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ABSTRACT. - We define the set Kq,e C K of quasiconvex extreme points
for compact sets K C and study its properties. We show that K~,~
is the smallest generator of Q(K)-the quasiconvex hull of K, in the sense
that _ ~ ( K), and that for every compact subset W C Q ( K ) with
Q(W) = Q(K), Kq,e C W. The set of quasiconvex extreme points relies
on K only in the sense that C Kq,e C We also establish
that I~~ C where Ke is the set of extreme points of C ( K ) -the convex
hull of K. We give various examples to show that Kq,e is not necessarily
closed even when Q(K) is not convex; and that for some nonconvex Q(K),
Kq,e = We apply the results to the two well and three well problems
studied in martensitic phase transitions. © Elsevier, Paris

1. INTRODUCTION

A basic property of compact convex sets in I~n is that they are the

closed convex hulls of their extreme points (Krein-Milman Theorem [Ru]).
Suppose K C (~n is compact and convex, then K = where Ke
is the set of its extreme points. Also, for every compact W C K such
that C(W ) = K, we have Ke C W. We may say that Ke is the smallest

generator of the convex set’K. In this paper we introduce a similar notion
for quasiconvex sets studied in the variational approach to material phase
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664 K. ZHANG

transitions, and we show that the set of quasiconvex extreme points
is the smallest generator of the quasiconvex set K. It turns out that 
is a natural generalization of For K C = Ke (see
Example 4.1).

For a compact subset K C we may define its quasiconvex hull
Q (K) by cosets of quasiconvex functions [Svl], or alternatively, by direct
quasiconvex relaxations of the distance functions to the set [Z2]. In fact,
the study of properties like quasiconvex hulls for sets in MN n goes back
to J. M. Ball [B13]. A compact subset K C is called quasiconvex
if Q (I~) _ K (for more precise definitions, see §2 below). Examples of
quasiconvex sets include the level sets of quasiconvex functions, that is

I~ _ ~ P E f(P) C a ~ where a E IF~ and f : R

quasiconvex.
Let be any bounded sequence in approaching a

compact set K c in the sense that 0 almost

everywhere as j -~ oo. We further assume that in 

in the weak-* sense (from now on, ~ denotes weak-* convergence).
Heuristically, the quasiconvex hull C.~ (K) of K is the smallest closed set
Q(K) such that Du(x) E Q(K) almost everywhere. This means Q(K)
is closed under weak-* convergence. A compact set K is quasiconvex if
it is weak-* closed.

Let us use the level set mentioned above as an example, that is,

where ex and f : quasiconvex. We assume that K is

compact. Let in and dist(Duj(x), .~) -~ 0 almost
everywhere as j -~ 0. be the family of Young measures
corresponding to (Duj) (see [T, B12] and Lemma 2.6 bellow). Then we
have suppvx C K’ and

(see, for example [BZ, KP]) for almost every x E n. Here we have used
the fact that f is quasiconvex to obtain the inequality above. Now, from
the definition of K, the left hand side of the above inequality is less than
ex, hence  cx, which gives Du(x) E K almost everywhere.
K is a quasiconvex set.

The study of quasiconvex hulls and quasiconvex sets is motivated

by the variational approach to martensitic phase transitions and material
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665ON THE STRUCTURE OF QUASICONVEX HULLS

microstructures [ BJ 1, BJ2, CK, K, Sv2, MS]. A natural question in the
study of quasiconvex sets or quasiconvex hulls of a given set is to ask

whether there exists a ’smallest’ subset Ko of a quasiconvex set K such
that Q(Ko) = K. In this paper we show that the following set turns out to
be the smallest generator of the quasiconvex set K.

DEFINITION 1.1. - Let K C be non-empty and compact.

P E K is called a quasi convex extreme point of K if for every gradient
homogeneous Young measure v supported in K with K 03BBdv(03BB) = P, then
v = b p - the Dirac mass supported at P.

The set of all quasiconvex extreme points of K is denoted by Kq,e.
Gradient homogeneous Young measures are generated by bounded

sequences, while a minimizing sequence of the functional

0 is appearently only bounded in W ~ ~p . However,
a result in [Zl] shows that if the a family of gradient Young measures has
uniformly bounded supports, we can find a bounded sequence in 
which generate the same family of gradient Young measures. Intuitively,
the gradient Young measure represents the oscillation of a weakly (weak-*)
convergent sequence while the quasiconvex hull of a set consists of all
possible averages of the Young measures supported in the set [B13, BJ1,
BJ2, KP, BFJK]. Quasiconvex extreme points are those which can only
be represented by themselves, that is, by Dirac masses. We may naturally
guess that they are the building bricks for a quasiconvex set. Theorem 1.1
justifies this. The definition of quasicovex extreme points by using gradient
homogeneous Young measures is natural. As pointed out by J. Kristensen
to the author, that in an abstract setting for convex sets, Choquet points and
the Choquet boundary are defined by using positive measures [A].
We show in Theorem 1.2 below that Kq,e is not empty whenever K ~ 0.

In fact, we show that Ke .
This paper answers the question what the smallest generator of a

quasiconvex set is. We do not intend, in this paper, to answer the question
of how the quasiconvex set is generated by its smallest generator. This
second question seems to be a rather deep one (see [BFJK, MS]).

THEOREM 1.1. - Suppose K C is compact and quasiconvex. Then
is the smallest generator of K in the sense that

(i) Kq,e is a generator of K, = I~.

(ii) Kq,e is the smallest generator of K, that is, if W c K is compact
and Q(W) = I~, then Kq,e C W.

Vol. 15, n° 6-1998.



666 K. ZHANG

COROLLARY 1.1. - Suppose K C is compact and quasiconvex, and
V C K, T~r c K are two compact generators of K, Q(V) = Q(W) = K.
Then V ~1 W is also a compact generator of K.

Corollary 1.1 I is a direct consequence of Theorem 1.1. However, I do not
know whether it can be proved directly without applying Theorem 1.1.

Remark 1.l . - Theorem l.1 provides a ’minimal ’ representation of points
in a quasiconvex set by the closure of the set of its quasiconvex extreme
points via gradient homogeneous Young measures. More precisely, we have
that for every P G K, there exists a gradient homogeneous Young measure
v supported in such that

For more details, see Lemma 3.1 below. Notice that Kq,e is not necessarily
closed (see Examples 4.1, 4.2).
The following result gives the relation between Kq,e and Ke for a

compact set K C Notice that in convex analysis, it is well known
that Ke = C K for any compact set K [Ro].

THEOREM 1.2. - Suppose K C is non-empty and compact. Then
is not empty. In fact, Ke C Therefore C(Kq,e) = C(K), where

Ke is the set of extreme points of C(K).
The following result shows that the set of quasiconvex extreme points

Kq,e of a compact set K depends only on the set, not on the quasiconvex
hull Q(K) . This indicates that the quasiconvex extreme point is an intrinsic
property of the compact set K. At present, very few examples are known
of explicit forms of Q(K) for a given set K.

THEOREM 1.3. - Suppose K C is non-empty and compact. Then

Notice that for a bounded set W C Q(W) = Q (W ) and Q ( W )
is always compact whenever W is bounded (consult the definition of

quasiconvex hulls in §2).

THEOREM 1.4. - Suppose K is compact and C(K) does not have rank-one
connections. Then = K = Q(K).

In the following result, we use the supporting chains (see Definition 2.9)
to describe the structure of Kq,e for a compact convex set K.
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667ON THE STRUCTURE OF QUASICONVEX HULLS

THEOREM 1.5. - Suppose K is compact, convex with more than one

element, and K has rank-one connections. Then

where the union is taken over all of the end planes of supporting chains ~~~
of K. In particular, when K is strictly convex, = Ke.
We also give some examples to show that ( 1 ): Kq,e can be non-compact;

(2) we can have Kq,e = Ke even when Q (K) is not convex. We then apply
our results on quasiconvex extreme points to the two-well and three-well
problems in martensitic phase transitions. For the two-well case, that is,
when K = SO(n) U SO(n)H, we have Kq,e = .~. For the three well case,
we prove that Kq,e is either K itself or a subset of two wells. We then

make some remarks for the general case.

Remark 1.2. - Since we may define other ’semiconvex’ hulls, such as
rank-one convex hulls, poly convex hulls the same fashion as quasiconvex
hulls (see [Sv2]), it is natural to ask whether we can use subclasses of

probability measures to define corresponding extreme points. An interesting
question then is whether for a given compact set, rank-one extreme points
are the same as quasiconvex extreme points. We do not intend to answer this
questions here. However, I guess that the answer is negative. An example
might be constructed by using the famous counterexample that rank-one
convexity does not implies quasiconvexity due to Sverak [Sv3].

In order to prove the results mentioned above, we use the properties of
gradient homogeneous Young measures generated by gradients (see [KP]),
the results of quasiconvex hulls, and quasiconvex functions and the basic
theory of convex analysis. In §2, some preliminary results are given. In §3,
we first establish a lemma (Lemma 3.1) to connect homogeneous Young
measures and quasiconvex hulls. Then we prove our results listed above.
Some explicit examples of Kq,e are exhibited in §4. We apply our results
to the two-well and three-well problems in §5.

2. PRELIMINARY RESULTS

We denote by MNxn the space of all real N x n matrices with 
norm. If E C MN n is a linear subspace, we write PE and PE| as the

orthogonal projections from to E and its orthogonal complement

Vol. 15, n° 6-1998.



668 K. ZHANG

E| respectively. meas(U) is the Lebesgue measure of a measurable subset
U and

denotes the distance function from a point Q e to a set K C M=’~’ X ~L .
From now on 0 denotes a non-empty, open and bounded subset of 
For a given set K c intK, K and 8K denote its interior, closure and
boundary. We denote by Du the gradient of a (vector-valued) function u
and we define the space the LP spaces and Sobolev spaces

in the usual way. We say that K C has a rank-one connection
if there exist A, B E K such that rank(A - B) = 1. The support of a
measure v is denoted by suppv.

Let f : continuous function. f is quasiconvex (c.f.
[Bll,Mo,D]) in if for every open and bounded subset f2 of 

every P E and every ~ ~ 

The class of quasiconvex functions is independent of the choice of Q.
It is well known now that I(u) = L f(Du)dx is lower semicontinuous
in the Sobolev space the weak-* sense if and only if

f is quasiconvex (see [Mo, Bll, AF]). Suppose in addition, f satisfies
. 0  f ( P)  C(l + for P E for some constants C > 0 and

p > 1, then I ( ~ ) is weakly lower semicontinuous in if and

only if f is quasiconvex (see [AF] for the general statements and proofs).
For a given function, we can consider its quasi-convexification

(quasiconvex relaxation):

DEFINITION 2.1. - ([D]). Suppose ~f : (f~ is continuous. The

quasiconvexification of f is defined by

and will be denoted by Q f.

PROPOSITION 2.2. - (see [D]). Suppose f : If~ is continuous, then

where SZ c is a bounded domain. Q f is quasiconvex. In particular the
infimum in (2.1 ) is independent of the choice of 03A9.
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669ON THE STRUCTURE OF QUASICONVEX HULLS

In the variational approach to martensitic phase transitions, the integrand
f is sometimes in a special form where f > 0, and f(P) = 0 if and only
if P E K, where K C is a compact set (see [BJ1, BJ2, K, BFJK,
CK, K]). Such functions are in general not quasiconvex. Suppose is a
bounded sequence in the Sobolev space f~~~l ), such that -~ 0,
as j -~ oo, we are interested in the oscillating behaviour of the sequence

and the possible ’microstructures’ it may generate. The following
concept of quasiconvex hull for a set K C is naturally introduced.

DEFINITION 2.3. - ([Sv2]). For a subset K of the quasiconvex
hull of K is defined by

for every quasiconvex f : 

Clearly, if ~ is bounded,

C(K) being the convex hull of K.
In [Sv2], the above definition of quasiconvex hull is given for all

K C MNxn. For a compact set K, is independent of the choice of
the growth of quasiconvex functions in the definition (see Proposition 2.5
below). However, for unbounded K, if we restrict the choice of quasiconvex
functions to satisfy a particular growth condition at infinity, then the

quasiconvex hulls thus defined may depend on the growth rate of the
quasiconvex functions [Y, Z2, Z3]. Therefore we define the quasiconvex
hull here in a different way. However, they are equal when K is compact.

DEFINITION 2.4. - ([Z2]). Let K C MNxn. Then the p-quasiconvex hull
of K for 1  p  ~ is defined by

K) being the quasiconvexification of the p-distance function
distP(., K) to K.

It is easy to see that QP (K) - and Qp(K) is closed. For a

compact set K c we have

PROPOSITION 2.5. - (see [Z2] and the Appendix of this paper). Suppose
~ C is compact. Then

for all p E 
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Because of this result, we may define the quasiconvex hull of K as
Q(K) = Q~s~ (K) = Qp(K) for all p E when K is compact. The

advantage of Definition 2.4 is that to study the quasiconvex hull of a compact
set K, we need only to deal with one particular function, say Qdist2 ( ~ . K)
or Qdist ( ~ , K). We will show the advantage of this quantitative description
of quasiconvex hulls in the proofs of Theorem 1.1, 5.1 and 5.2.

LEMMA 2.6. (Young measures). - (see, for example [T, B12]). Suppose (Uk)
is a bounded sequence in L°° (SZ; and for some compact set K C Rs,

G ~ ) ---~ 0 as k -~ x for every open set K.

Then there exists a subsequence (still denoted by Uk) and an associated
family of probability measures v-x; on Rs such that (i) vx is supported on K
for almost every x ~ n: (it) for any continuous function 03C8 on 
converges in the weak-* sense to the function x ~ Rs 03C8(03BB)dvx(03BB).

In the above definition, if the sequence Uk has the form Uk = 
where Q C is open and bounded, and is a bounded sequence in

then the corresponding Young measure v~ is called Young
measure limit of gradients or gradient Young measure (see [KP, BFJK]).
The Young measure is trivial if vx is a Dirac measure for a.e. x. In this

case there exists a function U such that vx is the Dirac measure at 

and up to a subsequence, Du almost everywhere. In general, the
Young measure may be nontrivial.
One of the restrictions of Young measure limit of gradients is that for

every quasiconvex function f : tR,

for almost every x E SZ (see for example, [BZ, KP, BFJK]).

LEMMA 2.7. (gradient homogeneous Young measures). - (see [KP] for
a more general statement). Let be a family of gradient Young
measures with bounded supports, that is suppvx C K, where K
is a compact subset of and K 03BBdvx0 (03BB) = Po for almost every
x0 E 03A9. Then for almost every x0 E Q, there exists a bounded sequence

in (l~’~~) such that the corresponding family of gradient Young
measures {vy} of the squence (Po + satisfy vy = vxo for almost every
~ E D, where D is the unit open hypercube in (f~’z. v~ is called a gradient
homogeneous Young measure.
From now on, we mean by homogeneous Young measures as gradient

homogeneous Young measure (we write HYM for simplicity) by v and
write its integral average on its compact support I~ as vh .- ~ f~, 
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671ON THE STRUCTURE OF QUASICONVEX HULLS

The following is a collection of facts from finite dimensional convex

analysis (cf. [Ro, Th 2.4, 6.3, 11.5, 11.6 18.8]),

PROPOSITION 2.8. - Suppose K C is a compact convex set with more

than one element. Then

(i) K has a dimension m  n, > 1) and K is contained in a
m-dimensional plane Em C 

(it) with the subspace topology induced from on E,-,-,., K is the closure

of its interior points intK, that is, K = intK;

(iii) for every convex subset D C 8K ( D may consists of a single
point) there exists a ’supporting hyperplane of K containing D (an
m - I-dimensional hyperplane E is a supporting hyperplane of K
if E C Em and E n K = E n c~I~ ~ ~, a supporting half-space
of K in Em is a closed half-space with E as its boundary and that
contains K);

(iv) K C Em is the intersection of all its supporting half-spaces.
(v) P E K is called an extreme point of K if P cannot be represented as

a convex combination of other points in K. P is called an exposed
point of K if there exists an supporting hyperplane Ep of K such
that Ep n K = ~P~. We denote by the set of all extreme points of
K by Ke.

Notice that for every compact set W C C W. Therefore
we write as We .

DEFINITION 2.9. (the supporting chain). - Suppose K C is compact
and convex. Suppose the dimension of K is ml > 1 and K is contained in
a plane E1 C with the same dimension.

If E1 does not have rank-one connections, or K consists of only one
element, we define ~ =

If E1 has rank-one connections and E1 n ~ has more than one element,
= 1, ... , k~ be a collection of planes with dimensions rni,

0  mk C  ...  m1, such that

(i) Ej+1 c Ej, for j = l, ... k - l,
(it) Ei has rank-one connections for 2 = l, ... , k - 1 and Ei n K has

more than one element, while Ek does not have rank-one connections
or Ek n K consists of only one element.

(iii) for each z  k, EL is a supporting plane of EZ n K with dimension
mi - l, such that Ei n K is of dimension mi+1 and E.t n K c E.i+1
so that Ei n K = Ei+1 n K.

Vol. IS, n° 6-1998.
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Then a supporting chains of K, and call E~
the end plane. For simplicity we denote the end plane Ek of ~ by E~.

It will be shown in Theorem 1.2 below that every extreme point of K
must be contained in one of the supporting chains of K. It is easy to see that
if E~ consists of only one point, that point must be an extreme point of K.
The following is a result for quasiconvex hulls of sets contained in a

plane without rank-one connections. It is a consequence of [BFJK, Th. 4.1]:

PROPOSITION 2.10. - Suppose K c E C where K is a closed set

and E is a plane without rank-one connections. Then

Since in this proposition, we do not assume boundedness of K, we use
Q2 ( ~) . If K is bounded, Q(K) = K.

Proof - Notice that quasiconvex hulls are translation invariant, that is,
if we define K + P = ~ A + P, A E K ~ for a fixed P E then

Qp(K + P) = Qp(K) + P for all p E Therefore, without loss
of generality, we may assume that E is a subspace of without

rank-one matrices. It was established in [BFJK] that there exists a constant
c > 0, such that

for every open set 0 C and every cP E 

Suppose P E Q2 (K) , we see that PEE and we have, from Proposition
2.2 that there exists a sequence ~~ E Co (D, such that

D being the unit hypercube in Since K C E, we then have, from
the fact

that jfp ~ 0 ~. Therefore, D
= D. Hence ~) = 0 which implies P E I~. 0
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3. PROOFS OF MAIN RESULTS

We need the following lemma for the proofs of our results.

LEMMA 3 .1. - Suppose K C is compact and let P E Q(K). Then
there exists a HYM v supported in K such that vk = P. In particular,
when P E Q (K) B K, bp.

Proof. - For every fixed P E Q(K), we have, from Proposition 2.5,
Qdist(P, K) = 0. Then Proposition 2.2 implies that there exists a sequence
( ~~ ) in such that

where D C is the unit cube D = (o, 1)n. Since I~ is bounded, is

equi-integrable in D. Therefore, from Dunford-Pettis theorem (see [ET]),
up to a subsequence, ~~ 2014~ (~ in Wo’1 (D, ~l~’) weakly as j ~ We

extend (~~ periodically to (~~n and then define

It is easy to see that zj --~ 0 in weakly, and

Applying a result in [Zl], up to a subsequence, we may have a bounded
sequence (gj) in such that,

so that

be the family of gradient Young measures corresponding to
( P + Dgj). It is easy to see that suppvx C K and == P for

almost every x ~ D. We then have, from Lemma 2.7 that there exists a
HYM v, such that suppv C K and vh = P. The second claim is a direct

consequence of the fact v~ = P. So, v = bp implies P G K. 0
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Proof of Theorem 1.1. - We prove {i) by contradiction. Suppose
K B 0, we have, from Definitions 2.3, 2.4 and Proposition
2.5 that Qdist(P, Q(Kq,e)) > 0 whenever Q(Kq,e). Let

We have a > 0. Let

then Ki C K is nonempty and compact. From the definition of quasiconvex
hulls, we see that C K. Let Po be a quasiconvex extreme point of
Kl. It is easy to see that Po E Kl. We seek to prove that Po E Kq,e to
reach a contradiction. Let v be a HYM supported in K such that vx = Po.
Since Qdist ( ~ , Q (K q,e)) is quasiconvex, (2.4) implies

On the other hand,

Since v(K) = 1, we see that

which gives v(K B Kl) = 0. Otherwise, 12  Ki) so that

Contradiction. Therefore = 1 and hence suppv C Since Po is
a quasiconvex extreme point of = 8 po. This contradicts to the fact
that Po ~ The proof of (i) is complete.
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675ON THE STRUCTURE OF QUASICONVEX HULLS

Now we prove (ii). Since Q(W) = K, let P G Kq,e C K, we have, from
Lemma 3.1, there exists a HYM v supported in W, such that = P.

Since W C K, we conclude from the definition of Kq,e that v = bp. Hence
PEW. 

’ 

D

In the proof of Theorem 1.1, we used the fact that Qdist (P, > 0
whenever P ~ In fact, a stronger result was established in [Z3~
that for all K C MNxn and all p e 

Proof of Theorem 1.2. - Let Po E Ke and suppv c K, such that
v~ = Po. We use a dimension reduction argument and try to find a

supporting chain with the end plane containing Po. Suppose the dimension
of C(K) is ml and C(K) is contained in a ml-dimensional plane Ei,
1  ml  Nn (if ml = 0, the set K consists of only one point, and the
claim is then trivially true). Let E~ be a supporting hyperplane of C(K) in
Ei containing Po. Since C(K) is on one side of the supporting hyperplane

suppv ~ K ~ G’(.K), K 03BBdv = Po, and v is a probability measure,
we see that suppv C K n E1. Notice that C(K) n El = C(K n E~). Let
the dimension of C ( K n E~) be m2 and let C ( K n E~) be contained in
an m2-dimensional plane E2. If E2 does not have rank-one connections, or
m2 = 0, we have, from [BFJK, Th. 4.1] that v = If E2 has rank-one
connections, notice that Po is also an extreme point of Repeat the

previous step, we have a finite number of planes ~ - - - ~ El,
with 0 ~ mk  mk-1  ... m1 ~ nN, such that suppv ~ Ek ~ K. We

see that either Ek does not have rank-one connections, so that we conclude
the proof, or the dimension of C(K n Ek) is zero so that Ek n K = ~Po~
and the conclusion follows, that is, suppv = D

As pointed out to the author by the referee, there is a much simpler
proof of Theorem 1.2 by using measure-thereotical description of extreme
points (see [A]). P E K is an extreme point of C(K) if and only if

for any probability measure v supported in C(K), such that = P

implies v = Dp. Since the set of gradient homogeneous Young measures is
a subclass of all probability measures, the conclusion follows. However, the
proof of Theorem 1.2 by using the supporting with

the end plane Ek containing Po is more suitable for the study of quasiconvex
extreme points as we will see again in the proof of Theorem 1.5.

Proof of Theorem 1.3. - We prove this results by three steps.

STEP (1). - C K.
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