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Large scale oscillatory behaviour
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Ann. Inst. Henri Poincaré,

Vol. 4, n° 3, 1987, p. 243-274. Analyse non linéaire

R ESUME. - On considère des equations du type u" + g (u) = s ( 1 + E h (t)),
ou est une constante, E un petit parametre, h (t) une fonction 2 x-
periodique, et ou la f onction g verifie g’ ( - oo ) ~g’ (+~). Suivant les
valeurs de g’ ( + oo) et g’ ( - oo), on montre l’existence d’un grand nombre
de solutions 203C0-périodiques d’ amplitude voisine de s.

Mots Nonlinear oscillations, jumping nonlinearity, periodic solutions, Hamiltonian
systems.

ABSTRACT. - We consider equations u" + g (u) = s (1 + E h (t)), where ~ 7~ 0
is a constant, E a small parameter, h (t) a 2 ~-periodic function, and
g’ ( - oo ) ~ g’ ( + oo ). According to the values of g’ ( + oo ) and g’ ( - oo ), we
show that there exist many 2 ~-periodic solutions, the amplitude of which
are close to s.

Classification A.M.S. : .
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244 A. C. LAZER AND P. J. MCKENNA

1. INTRODUCTION

The purpose of this paper is to study periodic solutions of asymmetric
systems under an external force consisting of a large constant component
plus a small oscillatory component. The type of system satisfies the

equation

where in general F is a 2 ~-periodic function and g is asymptotically
asymmetric, that is, satisfies g’ ( - oo) ~g’ ( + oo).
The simplest of these equations is the piecewise linear homogeneous

problem.

A physical realization of this system is given by a particle of mass one
sandwiched between two springs, but attached to neither, and allowed to
move only along a straight line. If the spring constant of the first spring
is a and the second is b, then the restoring force due to the two spring
would be - bu + + au - . (Unilateral springs of this type are called "rest
stops" in the engineering literature.) This paper is concerned with the two
cases, a > o, b > 0 and a  o, b > o. The second situation is more difficult
to envisage, but can be pictured as follows. A particle of mass one is

allowed to move on a curve given by y=O for x>0 and the curve
x2 + (y + a)2 = a2 for x  0. Gravity acts in the negative y direction. A rest
stop acts to the right of the origin pushing the particle to the left with
force bx if x > 0 and not affecting the particle if x is negative. The force
due to gravity will be in the negative direction, proportional to Sin O,
where 8 is the angle subtended by the particle and the origin at (0, - a).
For small 8, this is approximately the distance s along the curve from
the origin. Thus, we expect the particle to satisfy, for small s, the equation

where F is the forcing term and b > o, a  o.
Thus equation ( 1. 2) has simple physical realizations in either of the two

situation (a > o, and (a  0, b>O).
We shall be considering the equations ( 1. 1) and ( 1. 2) under the inf-

luence of a forcing term of the form namely a large
constant term plus a small oscillatory term h (t) of period 2 x. We consider
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245LARGE SCALE OSCILLATORY BEHAVIOUR

the existence of 2 x-periodic solutions and we give substance to the follo-
wing slightly vague principle: "the greater the asymmetry of the system, the

greater the number of large-amplitude oscillatory 2 x-periodic solutions".

As a measure of the asymmetry of the system, we use the interval (a, b)
for ( 1, 2) [or for (1,1) the interval (g’ ( - oo ), g’ ( + oo ))]. We show that the
number of periodic solutions is 2 n where n is the number of eigenvalues
j2, j > 1 in the interval (a, b). In the case (a  0, all solutions are for

s positive, although for (a > 0, b>O) some are for s positive and some for
s negative. This is made precise in the main theorem of section 3.

In section 4, we show that at least in one simple case, our theorem is
sharp.
We believe these results provide a new insight into "resonance". We

have three essential ingredients, (a) a sufficiently large asymmetry in the
system, (b) a large loading term and (c) a small oscillatory term. We show
that in the absence of damping these three ingredients give rise to large
oscillations which could not be predicted by the linear theory. Further-
more, the magnitude of the oscillation is that of the large load, not that
of the small oscillatory term. One cannot help but be struck by the analogy
to the problem of large oscillatory behaviour in suspension bridges, either
under the influence of high winds (large constant terms plus small oscilla-
tory periodic behaviour due to stall-flutter) or under the influence of

soldiers marching (large constant force due to the weight of soldiers plus
small periodic term due to their marching in step).

Indeed, consider the following idealization of. a suspension bridge. We
consider a beam of length L and a restoring force of the type bu + . This
latter force is to take account of the fact that a cable will tend to return

to equilibrium if stretched, but will exert no restoring force if compressed.

Consider a load which is of the form where S is a large

constant, h is periodic and s is small. (Thus the forcing term consists of a
large uni-directional load with small oscillations.) Such a bridge will have
obey the equation.

Vol. 4, n° 3-1987.



246 A. C. LAZER AND P. J. MCKENNA

If we look for solutions of the form y (t) sin 
" , we find that y must

. L

satisfy

which is exactly of the type ( 1. 2). Thus, large amplitude oscillations of
( 1. 2) predict large oscillations in suspension bridges.

In a later paper, we investigate the stability properties of these solutions.
In particular, we consider ( 1. 3) with small damping, when it can be
shown that large amplitude solutions exist. Preliminary computations have
revealed that these solutions can be extremely stable.

This work arises from the earlier work of the authors plus D. Hart, on
equation (1.1) with Dirichlet or Neumann conditions, where similar results
were obtained (see [3], [5], [7]).
We wish to thank Ivar Ekeland for his helpful suggestions, which

considerably shortened section 2.

2. PRELIMINARIES

In this section we make a geometric study of solutions of the differential
equation

near a nonconstant periodic solution uo (t) of the unperturbed differential
equation

where uo (t) has least period To> o. We assume that g is of class C 1 and
that h is continuous and periodic with period k To where k is a positive
integer. Here E is a small parameter.
The solution uo (t) is said to be nondegenerate, or uo (t) has property

(ND), if every To-periodic solution of the second-order linear differential
equation
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247LARGE SCALE OSCILLATORY BEHAVIOUR

is of the form CMo (t) for some number c. If uo (t) has property (ND) and

Z(t) is a solution of ( 2 . 3) which is not a multiple of then since

Z ( t + To) is also a solution of ( 2 . 3), there exist constants C 1 and C2 such
that

Since the Wronskian of Mo and Z is constant, C2 =1, and since Z is not

To-periodic, 
Since it follows that every k To-periodic

solution of (2. 3) must be of the form cuo (t), a fact which will be used
below.

It was shown in [6] that if g(03BE)03BE>0 for 03BE~0 and either g has hardening
characteristic (g’ (~) > g (~)/~ for ~ ~ 0) or softening characteristic

(g’ (~)  g (~)/~ for ~ ~ 0), then any nonconstant periodic solution of (2 . 2)
has property (ND). In the next section we shall show that a for a certain
class of asymmetric restoring terms g, similar to those considered in the

previous section, nonconstant periodic solutions of ( 2 . 2) have property
(ND). In [5] it was shown that if g (~) ~ ~ 0 has hardening or

softening characteristic, and uo (t) is a nonconstant To-periodic solutions
of (2. 2), then for any continuous To-periodic h (t), for E I sufficiently
small, there exist at least two To-periodic solutions of (2.1) near translates
of uo. In this section, under the more general assumption that uo (t) has

property (ND), we show that if h (t) is k To-periodic then for I E sufficiently
small there exist at least two k To-periodic solutions of (2.1) near translates
of uo. As in [6] we exploit the fact that for any t>O, the time t map of

R2 into R2 associated with the first-order system corresponding to (2.1)
is area preserving.

Regarding R2 as the set of 2 x 1 column matrices we define

and let

Since uo (t) is nonconstant, Y o ( t) #col (0,0) for all t. The vector Y o ( t) is

tangent to Co at the point corresponding to col ( uo (t), uo (t)) and N ( t) is
normal to Co at the same point.

Vol. 4, n° 3-1987.
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Using the inverse function theorem, one can show that if So> 0 is
sufficiently small, then the mapping

maps the strip

onto open annular neighborhood of Co, two points, (i’, s’) and (i", s")
in S have the same image under the mapping if and only if s’ = s" and

for some integer m, and the mapping restricted to a small
neighborhood of a point in S has a C~ inverse ( see [I], p. 350).

Let u (t, t, S, E) denote the solution of (2 .1) such that

and let

Since u (t, t, 0, 0) = uo (t + i), it follows that Y ( t, t, 0, 0) = Y o ( t + i).
From the fact that (2.4) defines a covering map (see [2]) and basic

results concerning smooth dependence of solutions of differential equations
on initial conditions and parameters we infer the existence of positive
numbers E 1 and s 1  so and unique C~ functions 8 ( t, t, S, E) and p (t, t, s, E)
defined for ( t ( s and lEI such that

and

LEMMA 2 . I. - Let uo (t) have property (ND). Then there exists Eo> 0
and s*, 0  s*  si, and a continuous function F(I, E) defined for - aJ  I  aJ

and ( E (  Eo, such that ( F(I, E) (  s*, is continuous, and
lI

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Conversely, if E I  Eo,  s*, and 8(kTo, i, s, s) = i + k To, then

s = s (i, E).
Moreover, s (i + To, E) = s (i, E) and s (i, 0) --_ o.

Remark. - Since Yo (i + k To) --_ Yo (i) and N (i + k To) = N (i), it follows
from ( 2 . 9) that

Refering to (2. 5) and (2.6) we see that geometrically this means that on
each sufficiently short normal to the curve Co there exists a unique point
such that the solution of the system

which starts at this point at time t = 0 returns to a point on the same normal

after time k To.

Proof of Lemma. - The proof is an application of compactness and
the implicit function theorem.

Setting E = 0 in (2. 9), then differentiating with respect to s, then setting
s = 0 and using ( 2 . 8), we find that for I t I _- 2 k To, - oo  i  o0

We assert that

To prove this, we suppose, on the contrary, that there exists io such

that To, To? 0, 0) =0. As functions of t, the components of Y (t, T, s, E)
ls

satisfy the system (2.11). Setting col (yi, y2) =Y (t, i, s, 0) in (2 .11), diffe-
rentiating with respect to T and s, then setting z = io, s = o, we find that
each of the vector functions

is a solution of the homogeneous linear differential system

Vol. 4, n° 3-1987.
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where

Since

so V (t) is a k To-periodic solution of (2.14). From (2. 5) and (2. 6) we see
that V(0) and W(0) = N (io). Since and N (io) are nonzero
and orthogonal, V (t) and W (t) are independent solutions of (2.14). ,

From the assumption that (2 . 13) is false at i = io and from (2 . 12), we
see that 

.

where b = To, 0, 0). Let X (t) be the 2 x 2 matrix whose first and
a~ 

o~ o~ ~ ) ( )

second columns are V ( t) and W ( t) respectively. Since the trace of A ( t) is
identically zero, it follows from Liouville’s theorem that the determinant
of X (t) is constant. Therefore, since V (k To) = V (o) and the determinant
of X (0) is equal to the determinant of X (k To), we must have b = 1. Since
this implies that W (t) is k To-periodic it follows that all solutions of

(2.14) are k To-periodic of equivalently all solutions of the second order
differential equation

are k To-periodic. But since every solution y (t) of (2. 3) is of the form

where Z is a solution of ( 2 . 15), this contradicts the assumption
that uo (t) has property (ND).

This contradiction proves the claim (2. 13).
Let Z be the Banach space consisting of bounded real-valved To-periodic

functions z (t) defined for - oo  i  oo with norm

and let U be the open subset of Z consisting of functions z such that

~ z Let Bj/: U x ( - E1, El) - Z be defined by

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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We see that B)/ has a continuous Frechet derivative with respect to the first
variable given by 

-

If 0 E Z denotes the function which is identically zero, then

So, according to what has been shown above, Dl ~r (0, 0) has a continu-
ous inverse. Hence, by the implicit function theorem, there exist numbers

Eo > 0 and s* > 0 and a continuous mapping

such that E) = 0, z (0) = 0, and if E) = 0 with ( z I  S* and

lEI I  Eo, then z = z (E).
Setting E) = z (E) (i), we have that (2.10) holds for all T if ~ I  £o,

F(1, 0) ~ 0, and s (i + To, E) - s (i, E). Conversely, suppose that for some i3,
13, s3, where I  s* and  Eo. Setting

z* (i) = for i ~ i3 + m To, m = 0, + 1, ± 2, ..., and z* (i3) = s3, other-
wise, we see that z*eU* and ~r (Z*, S3)=0. Hence z* = z (E3) which means
S3 - S (23~ E3).
By taking Eo and s* smaller if necessary, we may assume that

for -ooioo, Is/ s* and |~| so.
Suppose that TZ is arbitrary and that |~2|  so. From the two conditions

and the classical implicit function theorem, we infer the existence of

intervals I and J containing i2 and E2 respectively, with J c ( - Eo, Eo), and
a function cp : I x J --~ ( - s*, s*) such that

Vol. 4, n° 3-1987.
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for and and a~ are continuous. By what we have shown~P 
~~ 

Y

above we must have E) = s (i, E) for (i, E) E I x J and this establishes

continuity of s and . This proves the lemma.y 
ai 

p

THEOREM 2. 1. - Let uo (t) be a nonconstant To-periodic solution of {2. 2)
which has property (ND). For a > 0 let A (a) denote the annular region
consisting of points of the form Yo (i) + s N (i) with I s  a, i E [0, To]. Given
oc > o, there exists E* > 0 such that for ( E  E* there exist at least two k To-
periodic solutions u~ (t), j =1, 2 of (2 . 2) such that E A (a)
for j =1, 2.

Proof - Let s*, Eo and be as in

Lemma 2 . 1 and for ‘E I  Eo let Ct be the simple closed curve with represen-
tation

If IIE : R 2 ~ R 2 denotes the time k To map defined by the system ( 2 . 11 )
and C: denotes the image of Cg under 03A0~ then, according to Lemma 2.1,
C: has the representation

Suppose that ( E  Eo and there exists a point q in C*. Then

Since

we have

Therefore, since (2. 4) is a covering map of the 
on A ( so) we must have for some integer m. Therefore, since
the functions Y (’t), N (’t), p (t, i, s, E), and s (i, E) are To-periodic in i, it

follows that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Therefore, Y ( t, i 1, s (i I E), E) is a k To-periodic solution of (2.11).
To prove the theorem, it is therefore sufficient to show that given a > o,

CE and C: intersect in at least two points in A (a) if E is sufficiently small.
Since the divergence of the time dependent vector field

is identically equal to zero, the time k To map II£ associated with system
(2.11) is area preserving; that is, if D is a measurable subset of the plane,
then IIE (D) has the same measure as D provided IIE is defined on D

(see [4] for more details). If Do is the bounded region bounded by Co then
IIE will be defined on some open set U containing Do, for I E sufficiently
small. Since Ho (Co) = Co, both CE and C: are equal to Co when E = o. Let
qo be a point in Do and let D~ and D: be the bounded regions bounded
by the simple closed curves CE and C: respectively. Since CE and CE
depend continuously on E, it follows (for example, by use of winding
numbers) that qo E D: for E sufficiently small. Therefore, by connec-
tivity DE is in U and IIE (D£) = DE for I E I sufficiently small. Since D£ and
D: have the same area this implies that C~ (~ CE contains at least two
points for Since for given a > o, both CE and C: are in A (ex) for
( E sufficiently small, this proves the theorem.
A number to E [0, To] is said to be a bifurcation value [relative to uo (t)

and (2.1)] if there exists a sequence with for all and E" -~ ~
as n - oo and a corresponding sequence of k To-periodic functions

such that un(t) is a solution of (2.1) when and

un (0) - uo (to), u;, (0) --~ uo (To) as n -~ 00.
In addition to Theorem 2.1 we shall also need a result concerning

bifurcation values which is known, although perhaps not stated in the
following way:
THEOREM 2.2 (Loud). - Assume that uo (t) has property (ND) and let

If

then for ( E I sufficiently small there exists a k To-periodic solution u (t, E) of
(2.1) such that u (0, E) -~ uo (to), u’ (0, E) -~ uo (to) as E ~ 0 and there exists

Vol. 4, n° 3-1987.
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a neighborhood U of (uo (io), uo (io)), depending on E such that if u (t) is a
k To-periodic solution of (2 . 1) with (u (o), u’ (o)) E U then u (t) = u (t, E).

If io is a bifurcation value then F (io) = o.
In [6] Loud, using implicit function techniques, showed that if u* (t) is

a nonconstant To-periodic solution of (2. 2) which has property (ND) and

then for E small, there is a unique k To-periodic solution u (t, E) of (2 .1)
with (u (o, E), u’ (0, E)) close to (u* (0), u*(0)). If u* is the solution

uo (t + io), then, from (2. 16), we see that Loud’s conditions reduce to the
conditions (2. 17).

If To is a bifurcation value relative to uo and (2.1) and the sequences
~ En ~ i and { un (t) ~ i are as above then, by k To-periodicity of u", we have
for each n

where G is an antiderivative of g. Since un (t) -~ uo (t + io) uniformly on
[o, k To] as n - oo, letting n - oo in (2.18) yields F (io) =0. Therefore this
condition is necessary.
Theorem 2.2 can also be derived as a special case of multiparameter

bifurcation theory for second order periodic differential equations - see
for example [8], Chapt. 8.

Remark. - Although it does not seem possible to derive Theorem 2.1
from Theorem 2. 2, the generic case of Theorem 2. 1 does follow from
Theorem 2 . 2. In fact, the set of continuous, k To-periodic functions h (t),
for which the To-periodic C~ function F(t) in (2.16) has only simple
zeros, is open and dense, with respect to the uniform topology. Since, by
To-periodicity of uo (t) we have

there exist numbers tl and t2 with such that

F (il) = F (i2) = o. Therefore, if F has only simple zeros, Theorem 2 . 2

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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implies that, for I E sufficiently small, there are at least two k To-periodic
solutions of (2. 1) which are close to translates of uo (t). We are grateful
to Ivar Ekeland for this observation.

Example. - Suppose that uo (t) is a nonconstant periodic solution of
(2 .1) with least period 2 x. We show that there are exactly two bifurcation
values 03C41 and i2 in [0, 2 x) relative to uo (t) and the differential equation

Here, of course, k = 1. Moreover, we show that F’ (i~) ~ 0, j =1, 2, where
F is as in the previous lemma.
Suppose Then Otherwise both uo (t)

and the constant C=u0 (tl) would be solutions of 2 . 2 which have the same
values and same derivatives at which contradicts the assumption that
uo (t) is nonconstant. Therefore the zeros of are isolated. Let t 1 and
t2 be consecutive zeros of u’ (t) with ti  t2. Since uo (t) and uo (2 t2 - t) are
both solutions of (2.1) which have the same values and the same deriva-
tives at t = t2, uo (t) --_ uo (2 t2 - t). Using this relation, it follows that if

then u 1 and

and hence uo (t) is periodic with period 2 ( t2 - t 1 ). Since uo (t2) ~ 0 and
uo (t) = uo (2 t2 - t) we see that has opposite signs on the intervals
(ti, t2) and ( t2, 2 t2 - t 1 ). Hence 2 (t2 - tl) is the least period of uo (t) so by
assumption 2 ~ = 2 (t2 - tl). It follows that for or

t E (1t, 2 ~) and that changes sign at t = ~. Hence

where

It follows that a2 + b2 ~ 0.
Let b be chosen so that if r = a + b , then We

have

Vol. 4, n° 3-1987.
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It follows that F(-r) has exactly two zeros on (0, 2 ~c], which are both
simple. By Theorem 2 . 2, for ~ I ~ 0 and small, (2 . 19) has exactly two
2 ~-periodic solutions near translates of uo (t).

This example will be used to establish sharpness of a result given below.

3. PERIODIC SOLUTIONS
OF DIFFERENTIAL EQUATIONS

WITH ASYMMETRIC NONLINEARITIES

In this section we study the differential equation

We assume that f is a Cl-function, the limits

exist and are finite, and a  b. The function h (t) is continuous and 2 x-

periodic and s and E are constants with I s large and small. Our goal
is to give lower and upper bounds for the number of 2 ~-periodic solutions
of (3.1) for suitably restricted s and E in terms of the number of squares
of integers in the interval ( a, b). We consider in detail the case where a> o.
We study (3.1) under the following assumptions.

There exist integers p and q with p >_ 0 such that

A2: The piece-wise linear homogeneous differential equation

has no nonconstant 203C0-periodic solutions. (This is easily seen to be equiva-
lent to the assumption that 2/N for N =1, 2, ... )

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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We first study the autonomous differential equation

in which we make the substitution y (t) = su (t) where 5’ > 0. According to
the assumptions ( 3 . 2) we may write

where lim fo (~)/~ = o. Since both § + are positively homogeneous

of degree one, u (t) satisfies the differential equation

For large s > 0, the function b ~ + - a ~ - + fo (s ~)/s -1= 0 has a unique zero
CS and CS -~ I/b as s - 00. Since b ~ + - a ~ - +. f ’o (s ~)/~ tends to + oo and
- oo as § tends to + oo and - oo respectively, for s large and positive all
solutions of (3.4) are periodic. Moreover, the trajectories of the corre-
sponding system

coincide with the level curves of the function

where

and

For s > 0 and s large, CS is the unique constant solution of ( 3 . 4).
LEMMA 3 .1. - Let s* > 0 be so large that for s >_ s* (3. 4) has the unique

constant solution CS and all solutions of ( 3 . 4) are periodic. Let
be the minimal period of the nonconstant solutions of

(3. 3). Given any number b > 0 there exists a number r = r (~) such that if
s _> s* and u (t) is a solution of (3 . 4) with u ~ ~ >- r, then the minimal period
of u is greater than T - ~.

Proof - In the contrary case there exists a sequence of numbers
~ with S* for all m, and a corresponding sequence of functions

Vol. 4, n° 3-1987..


