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Some remarks on quasi-variational inequalities
and the associated impulsive control problem

B. PERTHAME

E. N. S., 45, rue d’Ulm, 75230 Paris, Cedex 05

Ann. Inst. Henri Poincaré,

Vol. 2, n° 3, 1985, p. 237-260. Analyse non linéaire

ABSTRACT. - We study Quasi-Variational Inequalities:

In general, (1) has no solution, we prove here that (1) has a unique maxi-
mum subsolution that we caracterize. Then we compare the implicit
obstacle (2) and the obstacle :

and we finally show that, under general assumptions, the solution of (1)
is Holder continuous.

Key-words : Quasi-Variational Inequalities, Implicit obstacle, maximum subsolution,
Holder continuity, impulsive control.

RESUME. - Nous etudions les Inequations Quasi-Variationnelles :
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238 B. PERTHAME

En general (1) n’a pas de solution, nous montrons ici que (1) admet une
unique sous-solution maximale que nous caracterisons. Nous comparons
ensuite l’obstacle implicite (2) et l’obstacle :

et nous finissons par montrer que, sous des hypotheses generales, la solu-
tion de (1) est holderienne.

Mots-clefs : Inéquations Quasi-Varationnelles, obstacle implicite, sous-solution maxi-
male, continuite Holderienne, controle impulsionnel.

We study here the Quasi-Variational Inequalities (Q. V. I.) and the
associated stochastic impulsive control problem:

where Q is a regular (C3) connected open set of and M is given by :

The problem (1) was introduced in A. Bensoussan and J. L. Lions [1 ] (more
recent results may be found in [3 ]). A typical result is the following if we
assume ~p - 0, f >_- 0 and co increasing, then (1) has a unique solution
which is in 
Here we will relax these assumptions and answer the following questions.

If we take general ~p and f, (1) has in general no solution because of a diffi-
culty involving the boundary condition : there is no reason a priori that Mu
should be above ~p on aQ. And if in general there is no solution of (1),
the question is to determine in which sense (1) might be solved and whether
the corresponding solution is the optimal cost function for the associated
impulse control problem which is meaningful without any condition.

If the solution of (1) is not continuous, then formula (2) has no clear
meaning and one generally defines the implicit obstacle by:

But it is not clear (and to our knowledge it has never been checked before !)
that Mu = M + u (at least for u E C(Q)). We also answer here that question.
The last question that we study is to find general local regularity results,
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239SOME REMARKS ON Q. V. I.

say in C°~°‘, which do not involve the boundary data Such a regularity
has already been proved by J. Frehse and U. Mosco [9 ]. Here we state
an analogous result but our proof is completely different from the one in [9 ].

In a first part we show that (1) has a unique maximal subsolution which
is the solution of:

Here we cannot look after solutions in H~ since this space is not adapted
to the obstacle Mu and, in particular, qJ A Mu ~ H1/2(~03A9). But under a
general assumption introduced in B. Perthame [16], qJ A Mu and Mu
are continuous so that we can deal with continuous solution of (3) called
viscosity solution. This kind of solution (a particular case of the notion
introduced in M. G. Crandall and P. L. Lions [7], P. L. Lions [13 ] [14 ])
allows us to solve (3) with the classical argument of B. Hanouzet and
J. L. Joly [10 ]. Remark that in Appendix 2 we prove equivalence between
different notions of solution of the obstacle problem. In particular it appears
that the viscosity solution is also the classical solution in Hloc.
We prove in a second part that this analytical solution is the one we

should expect in view of the associated impulsive control problem. This
is a verification analogous to the one in [3 ] [17] which clearly shows that
the above notion is the correct one.
We give in a third part some comparison results on Mu and M + u.

There are two main results : ifQis sufficiently smooth (CN) then Mu = M + u
a. e. and if Mu or M + u is continuous then Mu = M + u everywhere (remark
Mu and M + u are defined pointwise and not almost everywhere).

Finally we prove that when co is continuous and a small

enough, then the solution of (1) is in C°~ . The method is to replace Mu
by an other obstacle which is in and which is built locally with the help
of general properties oi iwiu. Remark that we can give an example with
very regular data where u is only (cf. B. Perthame [18 ]), and that
in general no regularity up to the boundary holds.

I. Q. V. I. WITHOUT THE EXISTENCE
OF A SUBSOLUTION

1. Assumptions and main results.

This section is devoted to the Q. V. 1.:
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240 B. PERTHAME

We prove (1) has a unique maximum subsolution and that it is the solu-
tion of: 

,

Here we call subsolution of (1) any u E C(Q), satisfying :

where we have set :

We assume :

where k is a positive constant, co : (f~+)N -+ is a lower semi-continuous
sub-additive function with co(0) = 0 and ~ >_ 0 means ~ = (~ 1, ... , ~N)

0. 
I

We will also assume that the boundary data satisfies :

These assumptions will allow us to deal with continuous solutions of (1)
or (3) which are called viscosity solutions. Recall that P. L. Lions [13 ] [14]
has introduced the notion of viscosity solution of general second order
equations adapting to second order equations the notion introduced by
M. G. Grandall and P. L. Lions [7] for first order equations. A very parti-
cular application of this notion yield that the following obstacle problem :

has a unique viscosity solution u E C(Q) if the obstacle ~I’ E C(Q). In this
particular setting u is nothing else that the limit in C(Q) of all regularized
obstacle problems with nice standard solutions. (The different notions of
solution of (10) are collected in Appendix 2 where we prove the equivalence
of these notions).
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241SOME REMARKS ON Q. V. I.

In the following we will call viscosity solution of (3) a continuous func-
tion u such that A Mu, Mu E C(Q) and u is a viscosity solution
of (10) with T = Mu.

Remarks. 1) Below it will be proved that, under assumption (9) and
with the definition of Mu in (2), we always have Mu E C(Q) when u E C(Q)
and A Mu.

2) In the particular case treated here, the notion of viscosity solution
is equivalent to and :

moreover in Appendix 2 it is proved that M E H ~ .
3) Exactly as in B. Perthame [16 where the assumption has been intro-

duced to get the continuity of the solution, one easily checks that (9) may
be replaced by :

where w is any continuous super solution of ( 1 ) such that w ~p .

Then we can state the :

THEOREM 1. - Under assumptions (5)-(9), equation (1) has a unique
maximal subsolution u and it is the unique solution of (3).

If 03C6 E and M003C6 E (resp. is locally semi-concave) then
u E (resp. 

Let us recall that a function u E is said to be locally semi-concave
if for each open set U~ c U~ c S2 there exist a constant C such that :

or, in other words: is concave on convex subsets of O.

The end of this section is devoted to the proof of Theorem 1, it is divided
in three parts : first we build a decreasing process that is uniformly converging
to a solution of (3) (this is a variant of the « usual » proof due to B. Hanouzet
and J. L. Joly [10 ]). Here the difficulty comes from the fact that the boundary
value of the process changes at each step. The concavity of the operator
which associates ~p A Mu to u enables us to conclude. In the second part
we state the uniqueness result and finally we prove the regularity.

Vol. 2, n° 3-1985.



242 B. PERTHAME

2. Existence of a solution.

Throughout section I we will assume that f >__ 0, qJ > 0. Indeed (7)
enables us to make such an assumption by adding constants to u and q

. 
and a positive function to f We can now define the following process :
uo e C(Q) is the solution of:

r A ,

then we define u 1 as the solution of:

and by induction,

The existence of this sequence is justified by the:

LEMMA 1. - For each n >_ 0 Mun E 

Proof It is easily checked (cf. [16 ]) that under assumption (9) Muo
is continuous on Q. So, we assume by induction that for n >_ 0, Mun is
continuous and we prove that Mun + 1 is also continuous. We know (see [l6 ])
that Mun+ 1 is lower semi-continuous. Let us prove it is upper semi-conti-
nuous. j

Let : I ~o ~ 4; 1 if then,
on a neighbourhood of xo we have :

and the result is proved. If xo + we will prove that :

and this prove that Mun+1 is upper semi-continuous at xo since :

But (12) is deduced from the:

LEMMA 2. - 0, then
v(xo + ço) = Mv(xo + ~ o) - k. 

’

Indeed take v = in lemma 2, then:
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243SOME REMARKS ON Q. V. I.

since un is a decreasing sequence). But xo + ~ E r and thus we have

and (12) is proved, concluding the proof of Lemma 1.

Proof of Lemma 2. - Notice that, if r~ > 0, xo + ~o + ~ E 5, then :

and, taking the infimum over 0, we find :

since equality holds for 11 = 0, Lemma 2 is proved.
Remarks. 1) This also proves Remark 1 in I .1: take un+ 1 _-- un --_ u

in the proof of Lemma 1.
2) The argument used above is very similar to the one introduced in L.

Caffarelli and A. Friedman [5] [6 ].
As mentionned in the proof of Lemma 1, the sequence Un is decreasing,

0 since f >_ 0, qJ > 0, so that un converges to some function u;
moreover we have :

PROPOSITION 1. - The sequence un converges uniformly to u E C(SZ)
which is a viscosity solution of (3) and 0 _ u  uo.

Proof - The proof below is adapted from B. Hanouzet and J. L. Joly [10].
Notice that (3) is for example deduced from the « stability » of viscosity
solutions of second order equations by uniform convergence. Let us prove

the uniform convergence of n choose p e ]0,1 [ such that - ,
k ~

 ~ ~u0~L~ and assume that for some 0 e [o, 1 ] and some n >__ 0 we have :

then, since M is a concave mapping :

Let us call z the solution of the obstacle problem (10) with

and vo the solution of

Vol. 2, n° 3-1985.



244 B. PERTHAME

then, applying the maximum principle (regularizing Mun if necessary)
and noticing that:

one easily checks that :

But the choice of p shows that: vo and thus we obtain:

un + 1 - Un+ 2 C ~(1 - 1 .

Since uo - uo, iterating the above inequalities we obtain:

and this proves Proposition 1.

Remark. - Of course this also proves that Mun converges uniformly
to Mu hence u is a viscosity solution of (3).

3. Uniqueness.

We must prove two results : that the solution of (3) is unique and also
that it is the maximum subsolution. This last point is clear, if a function
w E C(S2) satisfies :

(this actually means that w is a viscosity subsolution of (1) if Mw E C(Q))
then, recalling the result of P. L. Lions [13 ], w  uo since for example w
is a viscosity subsolution of (11). We deduce that:

and so w  u 1. An easy induction proves that w  un for each n >__ 0 and

PROPOSITION 2. - Under the assumptions of theorem l, if w E 
is a viscosity solution of (3), then w = u.

Proof - We already know that w _ u. First we show that ~w >_ 0:

we know (by the remark in I 2°) that Mw E C(Q) so we can build a sequence
E such that Mw in C(Q). Let us denote by wn the solu-
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245SOME REMARKS ON Q. V. I.

- 

tion of (10) for T = so that ~ ~~ w in C(Q) and (see

[16]). Take xn ~ 03A9 so that : Min = as
xeQ

we may assume (at least if n is large enough) that wn(xn)  Mwn(xn).
If xn ~ 0393 we deduce that 03C6(xn) ~ 0, if not the maximum principle

shows that > 0 and in both cases 0 and thus w > 0.
We now prove Proposition 2 with the help of B. Hanouzet and J. L. Joly

method. We have :

by the same arguments as in Proposition 1 we get

and so u __ wand Proposition 2 is proved.

4. Regularity.

Here we assume that E n C(Q) (Resp. that M003C6 is locally
semi-concave) and we prove that u E (resp. 
We only sketch the proof since it is nearly the same as in [16]. One

introduces :

and one easily proves that there exists some open set G (for the topology
of Q) such that :

~ 
0 

~ 
0

and so u E (resp. u E Now, as Mu « takes its values »
in F and with the regularity of Mocp one can prove that Mu is in 
(resp. locally semi-concave) and applying classical results on the obstacle
problem this proves that u E (Resp. u E and the proof
of Theorem 1 is completed.
Remarks. 1 ) In particular if Q is convex the solution belongs to 

, when ~p E Indeed Muo E C(Q) and is locally semi-concave and
this is enough by remark 3 in 1.1 (cf. [1~ ], [18 ]).

2) Of course these results extend to Hamilton-Jacobi-Bellman equa-
tions (see P. L. Lions [12 ], L. C. Evans and P. L. Lions [8 ]). The associated
Q. V. I. is :

(For results on this problem see S. Lehnart [11 ], B. Perthame [16 ]).
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246 B. PERTHAME

II. THE IMPULSIVE CONTROL PROBLEM

Our purpose, here, is to give the stochastic interpretation of u, the solu-
tion of (3), in terms of control of diffusion processes. Two remarks are
to be developped below : first, despite of the jumps the process is constrained
to stay in Q; next, the change of boundary data (from qJ to qJ A Mu) does
not induce any change on the optimal cost function.

1. The optimal cost function. 
_

Let (Q, F, Ft, P, Wt) be a standard space composed by a probability
space (Q, F, P) with a right-continuous increasing filtration of complete
sub-a algebra Ft and a Browian motion wr in Ft adapted. For any
sequences ~ 

1  G 2  ...  C~n  ... , C~n n ~ oo, of stopping times and
03BE1, ..., 03BEn, ... of FOn-random variables in (R+)n we can define by induction :

and :

we set :

We will say that such a system ~ is admissible if E Q whenever
Then we define

and the cost function of this system is:

and the optimal cost function is:

Remark. 1) With our definition of admissible systems we know that
and so (15) is meaningful.

2) Here we have taken c(x) _ ~, to simplify notations but the following
results still hold with any c(x) > 0.

THEOREM 2. - Under the assumptions of Theorem 1, the solution u
of(3) is the optimal cast function given by (16)

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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Proof 2014 z) u _ v : This is clear in view of A. Bensoussan and J. L. Lions [4]
or P. L. Lions [.l3 ] : u is solution of the Q. V. I. (1) with cp = qJ .A Mu
so that it is the optimal cost function for a cost function defined by (15)
with  in place of qJ. These cost functions are less than j(x, A) since (p  qJ
so that u _ v.

ii ) u >__ v : Here we give an optimal admissible system as in [3 ] [I 7 ].
Let ~ be measurable function in such that :

we can find a standard space (Q, F, Ft, P, where we solve :

let C~1 be the first time when y° belongs to ~ _ ~ u = Mu ~ (%~ 1 = + oc
ifrø is not reached), ~ 1 = (1 is anything measurable if C~1 = + oo )
and by induction 

’

and G~n + 1 is the first time yl enters ~ and ~~‘ + 1 = 1 )~.
From [2 ] we know the :

LEMMA 3. - For any n > 0, one has :

Remarks. 1 °) and yx(i) are in the set ( u  Mu ~, indeed whenever
reaches {u = Mu ~ it jumps to come back in { u  Mu ~. In parti-

cular u( yx(2)) 10  ~ ~ _ oo ) . 
_

2°) One checks as in [~] ] that n ~ + oo ; indeed for each n,

u( yX-1(~n)) _ + ~n) > k, and, since u is continuous, >_ L > o.

Since n ~ 0 we obtain 1 + ... + n ~ Ln and the formula:

on {~  oo } shows that ~ m + oo.
In (17) we remark that :

Vol. 2, n° 3-1985.



248 B. PERTHAME

but we have :

since Un __ ~ whenever  oo. Thus adding (17) for each n >_ 0 and using
remark 2, we get

and this means that u >__ w and theorem 2 is proved.

III. SOME REMARKS ON THE OPERATOR M

The operator M which defines the Q. V. I. is not always given by (2).
Indeed when one deals with discontinuous solution the operator Mu
has no clear meaning and the Q. V. I. is generally defined with an ope-
rator M + :

From a stochastical viewpoint it is also natural to consider admissible

systems such that the jumps ç at a point x are constrained to satisfy x + ~ E Q
and no longer It will rise an other operator, defined for x E 12:

M + is defined for any bounded from below measurable function and M-
for u E C(Q). Here we give the relation between M, M -, M + .

1. Regularity of M, M-, M+.

PROPOSITION 3. - Let u E C(Q) then Mu is lower semi-continuous on ~
(I.s.c.), M _ u is upper semi-continuous (u. s. c.) and Mu _ M -u on S2.

Proof The regularity of Mu and the inequality are clear. The other
results are based on the following remark: take un E C(Q) a decreasing
sequence such that u,~ n ~ u pointwise then decreases to M _ u.
Now if we choose un such that un > ~ ~ u and un  ‘~ 
on Q, then it is easily checked that is continuous and so, that Mu
is u. s. c.

PROPOSITION 4. - If u is u. s. c. then M-u is u. s. c. moreover, i~ co is

continuous and u is u. s. c. then M -u = M + u on Q.

Proof The proof of Proposition 3 directly proves the first part of
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249SOME REMARKS ON Q. V. I.

Proposition 4. Moreover, if co is continuous and un is chosen as above
it is clear that M + Un = so that:

M _ u _ M + u _ M+un n ~ M + u on Q, and Proposition 4 is proved.

2. Relation between M and M- (or M + ).

PROPOSITION 5. - If Co is continuous, u E and Q is of class CN
then Mu = M + u a. e.

Proof of Proposition 5. Let us introduce some notations : F will be
the set of points where possibly M + u(x), and will denote
by Tr( y) the tangent hyperplane to ~SZ at y and v( y) the unit outward
normal to aSZ at y. Then we have :

F c G== { ~- EO, 3y > x, y E (ei, y-x)=O for some i and x E 

where is the canonical basis of [RN. This result has been proved
in [15 ], but it is not precise enough. In fact we have F c Gn where :

nN

Gi 1 - ~ x E ~, y > ~ E)~  N such that : 
.

Let us prove that F c Gn : take some xo E F, as xo E G there exists
nN ~

y > x, y ~ ~03A9 and some eil such that (etl, y - x) = 0. We may always
choose ei2 ... eik ... ein such that : for 1 __ j  k, y - x) ~ 0
for j > k. Now assume that it means that for some 1 > k, (eil, v( y)) ~ 0.
Since y > x then y + s e; > x for E small enough, and either y - E eil E Q,
or y + E eiz E Q for a small enough. In both cases we get that M+u(xo) = Mu(xo),
indeed we know that M + u(xo) >_- Mu(xo) and

This yields a contradiction and thus x E Gk. We now conclude with the :

LEMMA 4. - For 1 _ k _ N, meas (Gk) = 0.

STEP 1. - We prove that Gi is of zero measure and it is enough to
prove that

Vol. 2, n° 3-1985.
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v( y) is parallel to eN and (eN, y - x) = 0 ~ is of zero mesure. Since the
set of y E a~ such that v(y) is parallel to eN is compact, it can be covered
by a finite number of open sets 

where fi E CN and Oi is an open set.
Denoting y’ = ( y 1 ... YN - 1) it remains to prove that for these func-

the sets : .

is of zero measure. But :

Denoting by the Lebesgue measure on R we have, applying Sard’s
Theorem:

thus H is of zero measure and we conclude the first step: meas (Gi) = 0.

STEP 2. - In the same way we prove that Gk is of zero measure for
k > 1: it is enough to prove that Hk is of zero measure where :

By the implicit function Theorem and changing eN into some N - k + 1,
if necessary we have locally :

and it is enough to study the set:

But its measure is less than :

... , yN - k + 1 ~~ 

this last term is the measure of the critical values of the function
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and so is zero by Sard’s theorem. This concludes the proof of Lemma 4
and of Proposition 5.

It is quite easier to get the following comparison Proposition in which
we consider M-u and Mu are defined for x E 0:

PROPOSITION 6. - If u E C(S~), and co is a non-negative, sub-additive

function such that co(o) --_ 0, then the set of discontinuity points in 03A9 of M-u
is also the set ofdiscontinuity points in Q ofMu and it is also the set of points
where M _ u(x) ~ Mu(x).

COROLLARY. - lf u E C(Q), M -u = Mu a. e. in Baire Sense.
This is because we know that the set of discontinuity of a 1. s. c. (or u. s. c.)

function is rare in Baire sense.

Proposition 6 is clearly deduced from the following :

LEMMA 5. - Under the assumptions of Proposition 6:

Let us prove the second equality which is the most difficult one : we know
that lim sup and we shall prove that:

Take xn > xp and xn xo, + CO(çn) + + 0.

Extracting a subsequence if necessary we assume: 03BEn n~~ 03BE. Since

xn + 03BEn - xp > xp > 0, we can find an EnE En n~~ 0, x0 + 03BEn + En > 0

and We have then :

Remark. 2014 1) Here we have used the three properties of co : co is subaddi-
tive, co( ç) .~t 0 and co is 1. s. c. To prove the first equality of Proposition 6
we only need co to be 1. s. c.

2) A useful consequence of Proposition 6 is that the solution of (3) is
also the solution of:

in other words u is also the solution of the impulsive control problem
where the admissible systems are defined in such away that the process
yx(t ) stays in Q (and no longer in Q) and the stopping time’! is the first
Vol. 2, n° 3-1985.


