JAN KRISTENSEN

On the non-locality of quasiconvexity

<http://www.numdam.org/item?id=AIHPC_1999__16_1_1_0>
On the non-locality of quasiconvexity

by

Jan KRISTENSEN *

Department of Mathematics, Heriot-Watt University,
Edinburgh EH14 4AS, UK.

ABSTRACT. – It is shown that in the class of smooth real-valued functions on $n \times m$ matrices ($n \geq 3$, $m \geq 2$) there can be no “local condition” which is equivalent to quasiconvexity. © Elsevier, Paris.

Key words: Quasiconvexity, rank-one convexity.

A continuous function $f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ is called locally quasiconvex if at every point $X \in \mathbb{R}^{n \times m}$ there exists a neighborhood in which it coincides with a quasiconvex function. In this note we show that a C^2-function satisfying a strict Legendre-Hadamard condition at every point is locally quasiconvex. Using Šverák’s (cf. [21]) example of a rank-one convex function which is not quasiconvex we show that in dimensions $n \geq 3$, $m \geq 2$ there are locally quasiconvex functions that are not quasiconvex. Indeed, for any positive number $r > 0$ we give an example of a smooth function, which equals a quasiconvex function on any ball of radius r, but which is not itself quasiconvex. As a consequence of this we obtain that in dimensions $n \geq 3$, $m \geq 2$ there is no “local condition” which

* The research is supported by the Danish Research Councils through grant no. 9501304.
Classification A.M.S. 49J10, 49J45.
for C^∞-functions is equivalent to quasiconvexity. In particular, we confirm the conjecture of Morrey (cf. [12]) saying that in general there is no condition involving only f and a finite number of its derivatives, which is both necessary and sufficient for quasiconvexity. However, it might still be possible to find a "local condition" which is equivalent to quasiconvexity in e.g. the class of polynomials.

The proof relies heavily on Šverák’s example of a rank-one convex function which is not quasiconvex, and the main contribution here is contained in Lemma 2. Lemma 2 provides an extension result for quasiconvex functions, and is proved by use of Taylor’s formula, a slight extension of Dacorogna’s quasiconvexification formula and the equivalence of rank-one convexity and quasiconvexity for quadratic forms.

In the last part of this note we consider rank-one convexity and quasiconvexity in an abstract setting. We hereby prove that in the class of C^∞-functions, any convexity concept between rank-one convexity and quasiconvexity, which is equivalent to a "local condition" is in fact rank-one convexity.

For convenience of the reader and to fix the notation we recall some definitions. The space of (real) $n \times m$ matrices is denoted by $\mathbb{R}^{n \times m}$. We use the usual Hilbert-Schmidt norm for matrices.

A continuous real-valued function $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is said to be rank-one convex at $X \in \mathbb{R}^{n \times m}$ if the inequality

$$f(X) \leq tf(Y) + (1 - t)f(Z)$$

holds for all $t \in [0,1]$, $Y, Z \in \mathbb{R}^{n \times m}$ satisfying $\text{rank}(Y - Z) \leq 1$ and $X = tY + (1 - t)Z$. The function f is rank-one convex if it is rank-one convex at each point.

The space of compactly supported C^∞-functions $\varphi : \mathbb{R}^m \to \mathbb{R}^n$ is denoted by $D(\mathbb{R}^m; \mathbb{R}^n)$, or briefly, by D. The support of φ is denoted by $\text{spt}\varphi$, and the gradient of φ at x, $D\varphi(x)$, is identified in the usual way with a $n \times m$ matrix.

A continuous real-valued function $f : \mathbb{R}^{n \times m} \to \mathbb{R}$ is said to be quasiconvex at $X \in \mathbb{R}^{n \times m}$ if the inequality

$$\int_{\mathbb{R}^m} (f(X + D\varphi(x)) - f(X)) \, dx \geq 0$$

holds for all $\varphi \in D$. The function f is quasiconvex if it is quasiconvex at each point.
If for \(X \in \mathbb{R}^{n \times m} \) there exists a positive number \(\delta = \delta(X) > 0 \), such that the inequality (2) holds for all \(\varphi \in \mathcal{D} \) satisfying \(\sup_x |D\varphi(x)| \leq \delta \), then \(f \) is said to be weakly quasiconvex at \(X \). As above, \(f \) is weakly quasiconvex if it is weakly quasiconvex at each point.

The concepts of quasiconvexity and weak quasiconvexity are due to Morrey [12]. A concept of quasiconvexity relevant for higher order problems has been introduced by Meyers [11] (see also [5]).

It is obvious that quasiconvexity of \(f \) implies weak quasiconvexity of \(f \), and, as shown by Morrey [12], weak quasiconvexity of \(f \) implies rank-one convexity of \(f \). Hence it follows in particular that quasiconvexity of \(f \) implies rank-one convexity of \(f \).

In the special case where \(f \) is a quadratic form the converse is also true. Hence for quadratic forms the notion of rank-one convexity is equivalent to the notion of quasiconvexity (cf. [13]). A famous conjecture of Morrey [12] is that in dimensions \(n \geq 2, m \geq 2 \) there are rank-one convex functions that are not quasiconvex. In dimensions \(n \geq 3, m \geq 2 \) this was confirmed by Šverák in [21] giving a remarkable example of a polynomial of degree four which is rank-one convex, but not quasiconvex. In the remaining non-trivial cases, i.e. \(n = 2, m \geq 2 \), the question remains open. The problem is discussed in [3], [4], and more recently, in [15], [17], [26], [27].

It is not hard to see that for a \(C^2 \)-function \(f : \mathbb{R}^{n \times m} \mapsto \mathbb{R} \) rank-one convexity is equivalent to satisfaction of the Legendre-Hadamard (or ellipticity) condition at every \(X \in \mathbb{R}^{n \times m} \), i.e. for each \(X \in \mathbb{R}^{n \times m} \)

\[
D^2 f(X)(a \otimes b, a \otimes b) \geq 0
\]

for all \(a \in \mathbb{R}^n, b \in \mathbb{R}^m \).

If for some \(X \in \mathbb{R}^{n \times m} \) the inequality (3) holds strictly for all \(a \neq 0, b \neq 0 \), then we say that \(f \) satisfies a strict Legendre-Hadamard (or strong ellipticity) condition at \(X \). This is equivalent to the existence of a positive number \(c = c(X) \), such that

\[
D^2 f(X)(a \otimes b, a \otimes b) \geq c|a|^2|b|^2
\]

(4)

for all \(a \in \mathbb{R}^n, b \in \mathbb{R}^m \). By using the Fourier transformation and the Plancherel theorem it is easily seen that (4) is equivalent to

\[
\int_{\mathcal{B}} D^2 f(X)(D\varphi(x), D\varphi(x)) \, dx \geq c \int_{\mathcal{B}} |D\varphi(x)|^2 \, dx
\]

(5)

for all \(\varphi \in \mathcal{D} \) with \(\text{spt} \varphi \subset \mathcal{B} \), where \(\mathcal{B} := \{ x \in \mathbb{R}^m : |x| < 1 \} \).

By using Taylor’s formula and the equivalence of rank-one convexity and quasiconvexity for quadratic forms it can be proved that a C^2-function f satisfying a strict Legendre-Hadamard condition at every point is weakly quasiconvex. The same kind of reasoning was used by Tartar [22] in proving a local form of a conjecture in compensated compactness.

Definition. A continuous real-valued function $f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ is said to be locally quasiconvex at $X \in \mathbb{R}^{n \times m}$ if there exists a quasiconvex function $g : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$, such that $f = g$ in a neighborhood of X.

The function f is locally quasiconvex if it is locally quasiconvex at each point.

One could define a similar concept of local rank-one convexity. However, by using a mollifier argument and the Legendre-Hadamard condition it is easily proved that this concept coincides with the usual concept of rank-one convexity. It is obvious that there is no need for a local concept of weak quasiconvexity.

If $f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ is a locally bounded Borel function, then we define its quasiconvexification, $Qf : \mathbb{R}^{n \times m} \rightarrow [-\infty, +\infty]$, as

$$Qf(X) := \sup\{g(X) : g \text{ quasiconvex and } g \leq f\}.$$

Notice that if at some X, $Qf(X) > -\infty$, then Qf is quasiconvex.

The following result is a slight extension of a similar result due to Dacorogna [6]. We refer to [8] for the proof of this and for some extensions along these lines.

Lemma 1. Let $f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ be a locally bounded Borel function. Then

$$Qf(X) = \inf \left\{ \int_B f(X + D\varphi) \, dx : \varphi \in \mathcal{D} \text{ with } \text{spt}\varphi \subset B \right\}.$$

For a C^2-function $f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R}$ we have by Taylor’s formula

$$f(X + Y) = f(X) + Df(X)Y + \frac{1}{2}D^2f(X)(Y;Y) + R(X;Y),$$

where the remainder term $R(X;Y)$ is given by

$$R(X;Y) = \int_0^1 (1 - t)(D^2f(X + tY) - D^2f(X))(Y;Y) \, dt.$$

For notational reasons it is convenient to introduce an auxiliary function, which essentially is a continuity modulus for the second derivative of f.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
For each \(r \in (0, +\infty) \) define \(\Omega_r : (0, +\infty) \mapsto [0, +\infty) \) as (the norm being the usual one for bilinear mappings)

\[
\Omega_r(t) := \sup \{|D^2 f(X + Y) - D^2 f(X)| : |X| \leq r, |Y| < t\}.
\]

Obviously, \(\Omega_r \) is non-decreasing and continuous, and since \(D^2 f \) is uniformly continuous on compact sets, \(\Omega_r(t) \to 0 \) as \(t \to 0^+ \). Furthermore, we notice that if \(|X| \leq r \), then

\[
|R(X; Y)| \leq \frac{1}{2} \Omega_r(|Y|)|Y|^2
\]

for all \(Y \in \mathbb{R}^{n \times m} \).

Lemma 2. Let \(f : \mathbb{R}^{n \times m} \to \mathbb{R} \) be a \(C^2 \)-function, and assume that there exist numbers \(c, r > 0 \), such that

\[
\int_{\mathcal{B}} D^2 f(X)(D\varphi, D\varphi) \, dx \geq c \int_{\mathcal{B}} |D\varphi|^2 \, dx
\]

for \(|X| \leq r \) and \(\varphi \in \mathcal{D} \) with \(\text{spt}\varphi \subseteq \mathcal{B} \). Put \(\delta := (1/2) \sup\{t \in (0, r) : c \geq \Omega_r(t)\} \). Then there exists a quasiconvex function \(g : \mathbb{R}^{n \times m} \to \mathbb{R} \) of at most quadratic growth, such that

\[
f(X) = g(X) \quad \text{whenever} \quad |X| \leq \delta.
\]

Remark. Being quasiconvex \(g \) is necessarily locally Lipschitz continuous (cf. [6]), however, I do not know whether it is possible to obtain a quasiconvex extension \(g \) of \(f \) which is as regular as \(f \) is.

Proof. Define the function \(g := QG \), where

\[
G(X) := \begin{cases}
 f(X) & \text{if } |X| \leq \delta, \\
 \sup_{|Y| \leq \delta} (f(Y) + Df(Y)(X - Y)) + \frac{1}{2} D^2 f(Y)(X - Y, X - Y) & \text{otherwise}.
\end{cases}
\]

Then obviously \(g \) is quasiconvex, of at most quadratic growth and \(g(X) \leq f(X) \) for \(|X| \leq \delta \). We claim that \(g(X) = f(X) \) for \(|X| \leq \delta \). Fix \(X \) with \(|X| < \delta \). Let \(\varepsilon > 0 \) and find \(\varphi = \varphi_\varepsilon \in \mathcal{D} \), such that

\[
|\mathcal{B}|(g(X) + \varepsilon) > \int_{\mathcal{B}} G(X + D\varphi) \, dx.
\]
Using Taylor’s formula, (6) and (7) we obtain

\[|B|(g(X) + \varepsilon) > \int_{B \cap \{|X+D\varphi| \leq \delta\}} f(X + D\varphi) \, dx + \int_{B \cap \{|X+D\varphi| > \delta\}} \left(f(X) + Df(X)D\varphi + \frac{1}{2} D^2 f(X)(D\varphi, D\varphi) \right) \, dx \]

\[= \int_{B \cap \{|X+D\varphi| \leq \delta\}} R(X, D\varphi) \, dx + \int_{B \cap \{|X+D\varphi| > \delta\}} \left(f(X) + Df(X)(D\varphi) + \frac{1}{2} D^2 f(X)(D\varphi, D\varphi) \right) \, dx \]

\[\geq |B|f(X) + \frac{1}{2} \int_{B \cap \{|X+D\varphi| \leq \delta\}} |D\varphi|^2 (c - \Omega_r(|D\varphi|)) \, dx \geq |B|f(X), \]

where the last inequality follows from the definition of \(\delta \).

\[\square \]

PROPOSITION 1. Let \(f : \mathbb{R}^{n \times m} \to \mathbb{R} \) be a \(C^2 \)-function satisfying a strict Legendre-Hadamard condition at every point. Then \(f \) is locally quasiconvex.

Proof. This follows easily by applying Lemma 2 to the functions \(f_X(Y) := f(X + Y), Y \in \mathbb{R}^{n \times m} \), where \(X \in \mathbb{R}^{n \times m} \) is fixed. \[\square \]

According to Šverák [21] there exists a polynomial \(p \) of degree four on \(\mathbb{R}^{3 \times 2} \), which is rank-one convex but not quasiconvex. A closer inspection of the proof in [21] reveals that we may take \(p \) so that it additionally satisfies a strict Legendre-Hadamard condition at every point, hence by the above result \(p \) is locally quasiconvex.

Recall that a continuous function \(f \) is polyconvex if \(f(X) \) can be written as a convex function of the minors of \(X \). A polyconvex function is quasiconvex, but not conversely (cf. Ball [2], and [1], [20], [24], [25]). If one defines a concept of local polyconvexity as done above for quasiconvexity it is possible to prove that there are locally polyconvex functions on \(\mathbb{R}^{n \times m} \) \((n, m \geq 2) \) that are not polyconvex. In higher dimensions, i.e. \(n \geq 3, m \geq 2, \) there are locally polyconvex functions on \(\mathbb{R}^{n \times m} \) that are not quasiconvex (cf. [9]).

PROPOSITION 2. Assume that \(n \geq 3, m \geq 2 \). For any \(r > 0 \) there exists a \(C^\infty \)-function \(f_r : \mathbb{R}^{n \times m} \to \mathbb{R} \) with the following two properties:

(I) \(f_r \) is not quasiconvex;

(II) for all \(X \in \mathbb{R}^{n \times m} \) there exists a quasiconvex function \(g_X \), such that \(g_X(Y) = f_r(Y) \) holds for \(|Y - X| < r \).

In particular, local quasiconvexity does not imply quasiconvexity.
ON THE NON-LOCALITY OF QUASICONVEXITY

Proof. Let \(p : \mathbb{R}^{n \times m} \to \mathbb{R} \) be a polynomial of degree four which is rank-one convex, but not quasiconvex (cf. Šverák [21]). Take for each \(s > 1 \) two auxiliary functions \(\zeta_s, \xi_s \in C^\infty(\mathbb{R}) \) verifying

\[
\zeta_s(t) = \begin{cases}
1 & \text{if } t < s \\
0 & \text{if } t > s + 1,
\end{cases}
\]

\[
\xi_s(t) = \begin{cases}
0 & \text{if } t < s - 1 \\
t^2 & \text{if } t > s + 1,
\end{cases}
\]

and \(\xi_s \) non-decreasing, convex and \(\xi''_s(t) > 0 \) for \(t \in (s - 1, s + 1) \).

It is not hard to see that we may find \(s > 1 \) and \(k > 0 \), such that

\[
p(X)\zeta_s(|X|) + k\xi_s(|X|)
\]

is rank-one convex, but not quasiconvex (cf. Šverák [19] remark 3.4 and [20]). Next take \(\varepsilon > 0 \), so that

\[
g(X) := p(X)\zeta_s(|X|) + k\xi_s(|X|) + \varepsilon|X|^2
\]

is not quasiconvex. Notice that \(g \) satisfies a uniform Legendre-Hadamard condition:

\[
\int_B D^2 g(X)(D\varphi, D\varphi) \, dx \geq \varepsilon \int_B |D\varphi|^2 \, dx
\]

for all \(X \in \mathbb{R}^{n \times m} \) and all \(\varphi \in D \) with \(\text{spt}\varphi \subset B \).

Notice also that if \(R(X, Y) \) denotes the remainder term in the Taylor expansion of \(g \) about \(X \), then for some constant \(C > 0 \)

\[
|R(X, Y)| \leq 3 \int_0^1 (1 - t)^2 \sum_{|\alpha|=3} |\partial^\alpha g(X + tY) Y_\alpha| \, dt \leq C|Y|^3
\]

for all \(X, Y \in \mathbb{R}^{n \times m} \). In the notation of Lemma 2 (see (6)) this corresponds to \(\Omega_r(t) = 2Ct, \, t > 0 \), independent of \(r > 0 \).

Fix \(X_0 \in \mathbb{R}^{n \times m} \). We claim that there exists a quasiconvex extension of \(g \) from the closed ball \(|X - X_0| \leq \varepsilon/(4C) \). Indeed, define \(g_{X_0}(X) := g(X_0 + X) \) and notice that by Lemma 2 we may find a quasiconvex function \(G_{X_0} \), such that \(g(X + X_0) = g_{X_0}(X) = G_{X_0}(X) \) for \(|X| \leq \varepsilon/(4C) \), or equivalently, such that

\[
g(X) = G_{X_0}(X - X_0) \quad \text{for} \quad |X - X_0| \leq \frac{\varepsilon}{4C}.
\]
This proves the claim. Finally we define the function \(f_r \) as

\[
 f_r(X) := g \left(\frac{4C}{\varepsilon r} X \right), \quad X \in \mathbb{R}^{n \times m}.
\]

This finishes the proof. \(\square \)

Let \(C^\infty(\mathbb{R}^{n \times m}) \) denote the space of all real-valued \(C^\infty \)-functions \(f : \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \) and let \(\mathcal{F} \) denote the space of all extended real-valued functions \(F : \mathbb{R}^{n \times m} \rightarrow [-\infty, +\infty] \).

If we define the operator \(\mathcal{P}_{rc} : C^\infty(\mathbb{R}^{n \times m}) \rightarrow \mathcal{F} \) as

\[
 \mathcal{P}_{rc}(f)(X) := \inf \left\{ D^2 f(X)(a \otimes b, a \otimes b) : a \in \mathbb{R}^n, b \in \mathbb{R}^m \right\}, \quad X \in \mathbb{R}^{n \times m},
\]

then \(f \in C^\infty(\mathbb{R}^{n \times m}) \) is rank-one convex if and only if \(\mathcal{P}_{rc}(f) = 0 \). Furthermore, the operator \(\mathcal{P}_{rc} \) is local in the sense that if \(f, g \in C^\infty(\mathbb{R}^{n \times m}) \) are equal in a neighborhood of \(X \), then also \(\mathcal{P}_{rc}(f) \) equals \(\mathcal{P}_{rc}(g) \) in a neighborhood of \(X \). Thus:

\[
 f = g \text{ in a neighborhood of } X \Rightarrow \mathcal{P}_{rc}(f) = \mathcal{P}_{rc}(g) \text{ in a neighborhood of } X.
\]

It would be interesting if one could find a similar condition for quasiconvexity. That is, a local operator \(\mathcal{P}_{qc} : C^\infty(\mathbb{R}^{n \times m}) \rightarrow \mathcal{F} \) with the property

\[
 (*) \quad \mathcal{P}_{qc}(f) = 0 \iff f \text{ is quasiconvex}
\]

for \(f \in C^\infty(\mathbb{R}^{n \times m}) \).

Theorem 1. – In dimensions \(n \geq 3, m \geq 2 \) there does not exist a local operator

\[
 \mathcal{P} : C^\infty(\mathbb{R}^{n \times m}) \rightarrow \mathcal{F}
\]

with the property \((*)\).

Remark. – The proof will show that the operator \(\mathcal{P} \) cannot satisfy \((*)\) and the following locality-type condition: There exists a number \(r > 0 \), such that for \(f, g \in C^\infty(\mathbb{R}^{n \times m}) \) and \(X \in \mathbb{R}^{n \times m} \)

\[
 f(Y) = g(Y) \text{ for } |Y - X| \leq r \Rightarrow \mathcal{P}(f)(X) = \mathcal{P}(g)(X).
\]

Proof. – We argue by contradiction and assume that it is possible to find a local operator with the property \((*)\).
By Proposition 2 we may find a C^∞-function $f : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$ which is not quasiconvex, but agrees with quasiconvex functions on all balls of, say, radius one.

Let $\Phi_\varepsilon \in C^\infty$, $\varepsilon > 0$, be a non-negative mollifier with support contained in $\{X : |X| \leq \varepsilon\}$. Put $f_\varepsilon := f \ast \Phi_\varepsilon$, i.e. the convolution of f and Φ_ε.

We claim that if $\varepsilon \in (0, 1/2)$, then f_ε is quasiconvex.

Fix $X \in \mathbb{R}^{n \times m}$. By the assumption on f we may find a quasiconvex function $g_X : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$, such that

$$f(Y) = g_X(Y) \text{ whenever } |Y - X| \leq 1.$$

Now if $g_{X,\varepsilon} := g_X \ast \Phi_\varepsilon$, then $g_{X,\varepsilon}$ is a quasiconvex C^∞-function.

Furthermore, if $|Y - X| < 1/2$, then

$$g_{X,\varepsilon}(Y) = \int_{|Z-Y| \leq \varepsilon} \Phi_\varepsilon(Y-Z)g_X(Z) dZ = f_\varepsilon(Y),$$

hence by the locality of \mathcal{P} and the quasiconvexity of $g_{X,\varepsilon}$

$$\mathcal{P}(f_\varepsilon)(X) = \mathcal{P}(g_{X,\varepsilon})(X) = 0.$$

Therefore it follows from the assumption that f_ε is quasiconvex if $\varepsilon < 1/2$. If we let ε tend to zero we get a contradiction. \hfill \Box

Before we state the next result we need some additional terminology. Let the space of continuous real-valued functions, be endowed with the usual metric making it a Fréchet space. The dual space, $C(\mathbb{R}^{n \times m})'$, is identified with, $\mathcal{M}_{comp}(\mathbb{R}^{n \times m})$, the space of compactly supported Radon measures. The space $\mathcal{M}_{comp}(\mathbb{R}^{n \times m})$ is endowed with the weak* topology.

Let Λ be a non-empty set of compactly supported probabilities on $\mathbb{R}^{n \times m}$ all of which have center of mass at 0. Then we say that a continuous real-valued function $f : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$ is Λ-convex if

$$\int f(X + Y) d\mu(Y) \geq f(X)$$

for all $\mu \in \Lambda$ and all $X \in \mathbb{R}^{n \times m}$.

Obviously, Λ-convexity is equivalent to $\operatorname{co}\Lambda$-convexity, where $\operatorname{co}\Lambda$ denotes the closed convex hull of Λ in $\mathcal{M}_{comp}(\mathbb{R}^{n \times m})$.

This convexity concept also captures the concept of directional convexity (cf. [10], [14], [18], [23]).
Let V be a non-empty subset of $C^0(\mathbb{R}^{n \times m})$. We say that the concept of Λ-convexity is local on V if there exists a local operator $\mathcal{P} : V \mapsto \mathcal{F}$, such that for $f \in V$ we have

$$f \text{ is } \Lambda\text{-convex } \iff \mathcal{P}(f) = 0.$$

Let denote the set of probabilities μ of the form

$$\int \Phi \, d\mu := \sum_{i=1}^{N} t_i \Phi(X_i), \, \Phi \in C^0(\mathbb{R}^{n \times m}),$$

where $t_i \in [0, 1]$, $X_i \in \mathbb{R}^{n \times m}$ satisfy the (H_N) condition and $\sum_{i=1}^{N} t_i X_i = 0$. We refer to Dacorogna (cf. [6]) for the definition of the (H_N) condition.

We notice that Λ_{rc}-convexity is rank-one convexity.

Let Λ_{qc} be the set of probabilities ν of the form

$$\int \Phi \, d\nu := \int_{B} \Phi(D\varphi(x)) \, dx, \, \Phi \in C^0(\mathbb{R}^{n \times m}),$$

for some $\varphi \in \mathcal{D}$ with $\text{spt} \varphi \subset B$.

We notice that Λ_{qc}-convexity is quasiconvexity.

The probabilities in $\text{co} \Lambda_{rc}$ and $\text{co} \Lambda_{qc}$ can be interpreted as certain homogeneous Young measures (cf. Kinderlehrer and Pedregal [7] and [16]). However, we shall not use this viewpoint here.

Theorem 2. Let Λ be a set of compactly supported probabilities with center of mass at 0. Assume that

$$\text{co} \Lambda_{rc} \subseteq \text{co} \Lambda \subseteq \text{co} \Lambda_{qc}.$$

If Λ-convexity is local on $C^\infty(\mathbb{R}^{n \times m})$, then $\text{co} \Lambda = \text{co} \Lambda_{rc}$.

For the proof of Theorem 2 we need the following result which is essentially contained in [7], [16]. We outline the proof for the convenience of the reader.

Lemma 3. Let μ be a compactly supported probability measure on $\mathbb{R}^{n \times m}$ with center of mass $\bar{\mu} = 0$. If for all rank-one convex C^∞-functions $f : \mathbb{R}^{n \times m} \mapsto \mathbb{R}$ with $\sup_X |D^3 f(X)| \leq 1$ the inequality

$$\int f \, d\mu \geq f(0)$$

holds, then $\mu \in \text{co} \Lambda_{rc}$.

Annales de l’Institut Henri Poincaré - Analyse non linéaire
Proof. – It is easily seen that if f is a rank-one convex function, then it follows from (8) that also

$$\int f \, d\mu \geq f(0). \quad (9)$$

Let T be a weakly* continuous linear functional on $\mathcal{M}_{\text{comp}}(\mathbb{R}^{n \times m})$ satisfying

$$T(\nu) \geq \alpha \quad (10)$$

for all $\nu \in c\Lambda_{rc}$, where $\alpha \in \mathbb{R}$. By Hahn-Banach’s separation theorem it is enough to show that also $T(\mu) \geq \alpha$. A weakly* continuous linear functional is an evaluation functional. Hence

$$T(\nu) = \int \Phi \, d\nu, \quad \nu \in \mathcal{M}_{\text{comp}}(\mathbb{R}^{n \times m}),$$

for some $\Phi \in C^0(\mathbb{R}^{n \times m})$. Now (10) gives that

$$R\Phi(0) = \inf \left\{ \int \Phi \, d\nu : \nu \in c\Lambda_{rc} \right\} \geq \alpha,$$

where $R\Phi$ is the rank-one convexification of Φ (cf. Dacorogna [6] and [8]). We end the proof by applying (9) with $f = R\Phi$. □

Proof (of Theorem 2). – Let $P : C^\infty(\mathbb{R}^{n \times m}) \mapsto \mathcal{F}$ denote the local operator detecting Λ-convexity. Let $\mu \in \Lambda$, and fix a rank-one convex C^∞-function f with $\sup_X |D^3f(X)| \leq 1$. For $\gamma > 0$, put $f_{\gamma}(X) := f(X) + \gamma|X|^2$, $X \in \mathbb{R}^{n \times m}$. Notice that

$$\int_B D^2f(X)(D\varphi, D\varphi) \, dx \geq \gamma \int_B |D\varphi|^2 \, dx$$

for all $\varphi \in \mathcal{D}$ with $\text{spt}\varphi \subset B$, and that $\sup_X |D^3f_{\gamma}(X)| \leq 1$. Hence by Lemma 2 f_{γ} coincides with quasiconvex functions on balls of radius $\gamma/4$. Take $\varepsilon \in (0, \gamma/8)$, put $f_{\gamma,\varepsilon} := f_{\gamma} * \Phi_{\varepsilon}$. Here Φ_{ε} is the mollifier from the proof of Theorem 2. Obviously, $f_{\gamma,\varepsilon}$ equals quasiconvex C^∞-functions on balls of radius $\gamma/8$. Consequently, by the locality of the operator P, $P(f_{\gamma,\varepsilon}) = 0$, and therefore by the assumption, $f_{\gamma,\varepsilon}$ is Λ-convex. In particular,

$$\int f_{\gamma,\varepsilon} \, d\mu \geq f_{\gamma,\varepsilon}(0)$$

for $\gamma > 0, \varepsilon \in (0, \gamma/8)$. Now let γ tend to zero and apply Lemma 3 to finish the proof. □
ACKNOWLEDGEMENTS

I would like to thank John Ball, Zhang Kewei, Michael Levitin, François Murat and Petr Plechac for helpful comments and stimulating discussions. I would also like to thank the referee for some useful remarks.

REFERENCES

(Manuscript received June 17, 1996;
Revised version received October 10, 1996.)