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The generalized Dirichlet problem
for equations of Monge-Ampère type

John I. E. URBAS

Centre for Mathematical Analysis, Australian National University,
G. P. O. Box 4, Canberra A. C. T. 2601, Australia

Ann. Inst. Henri Poincaré.

Vol. 3, n° 3. 1986. p. ?09-?28. Analyse non linéaire

ABSTRACT. - We consider a generalization of the Dirichlet problem
for equations of Monge-Ampere type under weaker hypotheses than are
generally necessary for the solvability of the Dirichlet problem in the
classical sense. We prove that there exists a unique smooth convex function
which satisfies the equation in the classical sense and the boundary condi-
tion in a certain generalized sense.

RESUME. - On considere une generalisation du probleme de Dirichlet
pour les equations du type Monge-Ampere sous des hypotheses plus faibles
que celles qui sont en general necessaires pour assurer l’existence au sens
classique du probleme de Dirichlet. On demontre qu’il existe une fonction
convexe reguliere unique qui satisfait 1’equation au sens classique et qui
vérifie la condition a la frontiere en un sens generalise.

1. INTRODUCTION

In recent years the Dirichlet problem for equations of Monge-Ampere
type,

has received considerable attention. Here Q is a uniformly convex domain
in ~", ~ is a function defined on cS2, f is a positive function on Q x 
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210 J. I. E. URBAS

and Du and D2u denote the gradient and the Hessian respectively of the
function u, which is assumed to be convex. The existence of smooth convex
solutions of (1.1) has been established under various hypotheses and
using a variety of techniques in the work of Pogorelov [17 ] [18 ] [19 ] [20 ],
Cheng and Yau [9], P. L. Lions [7J] ] [16 ], Caffarelli, Nirenberg and
Spruck [8 ], Krylov [l4 ], Ivochkina [13 ], Gilbarg and Trudinger [12 and
Trudinger and Urbas [25]. The interior second derivative estimate of
Trudinger and Urbas [26 ], combined with an approximation argument
based on the existence theorems for smooth solutions derived in the above

works, reduces the solvability of (1.1) with C~ 
1 uniformly convex Q,

and x to the derivation of an a priori
maximum modulus estimate for convex solutions of (1.1) and the construc-
tion of suitable local barriers. In general, each of these procedures requires
different structure conditions on the function f, and several such condi-
tions are given in the papers mentioned above. A condition ensuring a
maximum modulus estimate for convex solutions of (1.1) will be given
later. A condition of the second type, which enables us to obtain a gradient
estimate with C1,1 uniformly convex Q and arbitrary (~ E C 1 ° 1 (SZ), provided
we already have a maximum modulus bound for the solution, is the

following :

(1.2) f (x, z, p)  z ~ I )d(x, + for all (x, E % x 

where Jl is positive and nondecreasing, ~V’ is a neighbourhood of a~2,
and a > 0 and f3 > - 1 are constants such that f3 > a - n - 1. This is

proved in [12 ] and [25 ] for the case f3 > 0, and the extension to ~3 E ( - 1,0)
is given in [27]. Conditions which allow us to construct globally Lipschitz
or Holder continuous convex subsolutions of (1.1) are given in [8 ] [9] ]

] [16] and [27]. Other conditions ensuring the existence of globally
smooth convex solutions of (1.1) have been formulated by Ivochkina [13 ].
However, in general these involve a restriction on the size 
and therefore do not ensure the solvability of (1.1) for arbitrary ~ E C 1 ~ ~ (S2).

In this paper we are concerned with the case that f does not necessarily
satisfy a condition such as (1.2). As is shown in [25 ] and [29 ], in this case
we cannot generally solve (1.1) in the classical sense. However, we shall
prove that under suitable hypotheses there is a unique convex solution
u E n of the equation

which need not satisfy the boundary condition

in the classical sense, but does satisfy it in a certain optimal or generalized
sense. Our result is the following.
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THEOREM 1.1. - Let S2 be a C 1 ~ 1 uniforml y convex domain in R~,
~ E C 1 ° 1 (S2) and f E C 1 ~ 1(SZ x R x a positive function such that

and

where N is a constant and g, h are positive functions in L 1 (SZ), res-

pectively such that - _

Suppose furthermore that

where ~ is a neighbourhood of and g E Lq(~), q > n, and h E 
are positive functions. Then there is a unique convex function u E n 

satisfying (1. 3) and

and such that if v~C2(03A9) is a convex function solving (1.3) and lim sup v(x)  
for all y~~03A9, then v  u in Q. 

We therefore see that u can be characterized as the supremum of all
the convex subsolutions of (1.3) which lie below ~ on aQ, and the proof
of the theorem shows that u is also the infimum of all the convex super-
solutions of (1.3) which lie above 03C6 on aSZ. We refer to u as the solution
of the generalized Dirichlet problem, although it should be noted that only
the boundary condition needs to be interpreted in a generalized sense.
A version of Theorem 1.1 yielding a generalized solution of (1.3) was

proved by Bakel’man [5] ] using polyhedral approximation in the case
that Q is bounded and convex, ~ E and f has the form

( 1.10) f(x, z, p) = for all (x, z, p) E Q x fl~ x I~n,

where g, h are positive functions in L 1 (S~), respectively satisfying (1.7).
Theorem 1.1 includes a case of geometric interest, the equation of

prescribed Gauss curvature

We state this special case separately.

THEOREM 1. 2. - Let Q be a C 1 ° 1 uniforml y convex domain in (~" and

~ E C 1 ~ ~ (S2). Let K E C 1 ~ 1 (S2) n q > n, be a positive function satisfying

Vol. 3, n° 3-1986.



212 J. 1. E. URBAS

Then there is a unique convex function u E n satisfying (1.11)
and (1.9), and such that is a convex solution of (1. lI) and
lim sup v(x)  for all y E aS2, then v  u in Q.

To prove Theorem 1.1 we first solve approximating Dirichlet problems
and obtain a convex generalized solution u of (1.3) which clearly satisfies
all the conditions except regularity. The main difficulty in proving the
regularity of u is the fact that the known interior second derivative esti-
mates for convex solutions of (1.1) require some control of the boundary
behaviour of the solutions; in particular, the estimate in [2~] ] depends
on the boundary values ~ and the modulus of continuity of the solution
on aS2 (see [20] ] for a counterexample). This kind of information is pre-
cisely what is lacking in our case, so we first need to reduce the problem
to a situation in which the interior second derivative estimate can be applied.
This requires some measure theory which we shall develop in Section 2.
In Section 2 we also give an exposition of the theory of generalized solutions
of Monge-Ampere equations, since it follows easily from the measure
theoretic results we prove, and because it is needed to prove Theorem 1.1.
In the final section we prove Theorem 1.1.
Most of our notation is standard, as for example in [12 ]. Any other

notation we use will be explained at the appropriate point.
I wish to thank Professor Neil Trudinger for his advice and interest

in this work.

2. PRELIMINARY MEASURE THEORY
AND GENERALIZED SOLUTIONS

In this section we describe the measure theory we need to prove Theo-
rem 1.1.

Let Q be a bounded convex domain in f~n and u a convex function defined
on Q. It will be useful to have an extension of u to Q, so for y E Q we define

whenever the right hand side is finite. Notice that this definition makes u
lower semicontinuous wherever u is finite.
We associate some set functions with u in the following way. We let

Then M is a convex hypersurface in + ~ . For y E ~2, we define

(2 . 3) Xu(y) = {pE [Rn: there exists a supporting hyperplane of M at (y, u( y))
with slope p }.
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213MONGE-AMPERE EQUATIONS

For any E c Q we define

and

Notice that we have

The set function ~u is often called the normal mapping of u, and is of consi-
derable use in the theory of convex functions. It appears that the mappings
xu and ~*u have not previously been used.
A result of Aleksandrov [1 ] implies that the mapping Xu is one to one

modulo a set of measure zero in the following sense.

LEMMA 2.1. - Let Q and u be as above. Then

We omit the proof of Lemma 2.1. The corresponding result for the nor-
mal mapping ~u is proved in [9 ] and [21 ].

Using Lemma 2.1 it can be shown without much difficulty that

~ _ ~ E c Q : Xu(E) is Lebesgue measurable } is a ~--algebra. Unions and
intersections are straightforward; to handle the case of complements
we use the identity

Lemma 2.1 then ensures that the second set on the right hand side has
measure zero.

We shall also use the following result which is proved in [6] and [7].
We state it in a form which is convenient for our purposes.

LEMMA 2. 2. - Let Q be a bounded convex domain in ~n 
a sequence of convex functions converging in to a convex function u.

c Q be a sequence converging to xo E S2 and ~ c a sequence

converging to p° E such that pm E Then p° E 

Now let E c Q be a closed set and let ( c be a sequence conver-

ging to po E Then we have pi~~u(xi) for suitable {xi} c E, and by
passing to a subsequence, we can assume that { x.j ~ converges to a point
Xo E E. But then, by Lemma 2. 2, we have po E Thus we see that xu
maps closed sets to closed sets, and hence the u-algebra j~ contains all
the Borel subsets of Q.

Vol. 3, n° 3-1986.



214 J. 1. E. URBAS

Now let R be a positive function, and for each set 

define

and

Generally we will denote these set functions by and cc~*(u) ; the R is
included only when it is necessary to avoid confusion. From Lemma 2.1
it follows that w(u), cv(u) and are countably additive measures on Q.
They are finite because R E and the Borel subsets of Q are measu-
rable with respect to these measures, so they are Radon measures. In par-
ticular, the following regularity properties hold :

(2.12) U is relatively open, E 

for each Borel set E c Q and

(2 .13) w(u)(U) = K is compact, K c U ~
for each relatively open set U c Q. Similar statements with w(u) replaced
by w(u) and are of course also true. We note also that for each Borel
set E c Q we have

The next few results are concerned with the behaviour of the measures
we have defined with respect to convergence of convex functions. A sequence
{ ~; ~ of Radon measures on Q is said to converge weakly on Q to a Radon
measure ~ if for each ~ E we have

This is equivalent to the following :

for each compact set K c Q, and

for each relatively open set U c Q. A sequence { of Radon measures
on Q is said to converge weakly on Q to a Radon measure p if (2 .15) holds
for all 03C6 E or equivalently, if (2 .16) and (2.17) hold for each compact
set K c Q and each open set U c Q respectively.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LEMMA 2 . 3 . - Let Q be a bounded convex domain in R E 
a positive function and a sequence of convex functions converging
in C°(S2) to a convex function u. Then cv(um) converges to weakly on Q.

Proof - Let K c Q be compact and let U be a neighbourhood of
We assert that for any N > 0 there exists mo = mo(N) such that

for all m > mo we have

If not, then there exist a subsequence ( of ( um ), which we also denote
by ( um ), a sequence ( xm ) c K and pm e m BAO) ] - U such that

xo e K and pm ~ po e U. By Lemma 2.2, we have

po e which is a contradiction.

Now let s > 0 and choose N > 0 so large that r R  s. Then
for sufficiently large 1n we have 

Thus

Letting s - 0 and using the regularity of the Lebesgue measure we obtain

Now let U c Q be relatively open and let K = Q - U. Using (2.18)
and the fact that =  oo for each m, we obtain

The lemma is therefore proved.

COROLLARY 2.4. - Let Q be a bounded convex domain in R E 

a positive function and ~ um ~ a sequence of convex functions converging
in to a convex function u. Then converges to weakly on Q.
Notice that in general, if ( is a sequence of convex functions conver-

ging to a convex function u in C°(SZ) or even in we do not have

agum) - or co*(u) weakly on Q. However, we do have the
following result.

Vol. 3, n° 3-1986.
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LEMMA 2. 5. - Let S2 be a bounded convex domain in (1~", R E 
a positive function and {um} a sequence of convex functions converging
in C°(SZ) to a convex function u, and suppose that we have

for each Borel set E c N, where N is a neighbourhood of ~03A9 and 
is a non-negative function. Then converges to weakly on ~.

Proof Let U c aSZ be relatively open and E > 0. Let V c ~ be a

relatively open set such that U = aS~ n V and f g  ~. Then by Lemma 2 . 3
and (2.14) we have ~V

Letting G ~ 0 we obtain

By the definition of we see that (2.21) holds for all relatively open
U c Q. Also, from Corollary 2.4, we have

Using (2.7), (2.14) and (2.22) we obtain

Thus

Now let K c Q be compact and let U = Q - K. Then

The lemma is therefore proved.

Remarks. - i ) The definitions (2 . 9), (2 .10) and (2 .11 ) make sense if

we assume that R E rather than R E Of course, the proofs
of Lemmas 2. 3 and 2. 5 are then no longer valid, although Corollary 2.4

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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is still true. Versions of Corollary 2.4 with positive x 

are proved in [l 7 ]. We shall not need this additional generality.
ii ) We have defined the set functions and only for bounded

convex domains Q in To define ;~u and xu we require the convexity
of Q, but and also the associated measure can be defined for a
convex function u on any domain Q in [Rn. It is easy to see that Corollary 2 . 4
holds for arbitrary domains in 
We shall also need the notion of a generalized solution of the equa-

tion (1. 3). Such concepts were introduced by Aleksandrov [2 ] and Bakel’-
man [3 ]. Expositions of these ideas, based primarily on the work of Alek-
sandrov [2 ], have been given by Pogorelov [1 7] and Cheng and Yau [9].
A different approach is given by Rauch and Taylor [21 ]. There are several
different but equivalent ways of formulating the definition, depending on
the structure of f.

For our purposes, and also because we have not proved the most general
version of Corollary 2.4, it suffices to assume that x ~ x [R") and to
adopt the following definition. A convex function is said to be
a generalized solution of the equation (1.3) if for any positive function
R E n we have

for each Borel set E c Q. Recall that if u is a convex function, then Du
exists almost everywhere.

If u E C2(S2) is a convex solution of (1. 3), then the gradient mapping
Du : S2 ~ ~n is one to one on {x E Q: det > 0 ~ with Jacobian
det D2u and Du ( { x E Q : det D2u(x) = 0 ~ ) ~ = 0, so that a classical
solution is a generalized solution. We note also that it is sufficient to make
the definition with a fixed function R. However, for different equations it
turns out to be convenient to use different functions.

LEMMA 2.6. - Let Q be a domain in Rn and {fm} c C°(S2 x R x Rn)
sequence of non-negative functions converging to f in x R x 

Let M~, E C°(S2) be a generalized solution of

and suppose that ~ um ~ converges in C°(S2) to a convex function u. Then u
is a generalized solution of (1.3).

Proof - Let R E n be a positive function. Since urn, u

are convex and um ~ u in C°{SZ) we have Du almost everywhere,
and because f in x and R E we have for almost

all x~03A9,

Vol. 3. n° 3-1986. 9
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Now let E c c Q be a Borel set. Then for any subdomain Q’ such that
E c c Q’ c c Q we have

with C independent of m, and hence

Thus

where C is independent of m. By the dominated convergence theorem we have

and since

for all Borel sets

for all Borel sets E c c Q. r . ~
Now let E eQ be a Borel set and let Em = E n d(x, aQ) > - .

Then (2.27) holds with E replaced by Em. From this and the monotone
convergence theorem we see that (2.27) holds for all Borel sets E c Q,
so the lemma is proved. //

3. PROOF OF THEOREM 1.1

We have now developed all the measure theory we need to prove Theo-
rem 1.1. We also require some a priori estimates and an existence theo-
rem concerning convex solutions of (1.1). The first of these is proved in [25]
(see also [ 15] ] [16 ]).

LEMMA 3.1. - Let Q be a C~ uniformly convex domain in 
and x R x a positive function satisfying ( 1. 5), ( 1. 6) ( 1._7)
and (1.2) with ~3 >_ 0. Then there is a unique convex solution 
of the classical Dirichlet problem (1.1).
The next result is an a priori maximum modulus estimate for convex

solutions of (1.1) and is due to Bakel’man [4 ]. The proof is short, so we
include it here.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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LEMMA 3 .2. - Let u E C2(S~) n C°(SZ) be a convex solution of the Dirich-
let problem (1.1), where f is positive and satisfies the conditions

(3.1) f is nondecreasing with respect to z in Q x (~n,

and

where N is a constant and g, h are positive function in L1(S~), res-

pectively such that

Then we have the estimate

where C depends only on n, g and h.

Proof The second inequality holds because u is convex. To prove
the first we choose Ro so large that

Using the fact that the gradient mapping Du : S2 --~ fRn is one to one with

Jacobian det D2u, we obtain for any R > Ro,

where QN == {jc e Q: u(x)  N ~, so there is Du (QN). We
then have, by the convexity of u,

We now let R ~ Ro and estimate Ro in terms of n, g and h. //
We also require interior bounds for the second derivatives and their

Holder seminorms. For the first we require only the special case of affine
boundary values which is proved in [12 ] [15 ] [16 and [26]. The second
is taken from [24 ], which is based on the work of Evans [10 ].

LEMMA 3.3. - Let Q be a bounded convex domain in f~n and f a posi-
tive function in C1 ~ 1(S~ x R x Then if u E n C3(S2) n 

Vol. 3, n° 3-1986.
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is a convex solution of (1. 3) and u is equal to an affine function on ~03A9, we
have for any Q’ c c ~2,

where C is a constant depending only on n, lull; ~, f, diam Q and d(Q’, aSZ).

LEMMA 3 . 4. - Let u E n a convex solution of ( 1. 3)
on a bounded domain Q in (~", where f E C1 ~ 1(S2 x fI~ x is positive. Then
for any Q’ c c ~ we have

where a E (0, 1) depends only on n, 2 ? ~ and f, and C depends in addition
on diam Q and 

Notice that by elliptic regularity theory ( [12 ], Lemma 17 .16), C2(Q)
convex solutions of (1.3) with positive x [R x are in fact
in n for all a E (o, 1 ) and p  00.

We now proceed to the proof of Theorem 1.1. Let ~ fm ~ be a sequence
of bounded positive functions in x (~ x [Rn) satisfying 0,

1
fm  f and fm = f for d(x, ~03A9) >-, | z| + | p|  m. By Lemma 3 .1 there

m

is a unique convex solution um E C~(Q) n of the Dirichlet problem

(3. 7) det D2um = fm(x, um, Dum) in Q, um on cQ,

and by Lemma 3.2 the sequence { um ~ is uniformly bounded, so we can
choose a subsequence converging in to a convex function u which,
by Lemma 2.6, is a generalized solution of the equation (1.3). It is clear
that u satisfies the condition (1 . 9).

Next, let v E C2(S~) be a convex solution of det D2v = f(x, v, Dv) in Q
satisfying lim sup for all y E Then by the comparison

principle we have v  um in Q for all m, so letting m ~ oo we obtain v  u

in Q.
It now remains only to show that This will be carried out

in the following lemmas. We define a function by

H is positive because h E and since f"~ _ f, we obtain from ( 1. 8)
that for any Borel set E c - 1 :

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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and

LEMMA 3 . 5. - For all E E (0, 1), po E ~n and we have

where

and C depends on n, po and H.

Proo, f : Let w be defined by

Then

which gives the required result. //
Before stating the next lemma we recall the definition of the generalized

Gauss map of a convex hypersurface. If M is a convex hypersurface in 
the generalized Gauss image of a set E c M is given by

(3.13) the outer unit normal to a supporting
YEE hyperplane of M at y }.

Thus G is a set function.
The next lemma is a generalization of a result used in [28] to prove

the regularity of extremal solutions of the equation of prescribed Gauss
curvature.

LEMMA 3.6. - Assume that all the hypotheses of Theorem 1.1 are

satisfied and let xo E ~S2 be a point such that

Then

Vol. 3, n° 3-1986.
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Proof - Let

where {um} is the sequence of n approximations to u.

We also define the measures w(u), and on Q by (2.9), (2.10)
and (2 .11) with R replaced by H. Analogous measures are defined for each u,~

Let

Then by the continuity of ~, we have for with Q n c ~,

For convenience, we assume that u(xo) = 0. We have Mm  M in the
sense that

and M contains the line segment

Therefore, for all sufficiently large m, we have

Let (xm, y/4) be the point of(Q x ~ y/4 ~ } n Mm nearest to (xo, y/4). We then
have I Xm - xo [ --~ 0 as oo.

Now let G E (0, 5) and x E aSZ n Then

for all m sufficiently large, say m > mo = Thus it follows that

for all m > mo, and hence
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