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Heavy viable trajectories of controlled systems

Jean-Pierre AUBIN and Halina FRANKOWSKA

CEREMADE, Universite de Paris-Dauphine,
75775, Paris CX (16)

Ann. Inst. Henri Poincaré,

Vol. 2, n° 5, 1985, p. 371-395. Analyse non linéaire

ABSTRACT. - We define and study the concept of heavy viable trajectories
of a controlled system with feedbacks. Viable trajectories are trajectories
satisfying at each instant given constraints on the state. The controls

regulating viable trajectories evolve according a set-valued feedback map.
Heavy viable trajectories are the ones which are associated to the controls
in the feedback map whose velocity has at each instant minimal norm.
We construct the differential equation governing the evolution of the
controls associated to heavy viable trajectories and we prove their exis-
tence. These results are applied to exchange economies for finding heavy
trajectories of a dynamical decentralized allocation mechanism explaining
the evolution of prices.

Keywords : Controlled systems, differential inclusions, viable trajectories.

RESUME. - Nous definissons le concept de trajectoire viable lourde
d’un systeme controle avec retroaction. Les trajectoires viables sont celles
qui obeissent a chaque instant a des contraintes pesant sur 1’etat du systeme.
Les controles regulant les trajectoires viables evoluent selon une loi de
retroaction multivoque. Les trajectoires viables lourdes sont associées
aux controles regulant les trajectoires viables dont la norme de la vitesse

est minimale (parmi ceux régulant les trajectoires viables). Nous construi-
sons les equations differentielles gouvernant les controles associes aux
trajectoires viables lourdes et nous demontrons leur existence. Ces resultats
sont appliques aux economies d’echange pour obtenir les trajectoires
viables lourdes d’un mecanisme d’allocations de ressources dynamique et
decentralise, ce qui peut expliquer 1’evolution des prix.
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372 J.-B. AUBIN AND H. FRANKOWSKA

1. INTRODUCTION

When we study the evolution of macrosystems which arise in economics
and the social sciences as well as in biological evolution, we would take
into account not only : .

(1) our ignorance of the future environment of the system but also,
(2) the absence of determinism (including the impossibility of a com-

prehensive description of the dynamics of the system),
(3) our ignorance of the laws relating certain controls to the states of

this system,
(4) the variety of dynamics available to the system.
We propose to translate these requirements into mathematics by means

of differential inclusions, which describe how the velocity depends in a
multi-valued way upon the current state of the system. Another feature of
such macrosystems is that the state of the system must obey given restric-
tions known as viability constraints, which determine the viability domain ;
viable trajectories are those lying entirely within the viability domain.
Finding viable trajectories of a differential inclusion provides a mechanism
of selection of trajectories which, contrary to optimal control theory, does
not assume implicitely

(1) the existence of a decision maker operating the controls of the system
(there may be more than one decision maker in a game-theoretical setting)

(2) the availability of information (deterministic or stochastic) on the
future of the system ; this is necessary to define the costs associated with
the trajectories

(3) that decisions (even if they are conditional) are taken once and for
all at the initial time.

Viability Theorems provide necessary and sufficient conditions for the
existence of at least one viable trajectory starting from any viable initial
state. It also provides the feedbacks (concealed in both the dynamics and
the viability constraints) which relate the state of the system to the controls.
These feedbacks are not necessarily deterministic: they are set-valued
maps associating a subset of controls with each state of the system. We
observe that the larger these subsets of controls are, the more flexible
-and, thus, the more robust the regulation of the system will be.

Finally the third feature shared by those macrosystems is the high
inertia of the controls which change only when the viability of the system
is at stake. Associated trajectories are called heavy viable trajectories:
they minimize at each instant the norm of the velocity of the control.
We shall provide a formal definition of heavy viable trajectories, which
~equires an adequate concept of derivative of the set-valued feedback map.
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373HEAVY VIABLE TRAJECTORIES

We show that as long as the state of the system lies in the interior of the
viability domain, any regulating control will work. Therefore, along a
heavy trajectory, the system can maintain the control inherited from the
past. (The regulatory control remains constant even though the state may
evolve quite rapidly).
What happens when the state reaches the boundary of the viability

domain? If the chosen velocity is « inward » in the sense that it pushes
the trajectory back into the domain, then we can still keep the same regu-
latory control.
However, if the chosen velocity is « outward », we are in a period of

crisis and must find, as slowly as possible, another regulatory control
such that the new associated velocity pushes the trajectory back into the
viability domain.
When this strategy for « structural change » fail, the trajectory « dies »

i. e., it is no longer viable.
We shall associate with any control u a « viability cell », which is the

(possibly empty) subset of viable states which can be regulated by this
control. In such a viability cell, an heavy viable trajectory is governed
by the constant control to which it is associated.

To pass from one cell to another requires the control to be changed.
The boundaries of these cells signal the need for structural change. We
mentionned biological evolution as a motivation for studying heavy
viable trajectories. Paleontological concepts such as punctuated equilibria
proposed by Elredge and Gould are consistent with the concept of heavy
viable trajectories.

Indeed, for the first time, excavations at Kenya’s Lake Turkana have
provided clear fossil evidence of evolution from one species to another.
The rock strata there contain a series of fossils that show every small

step of an evolutionary journey that seems to have proceeded in fits and
starts. Williamson [1981 ] examined 3.300 fossils showing how thirteen
species of molluscs changed over several million years. What the record
indicated was that the animals stayed much the same for immensely long
stretches of time. But twice, about 2 million years ago and then again
700.000 years ago, the pool of life seemed to explode-set off, apparently,
by a drop in the lake’s water level. In an instant of geologic time, as the
changing lake environment allowed new types of molluscs to win the race
for survival, all of the species evolved into varieties sharply different from
their ancestors. That immediate forms appeared so quickly, with new
species suddenly evolving in 5.000 to 50.000 years after millions of years
of constancy, challenges the traditional theories of Darwin’s disciples
since the fossils of Lake Turkana don’t record any gradual change ; rather,
they seem to reflect eons of stasis interrupted by brief evolutionary « revo-
lutions ».

Vol. 2, n° 5-1985.



374 J.-P. AUBIN AND H. FRANKOWSKA

We shall also illustrate the behavior of heavy trajectories in the frame-
work of a simple economic model. The viability domain is the set of allo-
cations of available commodities among n consumers. The behavior of
each consumer is described by a differential equation governing the evolu-
tion of its consumptions with respect to the evolution of prices. In othei
words, prices play the role of the control. This is a decentralized model,
because each consumer don’t need to know the set of available commo-
dities nor the consumptions of other consumers. Hence we shall characte-
rize the feedback law which relates the price to the consumptions of
consumers and we shall deduce the differential equation governing the
evolution of prices associated with heavy viable trajectories ; this may
describe the behavior of Adam Smith’s invisible hand which sets the price
summarizing enough information for allowing consumers to modify
their consumptions in a decentralized way, so that, at each instant, the
total consumption meets the scarcity constraints.

2. BACKGROUND NOTES

We introduce a viability domain K, which is a subset of a finite dimen-
sional space X, a finite dimensional control space U, a set-valued map F
from K to U and a continuous function f from graph (F) to X. We define
the viability problem for a controlled system with feedbacks as follows:
Vxo E K, find T > 0 and an absolutely continuous function x( ~ ) satisfying

which are viable on [0, T ] in the sense that

The viability requirement (2. 2) involves naturally restrictions of the dyna-
mical system at the boundary of K. It happens that the best way to describe
these conditions is to use the contingent cone to K at x (see Aubin-Cel-
lina [1984], p. 176-179, for instance) defined by:

By taking U = X, f (x, u) = u, we obtain the particular case of a viability
problem for a differential inclusion

Annales de l’Institut Henri Poincard - Analyse non linéaire



375HEAVY VIABLE TRAJECTORIES

We define the feedback map R from K to U by

We observe that any viable trajectory of the controlled system (2.1)
is a solution to the « feedback » differential inclusion

(the initial set-valued map F is replaced by the feedback map R).
The main viability theorem (see Haddad [1981 ], Aubin-Cellina [1984 ]

p. 239-240) provides necessary and sufficient conditions for the existence
of viable trajectories of (2.3).

THEOREM 2.1. - We assume that

i) K is locally compact

(2. 7) ii) F is upper semicontinuous with nonempty convex compact
~ ’ ~ values .

iii) f is continuous and is affine with respect to the control.

Then the « first order » tangential condition

is necessary and sufficient for the existence of a viable trajectory of the
controlled system (2 .1) for all xo e K on some interval [0, ] 1
As a by-product of our study of heavy viable trajectories, we shall prove

the existence of viable trajectories under another set of assumptions:
The convexity of the values of F will no longer be required, but we shall
need the differentiability of f and F (which we shall define) and above all,
we shall add to the first-order tangential condition (2. 8) a « second order
tangential condition » involving the derivative of the feedback map R. tt

Before defining heavy viable trajectories, we need to recall the following
facts.
When K is a subset of a finite dimensional X, we can define other concepts

of tangent cones, among which we mention

a) the tangent cone (introduced by Clarke [1975 ]) :

Vol. 2, n° 5-1985.



376 J.-P. AUBIN AND H. FRANKOWSKA

b) the Dubovickii-Miljutin [1963] ] cone:

We have the following relations (see Aubin-Ekeland [1984] ] p. 409)

and

The tangent cone is always convex. It coincides with the contingent cone
when K is a smooth manifold (tangent space) or when K is convex or,
more generally, when K is soft in the sense that

(2.13) .Y -~ is lower semicontinuous.

(see Aubin-Clarke [1977]).
Consider now a set-valued map R from X to U and a point (x, u) of its

graph. The contingent derivative DR(x, u) is the set-valued map from X to U
defined by

It is equivalent to say that

The contingent derivative DR(x, u) is a closed process (a map whose
graph is a closed cone). We say that the map F is soft if its graph is soft.
Then DR(x, u) is a closed convex process, because its graph is equal to the
tangent cone to Graph (R) at (x, u). We shall say that R is lower semiconti-
nuousl y differentiable if

is lower semicontinuous on its domain of definition.
We observe that in this case DR(x, u) is also a closed convex process

because property (2.16) implies that (x, u) -~ u) is lower semi-
continuous, and thus, Graph DR(x, u) is a closed convex cone.

Finally, when K is a closed subset of X, we denote by

the subset of elements of K with minimal norm. If F is a continuous set-
valued map with closed convex images, the single-valued ~~1(F( ~:))

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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is continuous. This is no longer the case when F is only upper or lower
semicontinuous (with closed convex values). However,

(2 .18) if F is lower semicontinuous, then x -~ d(0, F(x)) is upper
(2. ’ .18) {semicontinuous.

We refer to Aubin [1984 ] and Aubin-Ekeland [1984], Chapter 7, Clarke
[1983] ] for a general presentation of nonsmooth analysis relevant to this
study.
We shall denote by B the unit ball and, when K is a subset, by BK(xo, 8)

the neighborhood K n (xo + 8B).

3. HEAVY VIABLE TRAJECTORIES

We consider the viability problem (2.1), (2.2) for controlled systems
with feedbacks. We have seen that viable trajectories are solutions to the
feedback differential inclusion (2. 6). When the functions x( ~ ) and u( ~ )
are absolutely continuous, we can differentiate the « first order » feedback
law

(3.1) } Vt E [0, T ], u(t) E R(x(t))
and obtain the « second order » feedback law

(3 . 2) for almost all t E [0, T ], u’(t) E DR(x(t), u(t))( f (x(t), u(t))) .
We now propose to select among all regulatory controls satisfying (3.2)
the ones whose velocity has a minimal norm : such trajectories seem to be
present in the evolution of macrosystems arising in social, economic and
biological sciences (which motivated viability theory in the first place).

DEFINITION 3.1. - We shall say that absolutely continuous functions
(x( ~ ), u( ~ )) form a heavy viable trajectory if it is a solution to the system of
differential inclusions :

which are viable in the sense that

We shall say that the subsets (which may be empty)

are the viability cells of the° system.

Vol. 2, n° 5-1985.
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We observe that along a heavy viable trajectory, a system will keep the
control u(to) as long as the state x(t) remains in the viability cell C(u(to))
for t ~ to, because in this case inclusion (3.3) ii) states that u’(t) = 0.
If not, when x(t) leaves the viability cell C(u(to)) at time to, the control
starts to evolve at time to until the time t 1 when x(t 1) E C(u(t 1)).

In the case of ordinary differential inclusions (when U = X and
f(x, u) = u), heavy viable trajectories can be written x(to) + (t - to)x’(to)
when x(to) E C(x’(to)) as long as x(to) + (t - to)x’(to) remains in C(x’(to)).
In this case, the viability cells display areas of the viability domain where
« linear quantitative growth » holds true.
We observe also the following inclusion

for all u E Im (R).
We shall state our main existence theorem.

THEOREM 3 . 2. - We assume that f is C1 in a neighborhood of Graph (F)
and that

(3 . 7) the maps F and TK are soft.

We posit the following « transversality condition »

Then the derivative of the feedback map R can be written

THEOREM 3.3. - Assume moreover that

(3.10) Graph (F) is locally compact
and that

(3.11) The feedback map R is lower semicontinuously differentiable.
Then the « first order » condition

(3.12) Vx E K, R(~-) ~ 0
and the « second order » condition

(3.13) V(x, u) E Graph (R), f(x, u) E Dom DF(x, u) n Dom DTK(x, f(x, u))
imply the existence of heavy viable trajectories of the controlled system (2 .1)
for any initial state xo E K and initial control uo E R(xo) if

(3 .14) Graph (TK) is locally compact.
Annales de l’Institut Henri Poincaré - Analyse non linéaire
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If the graph of TK is not locally compact, the initial control must satisfy

Several comments are in order. Theorem 3.3 should be compared to
Theorem 2.1. Theorem 3.3 does not involve convexity requirements, but
smoothness conditions (3.7) and (3.11) and second order condition (3.13)
on top of the first order condition (3.12). The solutions are more regular
(the control is absolutely continuous instead of being only measurable),
but there exist the restriction (3.15) on the initial state when the graph
of TK is not locally compact. Unfortunately, this happens whenever
K involves inequality constraints: Take for instance K = ~ + . Then

Graph (T~) = ( { 0 ~ x (1~ + ) u (]0, oo [ x (I~) is not locally compact. But
the map TK is soft and even lower semicontinuously differentiable because

(3 .16) u)(v) _ f !R if (x, u) , 
E graph (TK), and x > 0 or v > 0

( 0 otherwise.

This crucial example shows that assumption (3.7) is not unreasonable.
Since the maps F and TK are soft, the derivative DR(x, u) defined by (3.9)

is a closed convex process and the differential inclusion (3.3) ii) governing
the evolution of the control is actually the differential equation

(3 .17) u’(t) = m(DR(x(t), u(t)){ f (x(t), u(t)))) .

There are no general explicit formula allowing to couch m(DR(x, u)(~ f ’(x, u)))
in terms of DF(x, u)( f (x, u)), DTK(x, u)( f {x, u)) and f ’’(x, u) by using for-
mula (3 . 9). However, see Annex for some further remarks on this problem.
We can also provide sufficient conditions for the regularity assump-

tion (3.11) to hold true. For instance, thanks to a theorem on the lower
semicontinuity of the intersection of two lower semicontinuous maps
(see Aubin-Cellina [1984 p. 49), conditions (3 . 7) and (3.11) follow from
the following ones

i) the set-valued maps F and TK are lower semicontinuously
differentiable

ii ) 3c > 0 such that (x, u) -~ DF(x, u)( f (x, L~)) n c’B ~ 0 on

(3 .18)  

some neighborhood of each point (xo, uo) of Graph (R)

iii) u) E Graph (R), 3y > 0, 38 > 0 such that
V( y, v) e u), e), Vz e B(0, y), we have
z E v) + v)DF( y, v))

- f(Y, v)){.f ( Y~ v))
N

We can adapt Theorem 3 . 3 to viability domains K which are the ’inter-
section of a subset L whose tangent cone has a locally compact graph and

Vol. 2, n° 5-1985.
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another subset. Namely, consider the case of a viability domain of the form :

where A is a C1-map from X to a finite dimensional space Y. We also
assume that

This holds true for instance when:

.- . f L and M are closed convex subsets and A is linear, satisfying’ ° ) 0 E Int (A(L) - M)
(see Aubin-Cellina [1984 ] p. 325) or when

(3.22) L and M are soft{3 . 22) 
( and when Vx E K, A’(x)TL(x) - TM(Ax) = X

(see Aubin-Ekeland [1984] ] p. 440).
In this case, the feedback map R can be written

COROLLARY 3.4. - Let us assume that (3.20) holds true and that the
graphs of F and TL are locally compact. We posit assumptions (3 . 7), (3 . 8),
(3.11), (3.12) and (3.13) of Theorem 3.3.
Then for any xo E K and any control uo E F(xo) satisfying

there exist T > 0 and a heavy viable trajectory of the controlled system
(2.1) on [0,T]. A

Proof We replace F by F n whose graph is locally compact and
we observe that A’(x) -1 c DA - ~ 

Let us formulate Theorems 3.1 and 3.2 in the particular case of diffe-
rential inclusions, when U := X and f(x, u) := u.

COROLLARY 3 . 5. - Let us assume that the maps F and TK are soft and
satisfy the « transversality condition »

Then

COROLLARY 3.6. Assume that the graph of F is locally compact and

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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that the regularity condition (3.11) is satisfied. We posit the first and second
order conditions

Then, for any xo E K and any uo E F(xo) satisfying either

(3 . 28) Mo E TK(xo) when the graph of T~ is locally compact
or

there exist T > 0 and a C~ heavy viable trajectory of x’ E F(x), x(0) = xo
and x’(0) = uo, a solution to ’the second order differential equation

(3 . 30) x"(t ) = m(DR(x(t ), x’(t ))(x’(t ))), x(0) = xo, x’(0) = uo . A

4. PROOF OF THE THEOREM

We shall prove this theorem in several steps. We begin by computing
the derivative of the feedback map in terms of the derivatives of f, F and TK.

LEMMA 4.1. - We posit assumptions (3. 7) and (3 . 8). Then formula (3. 9)
holds true and DR(x, u) is a closed convex process.

Proof - We set u) :== (x, f (x, u)) and we observe that

Therefore, we know that

For proving the other inclusion, we use the formula of Aubin [1984] ]
(see also Aubin-Ekeland, [1984 p. 440) to compute the tangent cone of
Graph (R). The transversality assumption (3 . 8) and (3 . 7) imply that

Then we deduce that

Since the maps F and TK are soft, then the tangent and contingent cones
coincide. Hence inclusions (4.2), (4.4) and u) C u)
imply the equality

Vol. 2, n° 5-1985.
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which, obviously, implies formula (3.9) and that (x, u) -~ Graph DR (x, u)
is a closed convex process..
We set

which is the ball of radius d(0, R(x, u)( f(x, u))).

LEMMA 4. 2. - The trajectories of the first order system of differential
inclusions

i) x’(t) = f(x(t), u(t))
(4. 7)  ir) u’(t) E G(x(t), u(t))

iii) (x(0), u(0)) = (xo, uo) given in Graph (R)

which are viable in the sense that

(4. 8) 0, (x(t), u(t)) E Graph (R)

are heavy viable trajectories of the controlled system (2.1). ~

Proof - Indeed, the viable trajectories of (4.7), (4.8) satisfy

This inclusion and inclusion (4.7) ii) imply that u’(t) belongs to

m(DR(x(t), u(t))(, f ’(x(t), u(t))). /

LEMMA 4. 3. - Let us assume that f is continuous, that the graph of F
is locally compact, that 

and that the first and second order conditions

hold true. _

Then for any xo E K and any control uo E F(xo) satisfying either

(4.11) f(xo, uo)ETK(xo) when Graph is locally compact
or

there exist T > 0 and a heavy viable trajectory of the controlled system (2.1)
on [0,T]. A

Proof 2014 ~) By Lemma 4.2, we have to prove the existence of viable
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