P. Delanoë

Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator

<http://www.numdam.org/item?id=AIHPC_1991__8_5_443_0>
Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator

by

P. DELANOË*
C.N.R.S., Université de Nice-Sophia Antipolis, I.M.S.P., parc Valrose, 06034 Nice Cedex, France

Abstract. — Given two bounded strictly convex domains of \mathbb{R}^n and a positive function on their product, all data being smooth, find a smooth strictly convex function whose gradient maps one domain onto the other with Jacobian determinant proportional to the given function. We solve this problem under the (technical) condition $n = 2$.

Key words : Strictly convex functions, prescribed gradient image, Monge-Ampère operator, continuity method, a priori estimates.

Résumé. — Soit deux domaines bornés strictement convexes de \mathbb{R}^n et une fonction positive définie sur leur produit, ces données étant lisses, trouver une fonction lisse strictement convexe dont le gradient applique un domaine sur l’autre avec déterminant Jacobien proportionnel à la fonction donnée. Nous résolvons ce problème sous la condition (technique) $n = 2$.

Classification A.M.S. : 35 J 65, 35 B 45, 53 C 45.

(*) Partially supported by the CEE contract GADGET # SC1-0105-C.
I. INTRODUCTION

Let D and D^* be bounded C^∞ strictly convex domains of \mathbb{R}^n. We denote by $S(D, D^*)$ the subset of $C^\infty(D)$ consisting of strictly convex real functions f whose gradient maps D onto D^*. Given any $u \in C^\infty(D)$, we denote by $A(u)$ the Jacobian determinant of the gradient mapping $x \mapsto du(x)$. The nonlinear second order differential operator A is called the Monge-Ampère operator on D. Basic features of A restricted to $S(D, D^*)$ are listed in the preliminary

PROPOSITION 1. – A sends $S(D, D^*)$ into

$$\Sigma := \{ f \in C^\infty(D), f > 0, \langle f \rangle = |D^*|/|D| \}$$

($\langle f \rangle$ denotes the average of f over D and $|D|$, the Lebesgue measure of D). On $S(D, D^*)$, A is elliptic and its derivative is divergence-like. Given any defining function h^* of D^*, the boundary operator $u \mapsto B(u) := h^*(du)|_{\partial D}$ is co-normal with respect to A on $S(D, D^*)$. Furthermore, given any $u \in S(D, D^*)$ and any $x \in \partial D$, the co-normal direction at x with respect to the derivative of A at u is nothing but the normal direction of ∂D^* at $du(x)$.

We postpone the proof of proposition 1 till the end of this section. The second boundary-value problem consists in showing that $A : S(D, D^*) \to \Sigma$ is onto. More generally, we wish to solve in $S(D, D^*)$ two kinds of equations namely

$$\begin{align*}
\log A(u) &= f(x, du) + \langle u \rangle \\
\log A(u) &= F(x, du, u)
\end{align*}$$

where $f \in C^\infty(D \times D^*)$ and $F \in C^\infty(D \times D^* \times \mathbb{R})$, the latter being uniformly increasing in u. We aim at the following

THEOREM. – Equations (1) and (2) are uniquely solvable in $S(D, D^*)$ provided $n = 2$.

The second boundary-value problem was first posed and solved (with $n = 2$ but the methods, geometric in nature, extend to any dimension) in a generalized sense in [18] chapter V section 3 (see also [3] theorem 2, where the whole plane is taken in place of D). The elliptic Monge-Ampère operator with a quasilinear Neumann boundary condition is treated in [16], in any dimension, and it is further treated with a quasilinear oblique boundary condition in [21] provided $n = 2$. A general study of nonlinear oblique boundary-value problems for nonlinear second order uniformly

(1) Here the meaning of “strictly convex” is restricted to having a positive-definite hessian matrix, which rules out e.g. the strictly convex function $u(x) = |x-y|^4$ near $y \in D$, as pointed out to us by Martin Zerner.
elliptic equations is performed in [15]. Quite recently, the following problem was solved [5]: existence and regularity on a given bounded domain D of \mathbb{R}^n (no convexity assumption, no restriction on n) of a diffeomorphism from D to itself, reducing to the identity on ∂D, with prescribed positive Jacobian determinant (of average 1 on D).

Remarks. 1. The restriction $n=2$ is unsatisfactory but we could not draw second order boundary estimates without it. In May 1988, in Granada (Spain), Neil Trudinger informed us that Kai-Sing Tso had treated the problem in any dimension; however, from that time on, Tso’s preprint has not been available due to a serious gap in his proof, as he himself wrote us [20]. In June 1989, John Urbas visited us in Antibes and he kindly advised us to submit our own 2-dimensional result; it is a pleasure to thank him for his thorough reading of the present paper. This may be the right place to thank also the Referee for pointing out a mistake at the end of the original proof of proposition 2 below, and a few inaccuracies (particularly one in remark 6).

2. We do not assume the non-emptiness of $S(D, D^*)$ to prove the theorem; we thus obtain it (when $n=2$) as a by-product of our proof. In fact, we found no straightforward way of exhibiting any member of $S(D, D^*)$ except, of course, if $D=D^*$, although we can write down explicitly a $C^\infty(D)$ convex (but not strictly convex) function with gradient image D^*, constructed from any suitable support function for D^*. Provided non-emptiness, it is possible to prove that $S(D, D^*)$ is a locally closed Fréchet submanifold of the open subset of strictly convex functions in $C^\infty(D)$, as the fiber of a submersion.

3. From the proof below, it appears that, given any $\alpha \in (0, 1)$ $C^{2, \alpha}(\overline{D})$ solutions may be derived (by approximation) from the above theorem under the sole regularity assumptions: D and D^* are $C^{2, 1}$, f and F are $C^{1, 1}$. We did not study further 2-dimensional global regularity refinements as done in [19], [14] for the Dirichlet problem.

4. The uniqueness for (1) shows that, in general, the equation $\log A(u) = f(x, du)$ is not well-posed on $S(D, D^*)$. The idea of introducing in (1) the average term goes back to [6] and it proved to be useful in various contexts ([2], [8], [9], [10]). If $u \in S(D, D^*)$ solves (1), then $v = u + \text{Const.}$ solves in $S(D, D^*)$ the equation $\log A(v) = f(x, dv) + \langle u \rangle$, while the Legendre transform v^* of v solves in $S(D^*, D)$ the “dual” equation $\log A(v^*) = -f(dv^*, x) - \langle u \rangle$. In case $f(x, x^*) = f_1(x) - f_2(x^*)$, the value of $\langle u \rangle$ is a priori fixed by the constraint (due to the “Jacobian” structure of A)

$$\int_{D^*} e^{f_2(x^*)} dx^* = e^{\langle u \rangle} \int_D e^{f_1(x)} dx.$$

The prescribed Gauss-curvature equation is an example of this type.
Proof of proposition 1. — By its very definition, as the Jacobian of the gradient mapping, \(A \) readily sends \(S(D, D^*) \) into the submanifold \(\Sigma \).

Let \(u \in S(D, D^*) \). In euclidean co-ordinates \((x^1, \ldots, x^n)\), \(A(u) \) reads
\[
A(u) = \det(u_{ij})
\]
and the derivative of \(A \) at \(u \) reads
\[
\delta u \in C^\infty(\bar{D}) \to dA(u)(\delta u) = A^{ij}(\delta u)_{ij}
\]
where
\[
A^{ij} = A(u)u^{ij}
\]
(indices denote partial derivatives, Einstein’s convention holds, \((u^{ij}) \) is the matrix inverse of \((u_{ij}) \) and \((A^{ij}) \), its co-matrix). Since \(u \) is strictly convex, \(A \) is indeed elliptic at \(u \). Furthermore, one easily verifies the following identity: for any \(\delta u \in C^\infty(\bar{D}) \),
\[
A^{ij}(\delta u)_{ij} = [A^{ij}(\delta u)]_j.
\]
So, as asserted, \(dA(u) \) is divergence-like. The co-normal boundary operator associated with \(A \) at \(u \) is
\[
\delta u \in C^\infty(\bar{D}) \to \beta(\delta u) = A^{ij}N^i(\delta u)_{j} \in C^\infty(\partial D),
\]
\(N \) standing for the outward unit normal on \(\partial D \). Fix a defining function \(h^* \) for \(D^* \) (i.e. \(h^* \in C^\infty(\bar{D^*}) \)) is strictly convex and vanishes on \(\partial D^* \). Since \(u \in S(D, D^*) \), the function \(H := h^*(du) \in C^\infty(\bar{D}) \) is negative inside \(D \) and vanishes on \(\partial D \). Moreover, a straightforward computation yields in \(D \):
\[
u^{ij}H_{ij} - u^{ij}[\log A(u)]_{ij} = u_{ij}h_{ij}^* > 0.
\]
Hopf’s lemma [12] implies that \(H_{N} > 0 \) on \(\partial D \). Since
\[
H_{i} = u_{ij}h_{ij}^*
\]
the boundary operators satisfy
\[
A(u)dB(u) = H_{N}\beta.
\]
So \(B \) is indeed co-normal with respect to \(A \) at \(u \).

Last, the geometric interpretation of the co-normal direction \(\beta \) given at the end of proposition 1, simply follows from the fact that \(dB(u)(x) \) equals the derivative in the direction of \(dh^*[du(x)] \) which is precisely (outward) normal to \(\partial D^* \) at \(du(x) \). \(\square \)

II. THE CONTINUITY METHOD

Fix \((x_0, x_0^*) \in D \times D^* \) and \(\lambda \in (0, 1] \) such that the gradient of
\[
\nu_0 = \frac{\lambda}{2} |x - x_0|^2 + x_0^* \cdot x
\]
maps \bar{D} into D^* ($|\cdot|$ stands for the standard euclidean norm, $.$ for the euclidean scalar product). Set $u_0 := v_0 - \langle v_0 \rangle$, $D_0 := du_0(D)$. A routine verification shows that D_0 is C^∞ strictly convex. Let $t \in [0, 1] \to D_t$ be a smooth path of bounded C^∞ strictly convex domains connecting D_0 to $D_1 = D^*$, with $D_t \subset D_{t'}$ for $t < t'$; fix $t \to h_t$ a smooth path of corresponding defining functions. For each $t \in [0, 1]$, consider in $S(D, D_t)$ the two following equations:

\[
\begin{align*}
\log A(u) &= tf(x, du) + (1 - t)n \log \lambda + \langle u \rangle \\
\log A(u) &= tF(x, du, u) + (1 - t)(u - u_0 + n \log \lambda).
\end{align*}
\]

By construction u_0 solves both equations for $t = 0$, so (for $i = 1, 2$) the sets $T_i := \{ t \in [0, 1], (i, t) \text{ admits a solution in } S(D, D_t) \}$ are non-empty. Hereafter, we show that they are both relatively open and closed in $[0, 1]$: if so, by connectedness, they coincide with all of $[0, 1]$. The solutions for $t = 1$ are those announced in the theorem; their uniqueness is established at the end of this section.

Let us show that T_1 is relatively open in $[0, 1]$; similar, more standard (due to the monotonicity assumption of F), reasonings hold for T_2. Fix $\alpha \in (0, 1)$ and denote by $U^{2, \alpha}$ the open subset of $C^{2, \alpha}(\bar{D})$ consisting of strictly convex functions. On $[0, 1] \times U^{2, \alpha}$, consider the smooth map (M, B) defined by

\[
M(t, u) := \log A(u) - tf(x, du) - (1 - t)n \log \lambda - \langle u \rangle,
B(t, u) := h_t(du)|_{\partial D},
\]

and ranging in $C^{0, \alpha}(\bar{D}) \times C^{1, \alpha}(\partial D)$. Let $t_0 \in T_1$; there thus exists u_0 in $U^{2, \alpha}$ such that $(M, B)(t_0, u_0) = (0, 0)$. The proof is based on the Banach implicit function theorem applied to (M, B) at (t_0, u_0). We want to show that the map

\[
(m, b) := [M_u(t_0, u_0), B_u(t_0, u_0)] : C^{2, \alpha}(\bar{D}) \to C^{0, \alpha}(\bar{D}) \times C^{1, \alpha}(\partial D)
\]

is an isomorphism. Record the following expression of (m, b) in euclidean co-ordinates:

\[
\begin{align*}
m(\delta u) &= u^{ij}_0(\delta u)_{ij} - t_0 f_u(x, du_0)(\delta u)_i - \langle \delta u \rangle, \\
b(\delta u) &= (h_t)_i(du_0)(\delta u)_i.
\end{align*}
\]

From proposition 1, we know that b is oblique; so Hopf's maximum principle \cite{11} combined with Hopf's lemma \cite{12} imply that any $\delta u \in \text{Ker}(m, b)$ is constant, hence actually $\langle \delta u \rangle = 0$ and $\delta u \equiv 0$. Therefore (m, b) is one-to-one.

Now we fix $(\delta M_0, \delta B_0) \in C^{0, \alpha}(\bar{D}) \times C^{1, \alpha}(\partial D)$ and we look for δu in $C^{2, \alpha}(\bar{D})$ solving: $(m, b) (\delta u_0) = (\delta M_0, \delta B_0)$. Consider the auxiliary map

\[
(m', b') := \{ A(u_0)(m + \langle . \rangle), [A(u_0)/H_N] b \},
\]

where $H = h_t(du_0)$. It follows from proposition 1 that, given any $(\delta M', \delta B') \in C^{0, \alpha}(\bar{D}) \times C^{1, \alpha}(\partial D)$, the function $\delta u' \in C^{2, \alpha}(\bar{D})$ solves:

\[
(m', b')(\delta u') = (\delta M', \delta B'),
\]

Vol. 8, n° 5-1991.
if and only if, for every $\delta v' \in W^{1,2}(D)$,

$$L(\delta u', \delta v') = \int_{\partial D} \delta B' \delta v \, da - \int_D \delta M' \delta v \, dx$$

(da) is the measure induced on ∂D by dx, where L is the continuous bilinear form on $W^{1,2}(D)$ given by

$$L(\delta u', \delta v') = \int_D A(u_0)[u_0^j(\delta u')_i(\delta v')_j + t_0 f_u(x, du_0)(\delta u')_i(\delta v')] \, dx.$$ Let us argue on (m', b') as in [6]. Combining the ellipticity of m' and the obliqueness of b' (asserted by proposition 1), with Hopf's maximum principle, Schauder's estimates and Fredholm's theory of compact operators, we know that the kernel of the adjoint of (m', b') (formally obtained by varying the first argument of L instead of the second, and by integrating by parts) is one-dimensional, let $\delta w \in C^{2,2}(D)$ span it, and that (3) is solvable up to an additive constant if and only if

$$\int_{\partial D} \delta B' \delta w \, da - \int_D \delta M' \delta w \, dx = 0. \tag{4}$$

Observe that

$$\int_D A(u_0) \delta w \, dx \neq 0$$

since, otherwise, one could solve (3) with $(\delta M', \delta B') = [A(u_0), 0]$ contradicting the maximum principle. We may thus normalize δw by

$$\int_D A(u_0) \delta w \, dx = 1.$$ Then we can solve (3) with right-hand side equals:

$$\left\{ A(u_0) \left[\delta M_0 + \int_{\partial D} [A(u_0)/H_N] \delta B_0 \delta w \, da \right] - \int_D A(u_0) \delta M_0 \delta w \, dx \right\} [A(u_0)/H_N] \delta B_0$$

since the latter satisfies (4). If $\delta u_0'$ is a solution, then

$$\delta u_0 = \delta u_0' - \langle \delta u_0' \rangle + \int_{\partial D} [A(u_0)/H_N] \delta B_0 \delta w \, da - \int_D A(u_0) \delta M_0 \delta w \, dx$$

solves the original equation

$$(m, b)(\delta u_0) = (\delta M_0, \delta B_0).$$
So \((m, b)\) is also onto. The implicit function theorem thus implies the existence of a real \(\delta > 0\) and of a smooth map
\[
t \in (t_0 - \delta, t_0 + \delta) \cap [0, 1] \rightarrow u_t \in U^{2, \alpha}
\]
such that \((M, B)(t, u) = (0, 0)\). By proposition 1 and standard elliptic regularity \([1]\), \(u_t \in S(D, D)_t\), hence \(T_1\) is relatively open.

Assuming \(n = 2\), we shall carry out a \(C^{2, \alpha}(\overline{D})\) a priori bound, independent of \(t \in [0, 1]\), on the solutions in \(S(D, D)_t\) of equations \((1. t)\) and \((2. t)\). Provided such a bound exists, the closedness of \(T_i (i = 1, 2)\) follows in a standard way from Ascoli’s theorem combined with proposition 1 and elliptic regularity \([1]\).

Last, let us prove that \((1)\) admits at most one solution in \(S(D, D^*)\); a similar argument holds for \((2)\). By contradiction, let \(u_0\) and \(u_1\) be two distinct solutions of \((1)\) in \(S(D, D^*)\). Then, for \(t \in [0, 1]\),
\[
\begin{align*}
u_t &= \frac{t}{1} u_t + \frac{(1 - t)}{1} u_0 \in S(D, D^*_t) \quad \text{and} \\
u &= u_1 - u_0 \quad \text{solves the linear boundary-value problem:}
\end{align*}
\]
which is elliptic inside \(D\) and oblique on \(\partial D\) by proposition 1. The maximum principle implies \(u \equiv 0\), contradicting the assumption.

III. PRELIMINARY A PRIORI ESTIMATES

In this section, we do not need yet the condition \(n = 2\). For any \(v \in S(D, D)_t\), \(dv \in D^*\), hence \(|dv|\) is bounded above by \(\rho(D^*_t) := \max_{x^* \in D^*} |x^*|\).

Set \(|f|_0 = \max_{D \times D^*} |f(x, x^*)|\), and let \(u \in S(D, D)_t\) solve \((1. t)\), then
\[
e^{-\int_0^1 A(u)} \leq e^{\int_0^1 \rho A(u)} \leq e^{\int_0^1 \rho(D^*_t)} \leq e^{\int_0^1 |D^*_t|} \leq e^{\int_0^1 |D^*_t|} \rho\Delta A(u).
\]

Integrating this over \(D\) yields for \(\langle u \rangle\) the pinching:
\[
\log |D_0| - |f|_0 \leq \langle u \rangle \leq \log |D^*_t| + |f|_0 + n |\log \lambda| \rho(D^*_t).
\]

Since \(du \leq \rho(D^*_t)\), \(u\) is a priori bounded in \(C^1(D)\) in terms of \(|D^*_t|\), \(\rho(D^*_t)\), \(|f|_0\), \(|D_0|\), \(\lambda\) and \(n\).

By assumption, there exists \(\mu \in (0, 1]\) such that \(F_t \geq \mu\) on \(\overline{D} \times \overline{D^*} \times \mathbb{R}\). The right-hand side of equation \((2. t)\), let us denote it by
\[
f(t, x, du, u),
\]
thus satisfies \(f_u \geq \mu \) as well, on \([0, 1] \times \bar{D} \times \bar{D}^* \times \mathbb{R} \). Let \(u \in S(D, D_t) \) solve (2. t). Set
\[
M := \max \limits_{\bar{D}} (u), \quad m := \min \limits_{\bar{D}} (u)
\]
\[
M_0 := \max \limits_{[0, 1] \times \bar{D} \times \bar{D}^*} [f(t, x, x^*, 0)], \quad m_0 := \min \limits_{[0, 1] \times \bar{D} \times \bar{D}^*} [f(t, x, x^*, 0)].
\]
From the mean value theorem, we know that
\[
\delta(D) \text{ standing for the diameter of } D. \text{ If } M \geq 0 \text{ and } m \leq 0, \text{ it implies } |u| \leq \mu \delta(D) \text{ and we are done. If not, say for instance } M < 0, \text{ then } A(u) = \exp \{f(t, x, du, u)\} \leq \exp[M_0 + \mu M]. \text{ Integrating this over } D \text{ yields: } \mu M \geq [\log(|D_0|/|D|) - M_0]/|D| \text{ and}
\]
\[
-m = \max \limits_{\bar{D}} |u| \leq \mu \delta(D) + [M_0 - \log(|D_0|/|D|)]/\mu.
\]
Similarly, \(m > 0 \) yields \([\log(|D^*|/|D|) - m_0] > 0 \) and
\[
M = \max \limits_{\bar{D}} |u| \leq \mu \delta(D) + [\log(|D^*|/|D|) - m_0]/\mu.
\]
In any case, we obtain a \(C^1(D) \) \textit{a priori} bound on \(u \) in terms of \(|D^*|, \mu \delta(D) \), \(|D| \), \(\delta(D) \), \(|D_0| \), \(M_0, m_0 \) and \(\mu \).

For simplicity, let us give a unified treatment of higher order \(a \text{ priori} \) estimates for equations (1. t) and (2. t) by rewriting these equations into a single general form
\[
\log A(u) = \Gamma(t, x, du, u, \langle u \rangle).
\]
Let \(u \in S(D, D_t) \) solve (*). In this section, a constant will be said \textit{under control} provided it depends only on the following quantities: \(|u|_1 \), \textit{i.e.} the \(C^1(D) \)-norm of \(u \), on the \(C^2 \)-norm of \(\Gamma \) on
\[
K := [0, 1] \times \bar{D} \times \bar{D}^* \times 1 \times 1,
\]
where \(I = [-|u|_1, |u|_1] \), on the \(C^0([0, 1], C^2) \)-norm of \(t \to h_t \) (the fixed path of defining functions, \textit{cf. supra}), and on the \textit{positive} real
\[
\sigma := \min \limits_{t \in [0, 1]} \sigma(t)
\]
where \(\sigma(t) \) is the smallest eigenvalue of \([h_{ij}] \) over \(D_t \).

Since \(u \) is convex, a \(C^2(D) \) bound on \(u \) follows from a bound on
\[
M_2 := \max \limits_{(x, \theta) \in \bar{D} \times S} [u_{00}(x)]
\]
S standing for the unit sphere of \(\mathbb{R}^n \). Set \(H := h_t(du) \) and consider
\[
Q : (c, \theta, x) \in (0, \infty) \times S \times \bar{D} \to Q(c, \theta, x) = \log [u_{00}(x)] + c H(x).
\]
Proposition 2. — There exists $C \in (0, \infty)$ under control such that, if
\[
\max_{(\theta, x) \in S \times D} [Q(\theta, x)] \text{ occurs at } (z, x_0) \in S \times D \text{ with } x_0 \text{ interior to } D, \text{ then } \mu_2 \text{ is under control.}
\]

This proposition does not refer to any boundary condition and constitutes by no means an interior estimate (it is rather the type of argument suited on a compact manifold). A similar proposition (with Δu and $|du|^2$, respectively in place of $u_{\theta \theta}$ and H) is lemma 2 of [13], later (and independently) reproved in [7] (p. 694); a similar argument is used in [4] (p. 398). Here proposition 2 may serve for the higher dimensional theorem, due to the special form of Q; so for completeness, we provide a detailed proof of it.

Proof. — Fix $(c, \theta) \in (0, \infty) \times S$ and consider Q as a function of x only. Let us record some auxiliary formulae: differentiating twice equation (*) in the θ-direction yields,
\[
\begin{align*}
\frac{\partial^2 u}{\partial \theta^2} &= (\Gamma)_\theta \equiv \Gamma_{\theta \theta} + \Gamma_u u_{\theta \theta} + \Gamma_u u_{\theta i} u_{\theta j} \\
\frac{\partial^2 u}{\partial \theta^2} &= (\Gamma)_{\theta \theta} = (\Gamma)_{\theta \theta} + u_{\theta k} u_{\theta m} u_{\theta i} u_{\theta j}
\end{align*}
\]
with
\[
(\Gamma)_{\theta \theta} = \Gamma_{\theta i} u_{\theta i} + \Gamma_{\theta j} u_{\theta j} + 2(\Gamma_{u i} u_{\theta i} + \Gamma_{u j} u_{\theta j}) + \Gamma_{\theta i} u_{\theta i} + \Gamma_{\theta j} u_{\theta j} + \Gamma_{\theta i} u_{\theta j} + [\Gamma_{\theta \theta} + 2 \Gamma_{u i} + \Gamma_{\theta i} (u_\theta)^2].
\]

Differentiating twice H yields (with the subscript t, of h, dropped),
\[
\begin{align*}
H_i &= h_{ik} u_{ik} \\
H_{ij} &= h_{ik} u_{ij} + h_{km} u_{ik} u_{jm}
\end{align*}
\]
and similarly for Q,
\[
Q_i = (u_{\theta \theta} / u_{\theta \theta}) + c H_i \\
Q_{ij} = (u_{\theta \theta} / u_{\theta \theta}) - [u_{\theta i} u_{\theta j} (u_{\theta \theta})^2] + c H_{ij}.
\]

Combining (8) with (5) and (7), we get
\[
\frac{\partial^2 u}{\partial \theta^2} = h_i (\Gamma_i + \Gamma_u u_i) + \Gamma_{ui} H_i + h_{ij} u_{ij}
\]
while from (6) we get,
\[
\frac{\partial^2 u}{\partial \theta^2} = [(\Gamma)_{\theta \theta} / u_{\theta \theta}] + (1 / u_{\theta \theta}) [u_{ij} u_{ij} u_{\theta 0 k m} - (1 / u_{\theta \theta}) u_{ij} u_{\theta 0 i} u_{\theta 0 j}] + cu_{ij} H_{ij}.
\]

Expanding the square
\[
(u_{\theta} u_{\theta i} - u_{\theta i} u_{\theta 0}) (u_{\theta} u_{\theta k m} - u_{\theta k} u_{\theta 0 m}) u_{ij} u_{im}
\]
one immediately verifies the identity:
\[
u_{ij} u_{\theta i} u_{\theta j} u_{\theta 0 k m} \geq (1 / u_{\theta \theta}) u_{ij} u_{\theta 0 i} u_{\theta 0 j}.
\]

So,
\[
u_{ij} Q_{ij} \geq [(\Gamma)_{\theta \theta} / u_{\theta \theta}] + cu_{ij} H_{ij}.
\]
Combining the expression of $(\Gamma)_{\theta \theta}$ with that of Q_i and (9) yields,

$$u^j Q_{ij} - \Gamma_{ui} Q_i \geq c h_{ij} u_{ij} + (1/u_{\theta \theta}) \Gamma_{\theta \theta u_i u_\theta} u_{\theta i} u_{\theta j}$$

$$+ (2/u_{\theta \theta}) (\Gamma_{\theta i} + u_0 \Gamma_{u i}) u_{\theta i} + \Gamma_{ui} + c h_{ij} (\Gamma_{i} + \Gamma_{u} u_i)$$

$$+ (1/u_{\theta \theta}) [\Gamma_{\theta \theta} + 2 u_0 \Gamma_{\theta u} + \Gamma_{uu} (u_{\theta})^2]. \quad (10)$$

Introducing the constant σ (defined above) we get

$$(1/u_{\theta \theta}) \Gamma_{\theta \theta u_i u_\theta} u_{\theta i} u_{\theta j} + \frac{1}{3} c h_{ij} u_{ij}$$

$$\geq (1/u_{\theta \theta}) u_{ik} u_{jm} \left(\theta^k \theta^m \Gamma_{u_{ij}} + \frac{1}{3} c \sigma u_{\theta \theta} \delta_{ij} u^{k m} \right)$$

$$\geq (1/u_{\theta \theta}) u_{\theta i} u_{\theta j} \left(\Gamma_{u_{ij}} + \frac{1}{3} c \sigma \delta_{ij} \right)$$

this last inequality being obtained by noting that, identically for u strictly convex, $u_{\theta \theta} u^{k m} \geq \theta^k \theta^m$. Hence our first requirement on c is:

$$\left(\Gamma_{u_{ij}} + \frac{1}{3} c \sigma \delta_{ij} \right) \geq 0$$

in the sense of symmetric matrices, over K. To express our second requirement on c, we first note that the inequality between the arithmetic and the geometric means of n positive numbers applied to the eigenvalues of (u_{ij}) and combined with ($*$), yields on D:

$$\Delta u \geq n \exp \left(\frac{1}{n} \min_{\kappa} \Gamma \right) = : \gamma.$$

Then we take c such that

$$2 \min \left[\Gamma_{z \gamma} (r) + u_{\gamma} (x) \Gamma_{u u_{\gamma}} (r) \right] + \frac{1}{3} c \sigma \gamma \geq 0$$

the minimum being taken on $(r, x, y) \in K \times \bar{D} \times S$. From now on, c has a fixed value under control, C, meeting both requirements and we take $(\theta, x) = (z, x_0)$ as defined in proposition 2. In particular, $u_{zz} (x_0)$ is now the maximum eigenvalue of $[u_{ij} (x_0)]$; diagonalizing the latter and using the second requirement on C, we obtain at x_0:

$$\frac{1}{3} C h_{ij} u_{ij} + (2/u_{zz}) (\Gamma_{zu} + u_z \Gamma_{uu}) u_{zi} \geq \frac{1}{3} C \sigma \Delta u + 2 (\Gamma_{zu} + u_z \Gamma_{uu}) \geq 0.$$

Now (10) yields for $x \rightarrow Q = Q (C, z, x)$ at x_0,

$$u^j Q_{ij} - \Gamma_{ui} Q_i \geq C \left(\frac{1}{3} \sigma u_{zz} - C' \right) - C'' (1/u_{zz}), \quad (11)$$

for some positive constants under control C', C''. Since $Q (C, z, \cdot)$ assumes its maximum at $x_0 \in D$, (11) implies a controlled bound from above on
hence also on \((\theta, x) \to Q(C, \theta, x)\) and on \((\theta, x) \to u_{00}(x)\). Therefore \(M_2\) is under control. \(\square\)

According to proposition 2, we may assume, without loss of generality, that the point \(x_0\) above lies on \(\partial D\), hence a \(C^2(\overline{D})\) \(a\ priori\) bound on \(u\) follows from an \(a\ priori\) bound on \(u_{zz}(x_0)\) which, in turn, coincides with \(\max_{(\theta, x) \in S \times \partial D} [u_{00}(x)]\).

IV. A PRIORI ESTIMATES OF SECOND DERIVATIVES ON THE BOUNDARY \((n = 2)\)

In this section we fix a defining function of \(D\), denoted by \(k\), and we include in the definition of constants \(under control\) the possible dependence on \(|k|_A\), on \(\tau := \min k_N > 0\) and on the minimum over \(\overline{D}\) of the smallest \(\tau\) eigenvalue of \((k_{ij})\), denoted by \(s > 0\).

We still let \(u \in \mathcal{S}(D, D_t)\) solve equation \((\ast)\). According to proposition 1 \(H = h_t (du)\) which vanishes on \(\partial D\), satisfies there \(H_N > 0\); moreover, \((7)\) implies on \(\partial D\) (dropping the subscript \(t\) of \(h\)):

\[
h_i[du(x)] = H_N u^{ij} N^j(x). \quad (12)
\]

In particular, the function on \(\partial D\)

\[\varphi(x) := N^i(x) h_i[dv(x)]\]

is \(positive\). Fix an arbitrary point \(x_0 \in \partial D\) and a direct system of euclidean co-ordinates \((O, x^1, x^2)\) satisfying \(N(x_0) = \partial/\partial x^2\). Then \((12)\) reads at \(x_0\),

\[
\begin{align*}
u_{11}(x_0) &= (e^T/H_N) \varphi(x_0) \\
u_{12}(x_0) &= -(e^T/H_N)(x_0) h_1[du(x_0)]
\end{align*} \quad (13)
\]

while equation \((\ast)\) itself provides for \(u_{22}(x_0) = u_{NN}(x_0)\),

\[
\varphi u_{22}(x_0) = H_N(x) + (e^T/H_N)(x_0) \{ h_1[du(x_0)] \}^2. \quad (14)
\]

We thus need positive lower bounds under control on \(H_N(x_0)\) and \(\varphi(x_0)\), as well as a controlled upper bound on \(H_N(x_0)\).

Let us start with \(H_N(x_0)\). Aside from \((9)\), \(H\) also satisfies in \(D\) [still by combining \((8), (5), (7)\)],

\[
u^{ij} H_{ij} - u^{ij}(\Gamma_i H_j) = h_{ij} u_{ij}. \quad (15)
\]

Set \(T = u_{11} + u_{22}, T^* = u^{11} + u^{22}\), and note the identity: \(T^* = A(u) T\). It implies the existence of positive constants under control, \(\alpha, \beta\), such that

\[
\alpha T^* \leq T \leq \beta T^*, \quad (16)
\]

which we simply denote by: \(T \simeq T^*\). Consider the function

\[(c, x) \in (0, \infty) \times \overline{D} \to w(c, x) = H(x) - c k(x).\]
From (9) and $T \geq \gamma$ (cf. supra), we infer
\[
u^{ij}[w(\cdot, \cdot)]_{ij} \leq - T \left[\frac{1}{2} c (s/\beta) - (u_{ij}/T) (h_{ij} + \Gamma_{ui} h_j) \right] - \left[\frac{1}{2} \gamma c (s/\beta) - h_i (\Gamma_i + \Gamma_u u_i) \right],
\]
and there readily exists $c = C > 1$, under control, such that the latter right-hand side is non-positive. Similarly (15) (16) yield:
\[
u^{ij}[w(\cdot, \cdot)]_{ij} - u^{ij}(\Gamma)_{i}[w(\cdot, \cdot)]_{ij} \geq \frac{1}{2} \sigma T
\]
\[- T \max \left\{ 0, (c/\alpha) u^{ij}/T^* \right\} [k_{ij} - k_i (\Gamma_j + \Gamma_u u_j)] + \left[\frac{1}{2} \sigma\gamma + ck_i \Gamma_u \right],
\]
(σ was defined at the beginning of section III) and there exists $c \in (0, 1)$ under control such that the right-hand side is nonnegative. Since w identically vanishes on $(0, \infty) \times \partial D$, Hopf’s maximum principle [11] implies the following pinching under control on ∂D:
\[
\text{c} \tau \leq c k_N \leq H_N \leq C k_N \leq C \left| k \right|_1.
\]
Combined with (13), it implies a controlled upper bound on $|u_{11}(x_0)| + |u_{12}(x_0)|$. Furthermore, combined with (14), it implies also (the notation \approx is defined at (16))
\[
u^{ij}_{22}(x_0) \approx 1/\varphi(x_0).
\]
We now turn to a lower bound on $\varphi(x_0)$ and consider the function
\[
(c, x) \in (0, \infty) \times \bar{D} \rightarrow P(c, x) = \psi - ck,
\]
where
\[
\psi(x) = k_i(x) h_i [du(x)].
\]
A routine computation using (5) yields in D:
\[
u^{ij}\psi_{ij} = k_i h_i (\Gamma_j + \Gamma_u u_j + \Gamma_{um} u_{jm}) + 2 k_i h_{ij} + k_i h_{ijm} u_{jm} + u^{ij} k_{ijm} h_m.
\]
It implies the existence of a constant c_1 under control such that, in D,
\[
u^{ij} P_{ij} \leq c_1 (1 + T) - c (s/\beta) T = - \left[\frac{1}{2} c \gamma (s/\beta) - c_1 \right] - T \left[\frac{1}{2} c (s/\beta) - c_1 \right];
\]
let us choose $c = C_0 = 2 c_1 \beta / s \min (1, \gamma)$, so that $u^{ij} [P(C_0, \cdot)]_{ij} \leq 0$ in D. By Hopf’s maximum principle [11], $P(C_0, \cdot)$ necessarily assumes its minimum over \bar{D} at a boundary point y_0 where
\[
\psi_N \leq C_0 k_N.
\]
Pick a euclidean system of co-ordinates (O, y^1, y^2) such that $N(y_0) = \partial / \partial y^2$. Then $dk(y_0) = k_N \partial / \partial y^2$, while, using (13) (17):
\[
\left| u_{12}(y_0) \right| \leq C_1 := e^{1 + T} |h|_{1/\varepsilon}
\]

Annales de l’Institut Henri Poincaré - Analyse non linéaire
is under control, and (19) reads:
\[u_{22}(y_0) k_N(y_0) h_{22}[du(y_0)] \leq C_0 k_N(y_0) - k_{21}(y_0) h_1[du(y_0)] - k_N(y_0) u_{12}(y_0) h_{12}[du(y_0)]. \]

It implies
\[\sigma \gamma u_{22}(y_0) \leq C_0 |k_1| + |h_1| |k_2| + C_1 |k_1| |h_2| \]
i.e. a controlled bound from above on \(u_{22}(y_0) \). Recalling (18), it means a
controlled positive bound from below, \(\lambda \), on \(\varphi(y_0) \). Since on \(\partial D \), \(P(C_0, .) \equiv k_N \varphi \), and since \(P(C_0, .) \) assumes its minimum at \(y_0 \), we infer
on \(\partial D \):
\[\varphi(x) \geq \lambda k_N(y_0)/k_N(x) \geq \lambda \tau / |k_1|. \]

Using (18) again, we obtain a controlled upper bound on \(u_{22}(x_0) \). The
second derivatives of \(u \) are thus a priori bounded on \(\partial D \).

Remarks. — 5. Proposition 1 and (12) show that the lower bound \(\varphi \geq \lambda \)
ensures a priori the uniform obliqueness of the boundary operator at \(u \).
Geometrically, it implies another positive lower bound on the scalar
product of the outward unit normals, to \(\partial D \) at \(x \) and to \(\partial D_t \) at \(du(x) \).

6. Let (T, N) and (T*, N*) be direct orthonormal moving frames on
\(\partial D \) and on \(\partial D_t \), respectively (N* stands for the outward unit normal on
\(\partial D_t \)) and let \(z_0 \) be a critical point of: \(x \in \partial D \rightarrow N(x) \cdot N*[du(x)] \). Denote
by \(J du \) the Jacobian (or differential) of the gradient mapping \(du \). With
the help of Frénet’s formulae, one verifies that
\[|J du[T(z_0)]| = (R^*_0/R_0), \]
\(R_0 \) (resp. \(R^*_0 \)) standing for the curvature radius of \(\partial D \) at \(z_0 \) [resp. of \(\partial D_t \)
\(\partial du(z_0) \)], i.e. if we let \(R_0 \) go to infinity and \(R^*_0 \)
remain bounded ? From (20), \(|J du[T(z_0)]| \) goes to zero hence \(|J du[N(z_0)]| \)
go to infinity. In a direct system of euclidean co-ordinates \((0, x^1, x^2) \)
such that \(N(z_0) = \partial / \partial x^2 \), it implies that \(|u_{11}(z_0)| + |u_{12}(z_0)| \) goes to zero
while \(|u_{22}(z_0)| \) blows up like \(R_0 \) i.e. the control on \(u_{NN}(z_0) \) is lost.

V. HIGHER ORDER A PRIORI ESTIMATES

Let \(u \in S(D, D_t) \) solve equation (*) . Fix a generic point \(x \in \bar{D} \) and choose
a euclidean co-ordinates system which puts \([u_{ij}(x)] \) into a diagonal form.
Observe that for each \(i \in \{1, \ldots, n\} \),
\[
 u_{ii}(x) = \frac{A(u)}{\prod_{j \neq i} u_{jj}(x)} \geq \gamma/|u|_2^{n-1}.
\]

(21)

In case \(n = 2 \), the \(C^2(\overline{D}) \) a priori estimate drawn on \(u \) in the two preceding sections thus implies the controlled uniform ellipticity of \(d[\log A(u)] \) on \(\overline{D} \). Given \(\alpha \in (0, 1) \), a \(C^{2, \alpha}(\overline{D}) \) a priori bound on \(u \) now follows from the general theory of [15] (section 6); however, this bound is so straightforward for \(n = 2 \) that we include it for completeness.

First of all, given any interior subdomain \(D' \) of \(D \) and any \(z \in S \), the 2-dimensional regularity theory of [17] applied to \(u_z \), which satisfies (5) in \(D' \), yields a \(C^{1, \alpha}(\overline{D}') \) a priori bound under control on \(u_z \), hence, since \(z \) is arbitrary, a controlled \(C^{2, \alpha}(\overline{D}') \) a priori bound on \(u \). The theory of [17] also applies to \(H \) which satisfies (9) in \(D \) and vanishes on \(\partial D \): it yields a \(C^{1, \alpha}(\overline{D}) \) a priori bound under control on \(H \). Solving for \(u_{11}, u_{12} \) and \(u_{22} \), the \(3 \times 3 \) system given by (7) and equation (\(*\)), we get (dropping the subscript \(t \) of \(h \)):
\[
 \begin{align*}
 u_{11} &= (H_1^2 + (h_2)^2 e_1^2)/\Delta \\
 u_{12} &= (H_1 H_2 - h_1 h_2 e_1^2)/\Delta \\
 u_{22} &= (H_2^2 + (h_1)^2 e_1^2)/\Delta,
 \end{align*}
\]

(22)

where
\[
 \Delta(x) = H_I(x) h_I[du(x)].
\]

Note that (7) and (21) imply
\[
 \Delta(x) \geq (\gamma/|u|_2) |dH[du(x)]|^2.
\]

(23)

Given any small enough \(\delta \in (0, 1) \), let
\[
 D_\delta := \{ x \in D, \text{dist}(x, \partial D) < \delta \}.
\]

From the \(C^2(\overline{D}) \) a priori estimate precedingly drawn on \(u \), it follows that the gradient image \(du(D_\delta) \) is contained in \((D_\delta)_{C_6} \) for some positive constant \(C \) under control. If \(\tau^* := \min_{t \in [0, 1]} (\min_{[\partial D]} |dh_t|) \),
then there readily exists \(\delta_0 \in (0, 1) \) under control such that, for any \(x \in D_{\delta_0} \), \(|dh_t[du(x)]| \geq \tau^*/2 \). Therefore (22) and (23) imply a \(C^\alpha(D_{\delta_0}) \) a priori bound under control on the second derivatives of \(u \). A \(C^{2, \alpha}(\overline{D}) \) a priori bound on \(u \) follows.

Actually, a straightforward "bootstrap" argument now provides \(C^{k, \alpha}(\overline{D}) \) a priori bounds on \(u \) for each integer \(k > 2 \).

REFERENCES

SECOND BVP FOR MONGE-AMPERE OPERATOR

(Manuscript received November 2nd, 1989)
(Revised July 30th, 1990.)

Vol. 8, n° 5-1991.