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ABSTRACT. - We give a "generalized" version of the isoperimetric
inequality when the perimeter is defined with respect to a convex, positively
homogeneous function on R". We use it to prove that, for any function
u compactly supported in the integral of a convex function of Du
decreases when u is rearranged in the corresponding "convex" way. Similar
arguments allow us, for example, to prove comparison results for solutions
of the Dirichlet problem for elliptic equations when the differential operator
satisfies suitable structure assumptions.

RESUME. - Nous donnons une version « generalisee » de l’inégalité
isoperimetrique lorsque la definition du perimetre depend d’une fonction
convexe et positivement homogene sur R". Cette inegalite est employee
pour demontrer que, pour toutes les fonctions u avec support compact
dans R", l’intégrale d’une fonction convexe de Du decroit quand u est
rearrangée a une façon « convexe ». Avec des arguments du même type nous
demontrons, par exemple, les resultats de comparaison pour les solutions
du probleme de Dirichlet pour des equations elliptiques quand Foperateur
differentiel satisfait des hypotheses de structure convenables.
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276 A ALVINO et al.

1. INTRODUCTION

It is well known that under Schwarz symmetrization certain quantities
increase or decrease. As an example let us consider a nonnegative smooth
function u defined on (~n, with compact support. If u# is the Schwarz

symmetrization of u, the Polya-Szego principle states (see, e.g., [PS], [Tl])
that:

We recall (see also Section 2) that the Schwarz symmetrization or spherically
decreasing rearrangement of u is defined as

where Wn is the measure of the unit sphere in R" and E ~ denotes
the measure of the set E C In other words, u# is a spherically
symmetric and radially decreasing function such that its level sets (i. e.
{x : u# (x ) > t ~ ) are balls which have the same measure as the level sets
of u (i.e. ~x : u(x) > t~). The proof of (1.1) is essentially based on the
following inequality

which is a consequence of the isoperimetric inequality and of Fleming-
Rishel formula.

Using similar methods, it is possible to prove that Schwarz symme-
trization increases the LP-norm of solutions of linear and nonlinear elliptic
equations. Let u be a weak solution of the Dirichlet problem

where n C (~n is an open bounded set and aij are bounded functions

satisfying

If v is the solution of the "symmetrized" problem
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277CONVEX SYMMETRIZATION AND APPLICATIONS

where S2# is the ball centered at the origin such that ~52#~ _ ~52~, then
the inequality

holds (see [T2] and, for various generalizations, [T3], [ALT], [FP], [BFM]).
This means, for example that any norm of u increases under Schwarz
symmetrization. Once again, one of the main tools to prove (1.3) is

inequality (1.2).
At this point, one could ask if it is possible to find the way to

"symmetrize" a function u in order to minimize the functional

where H(~) is a nonnegative convex function, positively homogeneous of
degree 1.

In order to solve the problem of minimizing (1.4) we will prove that for
any bounded set E of finite perimeter, an inequality like

holds (see Section 2), where an is a suitable "isoperimetric" constant and
PH (E) is a "generalized" perimeter. Using (1.5) it is possible to prove the
following version of the Polya-Szego principle (see Section 3):

where u* is the "convex" rearrangement of u with respect to H, that is,
the level sets of u* have the same measure as the level sets of u and are
homothetic to the set I~° which is polar to the set {x : H(x)  l~.

In a natural way, using (1.5), we prove (see Section 4) comparison results
for solutions of the Dirichlet problem:

where S2 c I~n is an open bounded set and ai satisfy

Vol. 14, n ° 2-1997.



278 A ALVINO et al.

and for solutions of the Cauchy problem:

where

For example, it is possible to prove that if is sufficiently regular (off
the origin) a solution of (1.6) can be estimated in terms of the solution
of the problem:

where f* is the convex rearrangement of f with respect to Hand fl* is
the set homothetic to ~° such that ( = 

2. PRELIMINARIES

Let H : ---~ ~0, be a convex function satisfying the homogeneity
property:

Furthermore, assume that H satisfies

for some positive constants 03B1 ~ 03B2. Because of (2.1 ) we can assume, without
loss of generality, that the convex closed set

has measure equal to the measure of the unit sphere in [R’B
Sometimes, we will say that H is the gauge of K. If one defines (see [R])
the support function of K as:
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279CONVEX SYMMETRIZATION AND APPLICATIONS

it is easy to verify that p~’~ --~ ~0, is a convex, homogeneous
function, and that H, H° are polar to each other in the sense that:

and

For example it follows:

Clearly itself is the gauge of the set:

We say that K and I~° are polar to each other. Finally we denote by ~;~t

the measure of ~°. Further details can be found, e.g., in [La], [R].
Let f2 be an open subset of (~T~ . It is possible to give the following

definition of the total variation of a function u E with respect to
a gauge function H (see [AB]):

This yields the following "generalized" definition of perimeter of a set E
with respect to H:

The following co-area formula

and the equality

hold, where is the reduced boundary of E and vE is the outer normal
to E (see [AB]).

Vol. 14, nO 2-1997.



280 A ALVINO et al.

One obtains readily that by definition PH(E; S2) is finite if and only if
the usual perimeter:

is finite. In fact, (2.1) and (2.2) give:

and then:

Our aim is now to state an isoperimetric inequality which allows us to
estimate from below the perimeter with respect to a generic gauge function
H of a set E in terms of the measure of the set itself.

PROPOSITION 2.1. - Let f E A sequence ~ f h ~ h C exists,
such that:

and

Proof - Suitably mollifying f it is possible to define a sequence
C (see [G], [M]). Then, for example, one can follow the

proof of Theorem 1.17 of [G].

PROPOSITION 2.2. - Let E be a set of finite perimeter in Q. A sequence of
C°° sets ~ Eh ~ h exists, such that:

and

Proof - Mollifying the function xE as in Proposition 2.1, it is possible
to find a sequence {uh}h C such that:
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281 CONVEX SYMMETRIZATION AND APPLICATIONS

and

Furthermore, one has also (see [G], [M]) 0  ~ch  1. By the co-area
formula we have:

Sard’s theorem implies that the sets E~h~ _ (uh > s~ have C°° boundary
for almost every s E (0,1). We consider only such levels s. Let us fix
~ E ~0, 1/4~ and h = such that:

Following [M] (Lemma 2, p. 299) we have:

for every s E ~~1~2, 1 - ~1~2~.
On the other hand, for every h there exists sh E (~1~2, 1 -c~) such that:

In view of the properties of u~, we also get:

By (2.3), it follows that in and, by (2.4), (2.5),

Taking into account the fact that, by definiton, PH is lower semicontinuous,
the proposition follows..

It is well known that, if E is a s.mooth set (for example Lipschitz), then
the following inequality holds:

Vol. 14, n° 2-1997.



282 A ALVINO et al.

It is proven in [Bu] (see also [BZ]) making use of Brunn-Minkowski
inequality. Then, using Proposition 2.2 and (2.6), we have:

PROPOSITION 2.3. - If E is a set of finite perimeter in then:

Remark 2.1. - The inequality (2.7) obviously reduces to the classical
isoperimetric inequality due to De Giorgi [DG] when ~ ( ~) _ ~ ~ ~ . As in the
classical one, (2.7) holds as an equality when the set E is homothetic to ~°.

3. POLYA-SZEGO PRINCIPLE

We first observe that if u E W 1’ 1 ( SO ) then (see [AB])

The co-area formula then gives, for any u E W1,1(f2),

for almost every t.

Let now ’u : --~ [0, be a smooth function with compact support.
It is well known that for a.e. t E [0, sup ~c~,

For p > 1 we have:

On the other hand, by Holder inequality we get:
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283CONVEX SYMMETRIZATION AND APPLICATIONS

It follows that for almost every t E [0, sup u~ the inequality

holds, where, as usual, we have denoted by ~c(t) _ ~ ~:~ : u(:~) > ~ ( the
distribution function of ~u.

Taking into account (3.1 ) and the isoperimetric inequality (2.7), we obtain:

Let us verify that the right hand side of (3.3) coincides with

~’~" where u* is a suitable "convex" symmetrization of ~c.

We set

where K° (x) _ ~~ E S~~ : ~° (~) C and = 

By construction the level sets of u* are homothetic to K. This means that
the isoperimetric inequality holds as an equality for the sets {u* > t~, i.e.,

On the other hand, the Holder inequality in (3.2) also holds as an equality
when 11 = ~r~*. In fact, we claim that H(Du* ) is constant on the set ~~c* = t~.
In order to prove this claim, one has to observe that D HO (x) is, for a.e. x,
a vector normal to Then the definition of H gives (see [R])

The homogeneity assumption (2.1) implies:

It follows that:

and the claim is proven.
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284 A ALVINO et al.

One also obtains:

Now, taking into account the fact that

is a norm in equivalent to the usual one, a density argument
gives the following

THEOREM 3.1. - Let H be a gauge function and let u E p > l.

Then u* E and

Remark 3.1. - Clearly, in the case H(~) _ ~~~, Theorem 3.1 gives the
well known Polya-Szego principle. In such a case, u* coincides with the
spherically symmetric decreasing rearrangement of u, which is usually
denoted by u# (see, e.g., [Tl]).

We now give sharp Sobolev-like inequalities as a simple application of
the above results. Using Theorem 3.1 and the arguments in [Tl], one gets:

COROLLARY 3.2. - Under the assumptions of Theorem 3.1 we have:

where is the best constant in Sobolev inequality given in [Tl].

Proof - The fact that one can bound the norm of u in LP~ by the

integral (Rn HP (Du) dx) times a suitable constant is a consequence of

the Sobolev inequality and of the hypotheses on H. The best constant can
be obtained observing that by Theorem 3.1 the ratio
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increases when u is replaced by u*. But, once one supposes u = u*,
(3.5) gives:

where ~c# denotes the spherically symmetric rearrangement of u. So, using
the estimate of the right hand side of (3.8) given in [Tl], we get (3.7)..

4. APPLICATIONS TO PDE’s

In this section we will give some applications of the results in Section 2. In
particular we will obtain sharp estimates for solutions of elliptic equations
and of Hamilton-Jacobi equations.

4.1. Elliptic equations
Let u E be a solution of the problem

where f E L ~i + ~ ( SZ ) if n > 3, f E p > 1, if n = 2, and
a(x, ~, 03BE) ~ {ai(x, ~, 03BE) }i=1,...,n are Carathéodory functions satisfying

and ~f(~) is a gauge function as in Section 2.
A weak solution of (4.1) satisfies

Such a solution exists for example if the vector a(x, r~, ~) satisfies:

for

Vol. 14, n 2-1997.
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Using, for h, > 0, t > 0, the following test function

one gets, in a standard way,

where is the distribution function of u. Taking into account the

assumption (4.2), it follows:

At this point, one has to use the isoperimetric inequality (2.7) in order to
estimate from below the left-hand side of the above inequality. Proceeding
for example as in [T2], one obtains:

Integrating both sides and using the definition of decreasing rearrangement
of ?7, we have:

It is easy to recognize that the function on the right hand side of (4.3) is

proportional to the decreasing rearrangement of the solution of a suitable
"symmetrized" problem. More precisely, (4.3) can be written as:

where v * ( s ~ is the decreasing rearrangement of the solution v of the
Dirichlet problem:

and SZ# denotes the sphere centered at the origin such that SZ# ~ [ _ ~ SZ ( .
Then we can state:
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THEOREM 4.1. - Let u E be a solution ofProblem (4. ~ ) under the
Hypothesis (4. 2). E Wo ’ 2 ( SZ ~ ) is the solution of (4.5 ), then (4. 4) holds.
Remark 4. i . - A result similar to Theorem 4.1 can be easily obtained

using Hypothesis (2.2) and Talenti’s result (see [T2]), but our result gives
a sharper estimate. In fact, by (4.2) and (2.2) it follows that the vector

a(x, q; ~) satisfies the hypothesis

Talenti’s result then implies

where v is the solution of (4.5). It is easy to show that

In fact, the hypotheses ~K~ and 7J(~) ~ imply that {~ E
 a} and

2/m 
and then (4.4) is sharper then (4.6). We also observe that ~.;/,~ = a if
and only if H(~) _ ~~j. 

n

Example. - In order to give an idea of the improvement obtained, we
give an example where can be explicitely calculated. Let us consider

It is easy to show that the hypotheses required on H are satisfied and that

It follows that 03BA2 = 3 and 03C92  = 03C0 .
~2 3

On the other hand, the best choice of 03B1 in (2.2) is 03B1 = 0393(1 4) (203C0)3/4 and then

Vol. 14, n° 2-1997.
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In the case when ~f(~) = ~~~, the estimate (4.4) can be written as

One could ask if, also in the general case, (4.4) gives an estimate of u
in terms of a suitably symmetrized Dirichlet problem. We readily observe
that (4.4) can be written as

where v (x) minimizes the functional

Now we show that

where z = z*, z E minimizes the functional:

and 0* is the set homothetic to K° such that ( = 101.
First of all we observe that a minimizer z of F° such that z = z* exists

because we have, for any w E Wo >2 ( SZ* ),

This inequality is a consequence of Polya-Szego inequality (3.6) and of the
following Hardy-Littlewood inequality

This means that, in order to minimize po ( w) one can consider w = w*.
On the other hand, because of equality (3.5), we have:

Annnles de l’Institut Henri Poincaré - Analyse non linéaire
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for any w = w*. This means that the minimizer z = z* of the functional F°

is such that z# minimizes the functional F#. In other words z# minimizes
the functional

2/n
that is the functional (4.8) with 03C9’n 03BA2/nn f # in place of f # . Equality (4.9)
immediately follows. Taking into account (4.7) we have that (4.4) can be
written as

where z = z*, z E Wo ’2 (SZ*), is a minimizer of functional (4.10).
If H is enough regular one has that z is the solution of the problem

In other words, as in the case considered in [T2], one could say that among
the Dirichlet problems (4.1 ) where SZ has a fixed measure, the right hand
side of the equation has a fixed distribution function and the differential
operator satisfies condition (4.2), problem (4.12) has the biggest solution.

Taking into account the above considerations it appears natural to deal
with minimizers of functionals of the following type:

where ~4(~) is convex, continuous and coercive. Under the hypotheses made
on A(~) it is well known that u E Wo’2(52) minimizes F(u) if and only if

where

Vol. 14, n° 2-1997.
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Using (4.14) and the arguments of the proof of Theorem 4.1, it is possible
to prove the following:

THEOREM 4.2. - Let u E be a minimizer of functional F in (4.13)
and let us assume that A(~’; g" ) in (4. ~5~ satisfies

where H(03BE) is a gauge function as in Section 2. Then (4.11 ) holds.

4.2. Hamilton-Jacobi equations

Let T > 0 and let’u E W 1’ 2 ( 0 . T; be a generalized solution of
the following Cauchy problem:

where cp > 0, :p E C;(S2), and

being H(() a gauge function. We will obtain a comparison result between
u and the viscosity solution of the "symmetrized" problem

More precisely, we have:

THEOREM 4.3. - Suppose u E W 1’2 (©, Tj is a non-negative
generalized solution of (4.16). Then we have:

where v(x, t) is the viscosity solution of (4.I8) and ~.c*(~, t) denotes the
convex rearrangement of ~u( ~, t) with respect to H for fixed t.

Proof - Using hypothesis (4.17) and proceeding for example as in [FPV]
(see also [GN]) it is possible to obtain:
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for almost every t E [0, T] and B > 0, where the notation

is used.

If, for a fixed t, we denote by tc(8, t) the distribution function of u( x, t),
using a result contained for example in [Ba], [MR], [ADLT] one obtains,
for almost every 8 > 0,

where ~c*(~, t) is the decreasing rearrangement of u( . , t). On the other hand
the isoperimetric inequality (2.7) implies

Now, using standard techniques, (4.19), (4.20) and (4.21) give:

Putting s = ~n ~H° (~) ~ ~ and taking into account (3.4) we have:

The assertion then follows from the well known properties of viscosity
solutions (see, e.g. [Li] Theorem 11.2). N

Remark 4.2. - As a final remark we would like to point out that,
using methods similar to those indicated above, it is possible to obtain
comparison results for solutions of equations in a more general form and
also for solutions of equations of different type. For example one could
consider solutions of the problem:

where the assumptions on a(x, r~, ~) and f are the same as for problem
(4.1), while on b(x, ~) and c( x, u) we assume:

Vol. 14, n ° 2-1997.
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An estimate like (4.4) can be found (see also [ALT]), where now v(x) is
solution of the problem:

In a completely analogous way (see also [ALT]) one can give comparison
results for parabolic equations of the type:

under the assumptions

where v(t) and B(t) suitably depend on t.
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