma 6.10 is
not exponential but polynomial in s, but the power is proportional to N which is still enough decay for the rest of the
proof. The argument in the proof of Lemma 6.12 is slightly simpler.

7. Confirmation of KPZ scaling theory for q-TASEP

This section contains the argument which shows that the KPZ scaling theory conjecture formulated in Conjecture 2.8
is satisfied for q-TASEP.

Proof of Theorem 2.9. We start with (2.21) for c = 0 which reads

H

(
τ,

f − 1

κ
τ + χ1/3

κ1/3 logq
ξτ τ

1/3
)

= τ

κ
, (7.1)

where ξτ has asymptotically Tracy–Widom distribution. In (7.1), (f −1)/κ and 1/κ , the coefficients of τ are functions
of θ . By modifying θ on the τ−2/3 scale, we can choose θ ′ such that the corresponding (f − 1)/κ is equal to the
second argument of H in (7.1). Then the right-hand side of (7.1) changes by Taylor expansion. By using the series
representation of κ and f given in (2.8), one can see that

d

dθ

f − 1

κ

(
d

dθ

1

κ

)−1

= −(
qθκ − f + 1

)
. (7.2)

The first part of the theorem now follows by Taylor expansion.
Next we show that the scaling KPZ conjecture is satisfied. The q-TASEP in [18] is defined such that particles

are initially on the non-negative integer positions and they all try to jump to the left with the corresponding rates.
Therefore, the particle current H defined in Remark 2.7 and the height function h used in [18] are related via h(y, t) =
2H(t,−y − 1) + y (cf. (2.22)), hence (2.27) reads

h

(
−f − 1

κ
τ, τ

)
= 2H

(
τ,−

(
−f − 1

κ

)
τ − 1

)
+ f − 1

κ
τ

=
(

2

κ
+ f − 1

κ

)
τ + 2

qθκ − f + 1

χ1/3

κ1/3 logq
ξτ τ

1/3. (7.3)

The profile function is

φ :−f − 1

κ
	→ 2

κ
+ f − 1

κ
. (7.4)
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Its derivative determines  in [18] that is an affine transform of the particle density given in Proposition 2.3. One has

1 +  = 1 + φ′ = 2

qθκ − f + 1
= 2 logq

logq + log(1 − q) + Ψq(θ)
(7.5)

using (7.2) in the second equality and (2.5)–(2.6) in the last one. On the other hand, (2.21) in [18] yields

1 +  = 2

1 − αd log(α;q)∞/dα
= 2

1 + ∑∞
m=0 αqm/(1 − αqm)

= 2 logq

logq + log(1 − q) + Ψq(logq α)
(7.6)

which means that the parameter of the stationary measure is determined via

α = qθ . (7.7)

This choice of parameters is in accordance with Proposition 2.3 and with the Legendre transform representation of φ

given also in (2.10) of [18].
Formulas (2.22)–(2.23) in [18] give that

j () = −α(1 + ), A() = −α(1 + )
d

dα
(7.8)

for q-TASEP. By computing the first two derivatives of the inverse function α 	→  given in (7.6), one can see that

λ = − d2

d2
j () = qθ (Ψ ′

q(θ) logq − Ψ ′′
q (θ))(logq + log(1 − q) + Ψq(θ))3

2(Ψ ′
q(θ))3

(7.9)

with the notation (7.7). By similar calculations for the second quantity in (7.8), we have

A = 4Ψ ′
q(θ) logq

(logq + log(1 − q) + Ψq(θ))3
. (7.10)

Putting (7.9) and (7.10) together, the coefficient of st1/3 on the right-hand side of the inequality sign in (2.26) is given
by

−
(

−1

2
λA2

)1/3

= 22/3qθ/3((logq)2)1/3(Ψ ′
q(θ) logq − Ψ ′′

q (θ))1/3

(logq + log(1 − q) + Ψq(θ))(Ψ ′
q(θ))1/3

, (7.11)

where ((logq)2)1/3 is understood as a positive number. Note that this is the same as the coefficient of the ξτ τ
1/3

random term on the right-hand side of (7.3), which completes the proof since the coefficient in (7.11) is negative. �

Proof of Corollary 2.10. By Remark 2.11, Theorem 2.9 certainly holds and confirms the law of large numbers (2.13)
for all θ for which (f − 1)/κ ∈ (−(1 − q),0). It yields that the value of the particle density and the current given in
(2.11) follows by differentiation (7.2) and by using (2.8). �

Note added in the proofs

The technical condition qθ ≤ 1/2, see Remark 2.11, has been recently removed in [1].
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