VIERI BENCI
DONATO FORTUNATO

Existence of geodesics for the Lorentz metric of a stationary gravitational field

<http://www.numdam.org/item?id=AIHPC_1990__7_1_27_0>

© Gauthier-Villars, 1990, tous droits réservés.

NUMDAM
Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
Existence of geodesics for the Lorentz metric of a stationary gravitational field (*)

by

Vieri BENCION

Istituto di Matematiche Applicate, Università,
56100 Pisa, Italy

and

Donato FORTUNATO

Dipartimento di Matematica,
Università, 70125 Bari, Italy

ABSTRACT. - Let $g = g(z)$ ($z = (z_0, \ldots, z_3) \in \mathbb{R}^4$) be a Lorentz metric (with signature $+,-,-,-$) on the space-time manifold \mathbb{R}^4. Suppose that g is stationary, i.e. g does not depend on z_0. Then we prove, under some other mild assumptions on g, that for any two points $a, b \in \mathbb{R}^4$ there exists a geodesic, with respect to g, joining a and b.

Key words: Lorentz metric, geodesic, critical point.

RÉSUMÉ. - Soit $g = g(z)$ ($z = (z_0, \ldots, z_3) \in \mathbb{R}^4$) une métrique de Lorentz (avec signature $+,-,-,-$) sur l'espace-temps \mathbb{R}^4. On suppose que g soit stationnaire, c'est-à-dire indépendante de z_0. Nous démontrons, sous des autres convenables hypothèses sur g, l'existence d'arcs de géodésique joignant deux points a, b arbitrairement donné dans \mathbb{R}^4.

(*) Sponsored by M.P.I. (fondi 60% «Problemi differenziali non lineari e teoria dei punti critici; fondi 40% «Equazioni differenziali e calcolo delle variazioni»).
0. INTRODUCTION AND STATEMENT OF THE RESULTS

In General Relativity a gravitational field is described by a symmetric, second order tensor
\[g \equiv g(z)[\ldots], \quad z = (z_0, \ldots, z_3) \in \mathbb{R}^4 \]
on the space-time manifold \(\mathbb{R}^4 \). The tensor \(g \) is assumed to have the signature +, −, −, −; namely for all \(z \in \mathbb{R}^4 \) the bilinear form \(g(z)[\ldots] \) possesses one positive and three negative eigenvalues. The "pseudometric" induced by \(g \) is called Lorentz-metric.

In this paper we study the existence of geodesics, with respect to \(g \), connecting two points \(a, b \in \mathbb{R}^4 \).

To this end we consider the "action" functional related to \(g \), i.e.
\[
f(z) = \frac{1}{2} \int_0^1 g(z(s)) [\dot{z}(s), \dot{z}(s)] ds = \frac{1}{2} \int_0^1 \sum_{i,j=0}^3 g_{ij}(z(s)) \dot{z}_i(s) \dot{z}_j(s) ds \quad (0.1)
\]
where \(g_{ij}(i,j=0,\ldots,3) \) denote the components of \(g \) and \(z = z(s) \) belongs to the Sobolev space
\[H^1 \equiv H^1((0,1), \mathbb{R}^4) \]
of the curves \(z:(0,1) \to \mathbb{R}^4 \) which are square integrable with their first derivative \(\dot{z} = \frac{dz}{ds} \). If \(g \) is smooth, \(f \) defined in (0.1) is Fréchet differentiable in \(H^1 \). Let \(a, b \in \mathbb{R}^4 \), then a geodesic joining \(a \) and \(b \) is a critical point of \(f \) on the manifold
\[
M = \{ z \in H^1 \mid z(0) = a, z(1) = b \}. \quad (0.2)
\]
Due to the indefiniteness of the metric \(g \) it is easy to see that the functional (0.1) is unbounded both from below and from above even modulo submanifolds of finite dimension or codimension. Then the Morse index of a geodesic is \(+\infty \), in contrast with the situation for positive definite Riemannian spaces. This fact causes difficulties in the research of a geodesic connecting \(a \) and \(b \) and actually such a geodesic, in general, does not exist (cf. [3], § 5.2 or [5], remark 1.14).

However the above difficulties can be overcome if the events \(a, b \) are causally related, namely if \(a, b \) can be joined by a smooth curve \(z = z(s) \) such that
\[
g(z(s))[\dot{z}(s), \dot{z}(s)] \geq 0 \quad \text{for all} \ s \in (0,1). \quad (0.3)
\]
Such a curve is called causal.

In this case, under mild assumptions on \(g \), the existence of a causal geodesic joining \(a, b \) can be achieved just maximizing the functional

\[
f^*(z) = \int_0^1 \sqrt{g(z)(\dot{z}(s), \dot{z}(s))} \, ds
\]

over all the causal curves in \(M \) (cf. [1], [8] or [3], chapt. 6).

Here we are interested to find sufficient conditions on the metric tensor \(g \) which guarantee the existence of geodesics connecting \emph{any} two given points \(a, b \in \mathbb{R}^4 \).

We shall prove the following result.

Theorem 0.1. - Let \(g_{ij}(i,j=0,\ldots,3) \) denote the components of the metric tensor \(g \). We assume that:

- \(g_{ij} \in C^1(\mathbb{R}^4, \mathbb{R}) \) \((i,j=0,\ldots,3)\).
- \(g_{00}(z) \geq \nu > 0 \) for all \(z \in \mathbb{R}^4 \).
- There exists \(\mu > 0 \) s. t.

\[
- \sum_{i,j=1}^3 g_{ij}(z) \xi_i \xi_j \geq \mu \| \xi \|^2 \quad \text{for all } z \in \mathbb{R}^4
\]

and all

\[
\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3.
\]

\(g_4 \) The functions \(g_{0i} (i=0,\ldots,3) \) are bounded.

\(g_5 \) \(\frac{\partial g_{ij}}{\partial z_0}(z) = 0 \) for all \(z \in \mathbb{R}^4 \).

Then for any two points \(a, b \in \mathbb{R}^4 \) there exists a geodesic, with respect to the metric \(g \), joining \(a \) and \(b \).

The assumptions \(g_1 \), \ldots, \(g_4 \) are reasonably mild.

The most restrictive assumption is \(g_5 \) which means that the gravitational field is stationary (cf. [4], §88). The proof of theorem 0.1 is attained by using some minimax arguments which have been recently developed in the study of nonlinear differential equations having a variational structure (cf. e.g. [7] for a review on these topics).

1. PROOF OF THEOREM 0.1

The manifold \(M \) in \(H^1 \) defined in (0.2) can be written as follows

\[
M = \tilde{z} + H_0^1
\]

where

\[
\tilde{z} = a + (b - a) s, \quad s \in (0,1)
\]
In order to prove theorem 0.1 we shall first carry out a finite dimensional approximation.

Let \(n \in \mathbb{N} \) and set

\[
M_n = \bar{z} + H_n
\]

where

\[H_n = \text{span} \{ \varphi_j \sin \pi l \theta : j = 0, \ldots, 3; l = 1, \ldots, n \} \]

\(\varphi_j(j=0,\ldots,3) \) being the canonical base in \(\mathbb{R}^4 \).

Moreover we set

\[
\begin{align*}
V_n &= \text{span} \{ \varphi_0 \sin \pi l \theta : l = 1, \ldots, n \} \\
W_n &= \text{span} \{ \varphi_j \sin \pi l \theta : j = 1, 2, 3; l = 1, \ldots, n \} \\
S_n &= \bar{z} + V_n \\
Q_n(R) &= \bar{z} + W_n \cap B_R
\end{align*}
\]

where

\[
B_R = \{ z \in H^1_0 \mid \| z \| \leq R \}, \quad R > 0
\]

and \(\| \cdot \| \) denotes the standard norm in the Sobolev space \(H^1 \). Finally we set

\[
f_n = f|_{M_n}
\]

where \(f \) denotes the functional defined in (0.1). First we prove the existence of a critical point of \(f_n \), that is to say of a point \(z_n \in M_n \) such that

\[
\langle f'(z_n), \zeta \rangle = 0 \quad \text{for all} \quad \zeta \in H_n
\]

where \(f' \) is the Fréchet-differential of \(f \) and \(\langle \ldots, \rangle \) denotes the pairing between \(H^1 \) and its dual. More precisely the following theorem holds.

Theorem 1.1. Suppose that \(g \) satisfies the assumptions of theorem 0.1. Then there exists a critical point \(z_n \in M_n \) of \(f_n \) such that

\[
c' \leq f(z_n) \leq c''
\]

where \(c' \) and \(c'' \) are two constants independent on \(n \).

The proof of theorem 1.1 is based on a variant of the "saddle point theorem" of P. H. Rabinowitz [cf. [6] or propositions 2.1 and 2.2 in [2]]. We need some lemmas.

Lemma 1.2. Fix \(n \in \mathbb{N} \) and \(R > 0 \). Then \(S_n \) and the boundary \(\partial Q_n(R) \) link, namely for any continuous map \(h : M_n \to M_n \) s.t. \(h(\bar{z}) = z \) for all \(z \in \partial Q_n(R) \), we have

\[
h(Q_n(R)) \cap S_n \neq \emptyset
\]
Proof. Let \(h: M_n \to M_n \) s. t. \(h(z) = z \) for all \(z \in \partial Q_n(R) \) and define
\[
\tilde{h}: H_n \to H_n \quad \text{s. t.} \quad \forall \gamma \in H_n: \quad \tilde{h}(\gamma) = h(\gamma + \tilde{z}) - \tilde{z}
\]
It is easy to see that
\[
\tilde{h}(\gamma) = \gamma, \quad \forall \gamma \in \partial (B_R \cap W_n)
\]
Then by using the Brower degree (cf. [2], prop. 2.1 or [6]) it can be shown that there exists \(\gamma \in \tilde{h}(W_n \cap B_R) \cap V_n \) and therefore \(\tilde{z} + \gamma \in h(Q_n(R)) \cap \mathbb{S}_n \). \(\square \)

We denote by \(f'|_{M_n} \) the Fréchet differential of \(f \) on the manifold \(M_n \) and by \(\| . \| \) the standard norm in \(H^1 \). Moreover we set
\[
t = z_0 \quad \text{and} \quad x = (z_1, z_2, z_3)
\]
Now we prove that \(f|_{M_n} \) satisfies the Palais-Smale condition. More precisely the following lemma holds.

Lemma 1.3. Let \(g \) satisfy the assumptions of Theorem 0.1. Let \(\{ z_k \} \) be a sequence in \(M_n \) such that
\[
f'|_{M_n}(z_k) \to 0 \quad \text{as} \quad k \to \infty \quad \text{(1.5)}
\]
and
\[
\{ f(z_k) \} \text{ is bounded} \quad \text{(1.6)}
\]
Then \(\{ z_k \} \) is bounded in the \(H^1 \) norm and consequently it is precompact.

Proof. Since \(z_k \in M_n \), we can set
\[
z_k = (t_k, x_k) = \tilde{z} + (\tau_k, \xi_k)
\]
with \(\tau_k \in V_n \) and \(\xi_k \in W_n \) [cf. (1.1), (1.2)].

By (1.5) we deduce that
\[
\langle f'(z_k), \zeta \rangle = \epsilon_k \| \zeta \| \quad \text{for all} \quad \zeta \in H_n \quad \text{(1.7)}
\]
where \(\epsilon_k \to 0 \) as \(k \to \infty \).

Then for all \(\zeta = (\tau, \xi) \), with \(\tau \in V_n \) and \(\xi = (\xi_1, \xi_2, \xi_3) \in W_n \), we have
\[
\int_0^1 g(x_k)[\dot{z}_k, \xi] \, ds + \frac{1}{2} \int_0^1 \sum_{i,j=0}^3 \sum_{i=1}^3 \frac{\partial g_{ij}}{\partial x_i}(x_k) \cdot (\dot{\xi}_i)(\dot{\xi}_j) \, ds = \epsilon_k \| \zeta \|. \quad \text{(1.8)}
\]
And, if we take \(\zeta = (\tau_k, 0) = \tau_k \), we get
\[
\int_0^1 g(x_k)[\dot{z}_k, \dot{\tau}_k] \, ds = \epsilon_k \| \tau_k \| \quad \text{(1.9)}
\]
Now set
\[
T = \begin{pmatrix}
+1 & 0 \\
-1 & -1 \\
0 & -1
\end{pmatrix}
\] (1.10)

Then
\[
\tau_k = \frac{1}{2} [z_k - \bar{z} + T(z_k - \bar{z})]
\]

and from (1.9) we get
\[
\frac{1}{2} \int_0^1 g(x_k)[\dot{z}_k, z_k - \bar{z}] ds - \varepsilon_k \| \tau_k \| = -\frac{1}{2} \int_0^1 g(x_k)[\dot{z}_k, T(z_k - \bar{z})] ds. \tag{1.11}
\]

By (1.6) there exists \(c_1 > 0 \) such that for all \(k \in \mathbb{N} \)
\[
|f(z_k)| = \frac{1}{2} \int_0^1 g(x_k)[\dot{z}_k, \dot{z}_k] ds \leq c_1.
\]

From (1.11) we get
\[
\frac{1}{2} \int_0^1 g(x_k)[\dot{z}_k, T\dot{z}_k] ds
\]
\[
\leq c_1 + \frac{1}{2} \int_0^1 g(x_k)[\dot{z}_k, \bar{z}] ds + \frac{1}{2} \int_0^1 g(x_k)[\dot{z}_k, T\bar{z}] ds + \varepsilon_k \| \tau_k \|
\]
\[
= c_1 + \int_0^1 (g_{00}(x_k) \dot{z}_k + \sum_{i=1}^3 g_{0i}(x_k) (\dot{x}_k)_i T \dot{z}_k) ds + \varepsilon_k \| \tau_k \| \tag{1.12}
\]

where \((\bar{t}, \bar{x}) = \bar{z}\).

Since \(g_{0i} (i=0,1,2,3) \) are bounded, from (1.12) we easily get
\[
\int_0^1 g(x_k)[\dot{z}_k, T\dot{z}_k] ds \leq 2c_1 + c_2 \| z_k \| + 2\varepsilon_k \| \tau_k \| \tag{1.13}
\]

where \(c_2 \) is a positive constant depending on \(\bar{t} \) and \(g_{0i} (i=0, \ldots, 3) \).

Now it can be easily verified that
\[
g(x_k)[\dot{z}_k, T\dot{z}_k] = g_{00}(x_k) \dot{z}_k^2 - \sum_{i,j=1}^3 g_{ij}(x_k) (\dot{x}_k)_i (\dot{x}_k)_j. \tag{1.14}
\]

From (1.13) and (1.14) and by using \((g_2), (g_3)\) we get
\[
c_3 \| z_k \|^2 \leq 2c_1 + c_2 \| z_k \| + 2\varepsilon_k \| \tau_k \| \tag{1.15}
\]

where \(c_3 \) is a positive constant.
From (1.15) we deduce that

\{ z_k \} is bounded in \(H^1 \). \(\square \)

Proof of Theorem 1.1. — Set

\[
W = \sum_{n \in \mathbb{N}} W_n, \quad V = \sum_{n \in \mathbb{N}} V_n
\]

(the closures are taken in the \(H^1_0 \)-norm)

\[
S = z + V, \quad Q = Q(R) = z + W \cap B_R.
\]

It is easy to see that

\[
f(z) \to -\infty \quad \text{as} \quad \| z \| \to \infty, \quad z \in z + W
\]

and

\[
\inf f(S) > -\infty.
\]

Then if R is large enough we get

\[\sup f(\partial Q(R)) < \inf f(S).\]

Let \(n \in \mathbb{N} \) and set

\[
c_n = \inf_{h \in \mathcal{H}_n} \sup f(h(Q_n)) \quad (1.16)
\]

where

\[
\mathcal{H}_n = \{ h: M_n \to M_n, h \text{ continuous and s. t. } h(u) = u, \forall u \in \partial Q_n \}
\]

and \(Q_n \) is defined in (1.2).

By Lemma 1.2 \(c_n \) is well defined and

\[
c' = \inf f(S) \leq c_n \leq \sup f(Q) = c''.
\]

Moreover by lemma 1.3 \(f|_{M_n} \) satisfies the Palais-Smale condition; then, by the saddle point theorem (cf. [6] or Theorem 2.3 in [2]), \(c_n \) defined by (1.16) is a critical value of \(f|_{M_n} \). \(\square \)

We are now ready to prove Theorem 0.1.

Proof of Theorem 0.1. — Consider the sequence \(\{ z_n \} \) of the critical points of \(f|_{M_n} \) found in Theorem 1.1.

The same arguments used in proving lemma 1.3 show that \(\{ z_n \} \) is bounded in \(H^1 \), then there exists a subsequence, which we continue to call \(\{ z_n \} \) such that

\[
z_n \to z^* \quad \text{weakly in } H^1. \quad (1.17)
\]

We shall prove that

\[
z_n \to z^* \quad \text{strongly in } H^1. \quad (1.18)
\]

We set

\[
z_n = z + \zeta_n, \quad \zeta_n = (\tau_n, \xi_n)
\]
\[z^* = \tilde{z} + \zeta^*, \quad \zeta^* = (\tau^*, \xi^*) \]

and \((\tau_n^*, \xi_n^*) = \zeta_n^* = P_n \zeta^* \)

\(P_n\) being the projection on \(H_n\).

Since \(z_n\) are critical points of \(f|_{M_n}\) we have

\[\langle f'(z_n), T(\xi_n - \zeta_n^*) \rangle = \int_0^1 g(x_n)[\dot{x}_n, T(\xi_n - \zeta_n^*)] \, ds \]

\[- \frac{1}{2} \int_0^1 \sum_{i, j=0}^3 \frac{\partial g_{ij}}{\partial x_l}(x_n)(\xi_n - \zeta_n^*)_l(\xi_n)_i(\zeta_n)_j \, ds = 0 \quad (1.19) \]

where \(T\) is defined in (1.10) and \((t_n, x_n) = z_n\).

\(H^1\) is compactly embedded into \(L^\infty\), then by (1.17), \(\xi_n \to \xi^*\) in \(L^\infty\) and \(\{ z_n \}\) is bounded in \(L^\infty\). Therefore

\[\frac{\partial g_{ij}}{\partial x_l}(x_n)(\xi_n - \zeta_n^*)_l \to 0 \quad \text{in} \quad L^\infty \]

\[(i, j, 0, \ldots, 3 \text{ and } l = 1, 2, 3) \quad (1.20)\]

Then from (1.19), (1.20), (1.17) we deduce that

\[\int_0^1 g(x_n)[\dot{z}_n, T(\xi_n - \zeta_n^*)] \, ds = O(1). \quad (1.21) \]

In (1.21) and in the sequel \(O(1)\) denotes a sequence converging to zero.

Since \(z_n = \tilde{z} + \xi_n\) we have

\[\int_0^1 g(x_n)[\dot{z}_n, T(\xi_n - \zeta_n^*)] \, ds + \int_0^1 g(x_n)[\dot{\xi}_n, T(\zeta_n - \xi_n^*)] \, ds = O(1) \]

Then, since

\[T(\xi_n - \zeta_n^*) \to 0 \quad \text{weakly in} \quad L^2 \quad (1.22) \]

and \(g_{ij}(x_n)(\dot{z}_n)_l\) converges (strongly) in \(L^\infty\), we get

\[\int_0^1 g(x_n)[\dot{\xi}_n, T(\zeta_n - \xi_n^*)] \, ds = O(1) \quad (1.23) \]

which can also be written as

\[\int_0^1 g(x_n)[(\xi_n - \zeta_n^*), T(\zeta_n - \xi_n^*)] \, ds + \int_0^1 g(x_n)[\xi_n^*, T(\xi_n - \zeta_n^*)] \, ds = O(1) \]

by (1.22) and since \(g_{ij}(x_n)(\xi_n^*)_l\) converges in \(L^2\), we get

\[\int_0^1 g(x_n)[(\xi_n^* - \zeta_n^*), T(\xi_n - \zeta_n^*)] \, ds = O(1). \quad (1.24) \]
On the other hand,
\[\int_0^1 g(x_n) [(\xi_n - \xi_n^*), T(\xi_n - \xi_n^*)] ds \geq \text{const.} \| \xi_n - \xi_n^* \|^2. \]
(1.25)

From (1.24) and (1.125) and since \(\phi_n \to \phi^* \) in \(H_0^1 \) we get
\[z_n \to z^* \quad \text{in} \quad H^1. \]
(1.26)

Let us finally show that \(z^* \) is a critical point of \(f_{| M} \). By (1.26) we have
\[\forall \xi \in H_0^1, \quad \langle f'(z_n), \xi \rangle \to \langle f'(z^*), \xi \rangle \quad \text{as} \quad n \to \infty. \]
(1.27)

On the other hand
\[\langle f'(z_n), \xi \rangle = \langle f'(z_n), \xi_n \rangle + \langle f'(z_n), \xi - \xi_n \rangle \]
(1.28)

where \(\xi_n = P_n \xi \).

Since \(z_n \) is a critical point of \(f_{| M_n} \) and \(\xi - \xi_n \to 0 \) as \(n \to \infty \), from (1.28) we deduce that
\[\langle f'(z_n), \xi \rangle = O(1). \]
(1.29)

Finally from (1.27) and (1.29) we deduce that
\[\forall \xi \in H_0^1, \quad \langle f'(z^*), \xi \rangle = 0 \]
and therefore \(z^* \) is a critical point of \(f_{| M} \).

\[\square \]

REFERENCES

(Manuscript received July 19, 1988.)