FRANK MERLE

Asymptotics for L^2 minimal blow-up solutions of critical nonlinear Schrödinger equation

<http://www.numdam.org/item?id=AIHPC_1996__13_5_553_0>
Asymptotics for L^2 minimal blow-up solutions of critical nonlinear Schrödinger equation

by

Frank MERLE

Université de Cergy-Pontoise, Centre de Mathématiques
Avenue du Parc 8, Le Campus, 95033 Cergy-Pontoise, France

ABSTRACT. In this note, we describe the behavior of a sequence $v_n : \mathbb{R}^N \to \mathbb{C}$ minimal in L^2 such that
\[\frac{1}{2} \int |\nabla v_n|^2 - \frac{1}{N+2} \int |v_n|^\frac{4}{N+2} \leq E_0 \]
and $|v_n|_{H^1} \to +\infty$.

In the present note, we are interested in the behavior of a sequence $v_n : \mathbb{R}^N \to \mathbb{C}$ of H^1 functions such that

(1) \[\int |v_n|^2 = \int Q^2, \]

(2) \[E(v_n) = \frac{1}{2} \int |\nabla v_n|^2 - \frac{1}{N+2} \int |v_n|^\frac{4}{N+2} \leq E_0, \]

(3) \[\int |\nabla v_n|^2 \to +\infty, \]

where Q is the radial positive symmetric solution of the equation

(4) \[\Delta v + |v|^\frac{4}{N} v = 0. \]
This problem is related to the asymptotics of minimal blow-up solutions in \(H^1 \) of the equation

\[
 iu_t = -\Delta u - k(x)|u|^\frac{4}{N}u \quad \text{and} \quad u(0) = \varphi,
\]

where

\[
 \max_{x \in \mathbb{R}^N} k(x) = 1.
\]

Indeed, for all \(\varphi \in H^1 \), there is a unique solution in \(H^1 \) on \([0,T]\) ([2], [4]) and

\[
 T = +\infty \quad \text{or} \quad \lim_{t \to T} \int |\nabla u(t,x)|^2 = +\infty.
\]

In addition, \(\forall \ t \)

\[
 \int |u(t,x)|^2 dx = \int |\varphi(x)|^2 dx
\]

(7)

\[
 E_k(u(t)) = E_k(\varphi)
\]

where

\[
 E_k(v) = \frac{1}{2} \int |\nabla v|^2 - \frac{1}{\frac{4}{N} + 2} \int k(x)|v|^\frac{4}{N} + 2.
\]

From [9]

(9) \(\forall \ v \in H^1 \), \(\frac{1}{\frac{4}{N} + 2} \int |v|^\frac{4}{N} + 2 \leq \frac{1}{2} \left(\frac{\int |v|^2}{\int |Q|^2} \right)^\frac{4}{N} \int |\nabla v|^2 \)

and it follows from (6)-(9) ([6]) that

if \(|\varphi|_{L^2} < |Q|_{L^2} \), then \(T = +\infty \).

Moreover under some conditions on \(k(x) \), for any \(\varepsilon > 0 \) there are blow-up solutions \(u_\varepsilon(t) \) such that

\[
 |u_\varepsilon(0)|^2_{L^2} = |\varphi|^2_{L^2} + \varepsilon \quad ([6]).
\]

Thus the questions are about existence of minimal blow-up solution (that is such that \(u(t) \) blows up in finite time and \(\int |\varphi|^2 = \int Q^2 \) and on the
form of these solutions. In the case where \(k(x) \equiv 1 \), the question has been completely solved (see Merle [5]). The general case is still open. We remark that from (6)-(9), if \(u(t) \) is a blow up solution, the sequences \(v_n = u(t_n) \) as \(t_n \to T \) satisfies (1)-(3) and we ask about the constrains it imply on \(v_n \).

The first result in this direction was obtained by Weinstein in [9]. Using the concentration compactness method, he showed that there is a \(\theta_n \in \mathbb{R} \), \(x_n \in \mathbb{R}^N \) such that

\[
(10) \quad v_n = \lambda_n^{\frac{N}{2}} e^{i\theta_n} Q\left(\frac{\lambda_n^{\frac{N}{2}} (x - x_n)}{\lambda_n} \right) + \varepsilon_n,
\]

where

\[
(11) \quad \lambda_n = \frac{|\nabla v_n|_{L^2}}{|\nabla Q|_{L^2}},
\]

\[
(12) \quad |\varepsilon_n|_{L^2} \xrightarrow{n \to +\infty} 0 \quad \text{and} \quad \frac{|\nabla \varepsilon_n|_{L^2}}{\lambda_n} \xrightarrow{n \to +\infty} 0.
\]

In [5], Merle then showed that for all \(R > 0 \), there is a \(c > 0 \) such that

\[
(13) \quad \int_{|x - x_n| > R} |\nabla v_n|^2 \leq c.
\]

We now claim the following result

THEOREM. Let \((v_n)\) be a sequence of \(H^1 \) functions satisfying (1)-(3) and \(\theta_n(x) \) be such that \(v_n = |v_n|e^{i\theta_n} \).

i) **Phase estimates.** There is a \(c > 0 \) such that

\[\forall \ n, \quad \int |v_n|^2 |\nabla \theta_n|^2 \leq c. \]

ii) **Asymptotics on the modulus.**
There is a \(\varepsilon_n(x), \ x_n \in \mathbb{R}^N \), and \(c > 0 \) such that

\[\forall \ x, \ |v_n(x)| = \lambda_n^{\frac{N}{2}} Q(\lambda_n(x - x_n)) + \varepsilon_n(x) \]

where

\[|\nabla \varepsilon_n|_{L^2} \leq c, \quad |\varepsilon_n|_{L^2} \leq \frac{c}{\lambda_n} \quad \text{and} \quad \lambda_n \left(\frac{|\nabla Q|_{L^2}}{|\nabla v_n|_{L^2}} \right) \xrightarrow{n \to +\infty} 1. \]

Remark. This Theorem simplifies some proofs in [5], [6]. The case where \(v_n \) is real valued is also related to similar problems for the generalized Korteweg-de Vries equation with critical nonlinearity.
Remark. – The Theorem implies in particular for blow-up solution of equation (5) \(u(t, x) = |u(t, x)| e^{i\theta(t, x)} \) and \(\int |u(t)|^2 = \int Q^2 \) the phase gradient is uniformly bounded at the blow-up: there is a \(c > 0 \) such that

\[
\forall \ 0 < t < T, \quad \int |u(t, x)|^2 |\nabla \theta(t, x)|^2 dx \leq c.
\]

(Of course, we still have \(\int |\nabla u|^2(t, x) dx \to +\infty \) as \(t \to T \).

Remark. – It is easy to check that the result is optimal. We remark that the residual term in the theorem \(\epsilon_n = O(1) \) (compared to \(o(|\nabla v_n|_{L^2}) \) in [9]).

Proof of the Theorem. – Let \((v_n) \) a sequence of \(H^1 \) function satisfying (1)-(3) and \(\theta_n(x) \) such that \(v_n = |v_n| e^{i\theta_n} \). We have that

\[
\frac{1}{2} \int |\nabla v_n|^2 = \frac{1}{2} \left(|\nabla v_n|^2 + \int |v_n|^2 |\nabla \theta_n|^2 \right)
\]

and

\[
E(v_n) = \frac{1}{2} \int |v_n|^2 |\nabla \theta_n|^2 + E(|v_n|).
\]

The idea is to apply the variational identity (9) not with \(v_n \) but with \(|v_n| \). Indeed, since \(v_n \in H^1 \) we have that \(|v_n| \in H^1 \). From (9) (applied with \(|v_n| \))

\[
\frac{1}{n+2} \int |v_n|^n + 2 \leq \frac{1}{2} \left(\int \frac{|v_n|^2}{Q^2} \right)^\frac{n}{4} \int |\nabla v_n|^2 \leq \frac{1}{2} \int |\nabla v_n|^2,
\]

or equivalently

\[
E(|v_n|) \geq 0.
\]

Thus (2), (15), (17) imply that

\[
\frac{1}{2} \int |v_n|^2 |\nabla \theta_n|^2 \leq E_0
\]

(19)

\[
E(|v_n|) \leq E_0.
\]

Part i). – It is implied by (18).
Part ii). – We claim that it is as a consequence of (18)-(19). We prove it in three steps:

- from Weinstein’s results, we first obtain rough estimates on $|v_n|$,
- we then choose appropriate approximations parameters,
- we conclude the proof using a convexity property in certain directions of E near Q (and use in a crucial way that $|v_n|$ is a real-valued function).

Step 1: First asymptotics. – Since

\[
\int |\nabla v_n|^2 = \int |\nabla|v_n|_2|^2 + \int \frac{|v_n||\nabla \theta_n|^2}{n \to +\infty} + \infty,
\]

and

\[
\forall n, \int |v_n|^2|\nabla \theta_n|^2 \leq c,
\]

we have

\[
\int |\nabla v_n|^2 \longrightarrow +\infty.
\]

Moreover,

\[
\int |v_n|^2 = \int Q^2 \text{ and } E(|v_n|) \leq E_0.
\]

We conclude from Weinstein’s result on the existence of $\hat{x}_n, \hat{\varepsilon}_n$ such that

\[
|v_n|(x) = \hat{\lambda}_n^{N/2}Q \left(\hat{\lambda}_n x - \hat{x}_n \right) + \hat{\varepsilon}_n(x)
\]

where

\[
\hat{\lambda}_n = \frac{|\nabla v_n|_{L^2}}{|\nabla Q|_{L^2}},
\]

\[
|\nabla \hat{\varepsilon}_n|_{L^2} = o\left(\frac{1}{\hat{\lambda}_n} \right), \quad |\hat{\varepsilon}_n|_{L^2} = o(1).
\]

In order to obtain better estimates on the rest (that is $|\nabla \varepsilon_n|_{L^2} \leq c$), we have to choose appropriate parameters λ_n, x_n and use the structure of the functional $E(\cdot)$ near Q.

Step 2: Choice of the parameters of approximation. – Let us first renormalize the problem. We consider

\[
w_n, \lambda_1, x_1 (x) = \left(\frac{\lambda_1}{\lambda_n} \right)^{N/2} |v_n| \left((\lambda_1 x + \hat{x}_n + x_1) \frac{1}{\lambda_n} \right)
\]
We have from (23),

\[w_{n,\lambda_1, x_1}(x) = \lambda_1^{N/2} Q(\lambda_1 x + x_1) + \tilde{\varepsilon}_{n,\lambda_1, x_1}(x) \]

where

\[\frac{\| \nabla \tilde{\varepsilon}_n \|_{L^2}}{\lambda_1} + \| \tilde{\varepsilon}_n \|_{L^2} \xrightarrow{n \to +\infty} 0. \]

We write (28) as follows

\[w_{n,\lambda_1, x_1}(x) = Q(x) + \varepsilon_{n,\lambda_1, x_1}(x) \]

where

\[\varepsilon_{n,\lambda_1, x_1}(x) = \left[\lambda_1^{N/2} Q(\lambda_1 x + x_1) - Q(x) \right] + \tilde{\varepsilon}_{n,\lambda_1, x_1}(x). \]

From the implicit function Theorem, we derive easily for \(|\varepsilon_n|_{H^1}\) small enough the existence of \(\lambda_{1,n}, x_{1,n}\) such that

\[\forall i = 1, \ldots, N, \quad \int \varepsilon_{n,\lambda_{1,n}, x_{1,n}, x_i} Q = 0 \]

\[\int \varepsilon_{n,\lambda_{1,n}, x_{1,n}} |x|^2 Q = 0. \]

Moreover, from (29)

\[(\lambda_{1,n}, x_{1,n}) \xrightarrow{n \to +\infty} (1, 0). \]

Indeed, let us note

for \(i = 1, \ldots, N\),

\[\rho_i(\lambda_1, x_1) = \int \varepsilon_{n,\lambda_1, x_1} x_i Q, \]

\[\rho_{N+1}(\lambda_1, x_1) = \int \varepsilon_{n,\lambda_1, x_1} |x|^2 Q. \]

From (30), we have

\[\frac{\partial \varepsilon_{n,1,0}}{\partial x_{1,i}} = \partial_i Q + \partial_i \tilde{\varepsilon}_{n,1,0} \]

\[\frac{\partial \varepsilon_{n,1,0}}{\partial \lambda_1} = \frac{N}{2} Q + x \nabla Q + \left(\frac{N}{2} \tilde{\varepsilon}_{n,1,0} + x \nabla \tilde{\varepsilon}_{n,1,0} \right), \]

where \(x_1 = (x_{1,1}, \ldots, x_{1,N})\).
Therefore, from (29) and integration by parts, for $i = 1, \ldots, N$, and $j = 1, \ldots, N$,

\[
\frac{\partial \rho_i}{\partial x_{1,j}}(1,0) = \int \partial_j Q x_i Q + o(1) = -2 \delta_{i,j} \int Q^2 + o(1),
\]
\[
\frac{\partial \rho_i}{\partial \lambda_1}(1,0) = \int \left(\frac{N}{2} Q + x.\nabla Q \right) x_i Q + o(1) = o(1),
\]
\[
\frac{\partial \rho_{N+1}}{\partial x_{1,j}}(1,0) = \int \partial_j Q |x|^2 Q + o(1) = o(1),
\]
\[
\frac{\partial \rho_{N+1}}{\partial \lambda_1}(1,0) = \int \left(\frac{N}{2} Q + x.\nabla Q \right) |x|^2 Q + o(1)
\]
\[
= \frac{N}{2} \int |x|^2 Q^2 - \frac{N}{2} \int |x|^2 Q^2 - \frac{1}{2} \int x.x Q^2 + o(1)
\]
\[
= -\frac{1}{2} \int |x|^2 Q^2 + o(1).
\]

Therefore, the implicit function theorem implies the existence of $(\lambda_{1,n}, x_{1,n})$ such that (31)-(33) hold.

In conclusion, we have proved the following. There exist $(\lambda_{1,n}, x_{1,n}) \xrightarrow{n \to +\infty} (1, 0)$ such that

\begin{equation}
(34) \quad w_{n,\lambda_{1,n},x_{1,n}}(x) = Q(x) + \varepsilon_{n,\lambda_{1,n},x_{1,n}}(x)
\end{equation}

where

\begin{equation}
(35) \quad \forall \ i = 1, \ldots, n, \quad \int \varepsilon_{n,\lambda_{1,n},x_{1,n}} x_i Q = 0,
\end{equation}

\begin{equation}
(36) \quad \int \varepsilon_{n,\lambda_{1,n},x_{1,n}} |x|^2 Q = 0,
\end{equation}

\begin{equation}
(37) \quad |\varepsilon_{n,\lambda_{1,n},x_{1,n}}|_{H^1} \xrightarrow{n \to +\infty} 0.
\end{equation}

We now note

\[
\begin{align*}
 w_n &= w_{n,\lambda_{1,n},x_{1,n}}, \\
 \varepsilon_n &= \varepsilon_{n,\lambda_{1,n},x_{1,n}}.
\end{align*}
\]

Step 3: Conclusion of the proof. – Geometry of energy functions at Q.

Vol. 13, n° 5-1996.
We now use convexity properties of a functional (related to E) and the fact $\int w_n^2 = \int Q^2$ to conclude the proof. Let

$$H(v) = \frac{1}{2} \int |\nabla v|^2 - \frac{1}{N+2} \int |v|^{\frac{4}{N+2}} + \frac{1}{2} \int v^2 = E(v) + \frac{1}{2} \int v^2,$$

and

$$H_2(v) = \frac{1}{2} \int |\nabla v|^2 - \frac{4}{N} \int Q^4 v^2 + \frac{1}{2} \int v^2.$$

We know that Q is a critical point of H, and H_2 is the quadratic part of H near Q (where v is real-valued). Moreover, it is classical that for $|\varepsilon|_{H^1} \leq 1$,

$$H(Q + \varepsilon) - H(Q) = H_2(\varepsilon) + \tilde{H}_2(\varepsilon)$$

where $|\tilde{H}_2(\varepsilon)| = o(|\varepsilon|^2_{H^1}).$

From a result of Weinstein [8] (see also Kwong [4]), we have the following convexity property of H_2 at Q.

Proposition 1. See [8]. – (Directions of convexity of H at Q in the set of real-valued functions.) There is a constant $c_1 > 0$ such that $\forall \varepsilon \in H^1$

If

(i) \[\forall \, i = 1, \ldots, N, \quad \int \varepsilon \, x_i Q = 0 \]

(ii) \[\int \varepsilon |x|^2 Q = 0, \]

(iii) \[\int \varepsilon Q = 0, \]

then

$$H_2(\varepsilon) \geq c_1 \left(\int |\nabla \varepsilon|^2 + \varepsilon^2 \right) = c_1 |\varepsilon|^2_{H^1}.$$

Remark. – We have here a strict convexity property (up to the invariance of the equation) except in the direction Q which is not true for the quadratic part of H for complex valued functions (see [8]).

Remark. – This proposition is optimal. Other functions can be chosen also.

Using now crucially estimates on the L^2 norm, we obtain the following
Proposition 2 (Control of the Q direction by the L^2 norm).
Assume

(i) \[\forall i = 1, \ldots, N, \int \varepsilon x_i Q = 0, \]

(ii) \[\int \varepsilon |x|^2 Q = 0, \]

(iii) \[\int (Q + \varepsilon)^2 = \int Q^2, \]

then there are $c_1 > 0$ and $c_2 > 0$ such that

\[|\nabla \varepsilon|_{L^2} + |\varepsilon|_{L^2} \leq c_2 \text{ implies } H_2(\varepsilon) \geq c_1 (|\nabla \varepsilon|_{L^2}^2 + |\varepsilon|_{L^2}^2). \]

Remark. – We need control on 3 directions to obtain estimates on $|\varepsilon|_{H^1}$ with $H_2(Q + \varepsilon)$. Two directions can be controlled using the invariance of the equation. The last one is controlled by the condition of minimality on the L^2 norm (among sequence satisfying (2)).

Proof of Proposition 2. – Let us note

\[\tilde{H}_2(v_1, v_2) = \frac{1}{2} \int \nabla v_1 \nabla v_2 - \frac{4}{N} \int Q^\frac{N}{2} v_1 v_2 + \frac{1}{2} \int v_1 v_2. \]

We can write

\[\varepsilon = z + aQ + b|x|^2 Q \]

with

\[\int zQ = \int z x_i Q = \int z |x|^2 Q = 0 \text{ for } i = 1, \ldots, N. \]

Indeed a and b have to satisfy

\[\int \varepsilon Q = a \int Q^2 + b \int |x|^2 Q^2, \]

\[o = a \int |x|^2 Q^2 + b \int |x|^4 Q^2. \]
or equivalently
\[b = -a \left(\frac{\int |x|^2 Q^2}{\int |x|^4 Q^2} \right) \]
\[a \left(\frac{\int Q^2 \int |x|^4 Q^2 - \left(\int |x|^2 Q^2 \right)^2}{\int |x|^4 Q^2} \right) = \int \varepsilon Q \]
(which has always a solution since from the Schwarz inequality and the fact \(|x|^2 Q \neq Q \), \(\int |x|^2 Q^2 < \left(\int Q^2 \int |x|^4 Q^4 \right)^{1/2} \)).

On the other hand, we have from \(\int (Q + \varepsilon)^2 = \int Q^2 \)

\[2 \int Q\varepsilon = - \int \varepsilon^2 \]
\[2 \left(a \int Q^2 + b \int |x|^2 Q^2 \right) = - \int \varepsilon^2 \]
\[2a \left(\frac{\int Q^2 \int |x|^4 Q^2 - \left(\int |x|^2 Q^2 \right)^2}{\int |x|^4 Q^2} \right) = - \int z^2 + O(a^2 + b^2) \]
or equivalently,
\[ac_0 = - \int z^2 + O(a^2) \quad \text{where } c_0 \neq 0 \]
which implies that
\[a = O \left(\int z^2 \right) \quad \text{and} \quad b = O \left(\int z^2 \right) \]
and for \(|\varepsilon|_{H^1} \) small enough
\[|\varepsilon|_{H^1}^2 \geq |z|_{H^1}^2 \geq \frac{1}{2} |\varepsilon|_{H^1}^2. \]

On the other hand, by bilinearity and Proposition 1, we have for \(|\varepsilon|_{H^1} \) small enough
\[H_2(\varepsilon) = H_2(z) + 2a\tilde{H}_2(z, Q) + 2b\tilde{H}_2(z, |x|^2 Q) + 2ab\tilde{H}_2(Q, |x|^2 Q) \]
\[+ a^2 H_2(Q) + b^2 H_2(|x|^2 Q) \]
\[\geq H_2(z) - c(|z|_{H^1}(|a| + |b|) + a^2 + b^2) \]
\[\geq H_2(z) - c(|z|_{H^1}^3 + |z|_{H^1}^4) \]
\[\geq c_1 \left(|z|_{H^1}^2 \right) - c \left(|z|_{H^1} + |z|_{H^1}^4 \right) \]
\[\geq \frac{c_1}{2} |z|_{H^1}^2 \]
\[\geq \frac{c_1}{4} |\varepsilon|_{H^1}^2. \]
This concludes the proof of Proposition 2.

As a corollary of Proposition 2 and (38), we have

Corollary. - There are $c_1 > 0$ and $c_2 > 0$ such that if

(i) $\forall i = 1, \ldots, N, \int \varepsilon x_i Q = 0$

(ii) $\int |\varepsilon|^2 Q = 0$

(iii) $\int (Q + \varepsilon)^2 = \int Q^2$

(iv) $|\nabla \varepsilon|_{L^2} + |\varepsilon|_{L^2} \leq c_2$

then

$$H(Q + \varepsilon) - H(Q) \geq c_1 \left(\int \nabla \varepsilon^2 + \int \varepsilon^2 \right).$$

We now apply the corollary. If $w_n = Q + \varepsilon_n$, we have

$- |\varepsilon_n|_{H^1} \xrightarrow{n \to +\infty} 0$, and in particular there is n_0 such that

$\forall n \geq n_0, |\varepsilon_n|_{H^1} \leq c_2$,

- $\forall i = 1, \ldots, N, \int \varepsilon_n x_i Q = 0$.

In addition,

$$H(Q) = \frac{1}{2} \int |\nabla Q|^2 - \frac{1}{4N + 2} \int |Q|^{\frac{4}{N} + 2} + \frac{1}{2} \int Q^2$$

$$= E(Q) + \frac{1}{2} \int Q^2$$

(since the Pohozaev identity for equation (4) yields $E(Q) = 0$), and

$$H(Q + \varepsilon_n) = H(w_n) = H\left(\left(\frac{\lambda_1}{\lambda_n} \right)^{\frac{N}{2}} |v_n| \left(\frac{x \lambda_1}{\lambda_n} + \hat{x_n} + x_1 \right) \right)$$

$$= E\left(\left(\frac{\lambda_1}{\lambda_n} \right)^{\frac{N}{2}} |v_n| \left(\frac{x \lambda_1}{\lambda_n} \right) \right) + \frac{1}{2} \int |v_n|^2$$

$$= \left(\frac{\lambda_1}{\lambda_n} \right)^2 E(|v_n|) + \frac{1}{2} \int Q^2.$$
Therefore $\forall \ n \geq n_0$

\[(40) \quad \left(\frac{\lambda_1}{\lambda_n} \right)^2 E(|v_n|) > c_3 \left(|\varepsilon_n|_{H^1} \right) \]

or equivalently from (19), (24) and the fact that $\lambda_1 \to 1$,

\[(41) \quad |\varepsilon_n|_{H^1}^2 \leq \frac{c}{2} \frac{1}{\int |\nabla v_n|^2} \leq c \frac{1}{\int |\nabla v_n|^2},\]

where c is independent of n. Thus,

\[w_n = Q + \varepsilon_n,\]

with

\[(42) \quad |\varepsilon_n|_{H^1}^2 \leq \frac{c}{\int |\nabla v_n|^2}.

Therefore from (26), there is x_n such that

\[(43) \quad |v_n|(x) = \left(\frac{\lambda_n}{\lambda_1} \right)^{\frac{N}{2}} Q \left(x \left(\frac{\lambda_n}{\lambda_1} + x_n \right) + \left(\frac{\lambda_n}{\lambda_1} \right)^{\frac{N}{2}} \varepsilon_n \left(\frac{\lambda_n}{\lambda_1} x + x_n \right) \right).\]

We remark that from (19), (42), the fact that $\lambda_1 \to 1$,

\[
\frac{\lambda_n}{\lambda_1} \frac{1}{\left(\int |\nabla v_n|^2 \right)^{\frac{1}{2}}} = \frac{1}{\lambda_1} \left(\frac{\int |\nabla v_n|^2}{\int |\nabla Q|^2} \right)^{\frac{1}{2}} \to 1, \quad n \to +\infty
\]

\[
\left| \left(\frac{\lambda_n}{\lambda_1} \right)^{\frac{N}{2}} \varepsilon_n \left(\frac{\lambda_n}{\lambda_1} x + x_n \right) \right|_{L^2}^2 = |\varepsilon_n|_{L^2}^2 \leq c \frac{1}{\int |\nabla v_n|^2},
\]

\[
\left| \nabla \left(\frac{\lambda_n}{\lambda_1} \right)^{\frac{N}{2}} \varepsilon_n \left(\frac{\lambda_n}{\lambda_1} x + x_n \right) \right|_{L^2}^2 \leq c \left(\frac{\lambda_n^2}{\int |\nabla v_n|^2} \right) \leq c
\]

conclude the proof of the Theorem.
REFERENCES

[6] F. MERLE, Nonexistence of minimal blow-up solutions of equations \(iu_t = -\Delta u - k(x)|u|^{4/N}u \) in \(\mathbb{R}^N \), preprint.

(Manuscript received October 25, 1994; revised version received January 26, 1995.)