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ABSTRACT. - This paper deals with the problem of minimizing the
curvature functional J ~2 ds on isotopy classes of closed knotted curves in
R~. We show existence of minimizers under a given topological knot type
and develop a regularity theory by analyzing different touching situations.
@ Elsevier, Paris

RESUME. - Dans cet article nous minimisons la fonctionnelle de courbure

j ~2 ds dans des classes d’isotopie des courbes fermees et nouees.

L’ existence des courbes minimales etant donne un type de nceud topologique
est demontree et une theorie sur la regularite est developpee par l’analyse
de situations de touchage differentes. @ Elsevier, Paris

1. THE PROBLEM

Knotted loops of elastic wire spring into stable configurations as soon as
they are released. Due to the physical fact that it is impossible for a wire to
pass through itself the knot type is preserved in the experiment. To model
this behavior we consider the well-known curvature functional

as elastic energy to be minimized on isotopy classes of closed curves in 1R3.
In addition, we define an obstacle ’condition that prevents selfintersections
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138 H. VON DER MOSEL

of the curves under consideration in order to preserve the given isotopy
class, i.e., knot type in the minimization process. We show existence of
minimizers and develop the regularity theory for a variety of different
touching situations.

The curvature functional (1) was suggested as early as 1738 by D.
Bernoulli as a model for the elastic energy of springy wires. In 1743 L.
Euler considered the corresponding variational equations and classified the
solutions called elastica in the plane ([3]). In the first half of this century J.
Radon and R. Irrgang examined more general curvature functionals also in
the case of curves in space ([15], [7]). Until very recently there have been
numerous publications regarding existence and form of solutions of related
variational problems such as the investigations by J. Langer and D.A.
Singer as well as R. Bryant and P. Griffiths concerning critical points of
the functional in different space forms ( [9]-[ 11 ], [1]) and the corresponding
gradient flow ([12]), see also [ 14] for the evolution problem. Different knot
energies suitable for describing nonelastic but electrically charged wires
were considered by J. O’ Hara ([13]), M. Freedman, Z. He, Z. Wang ([4]),
R. Kusner and J. Sullivan ([8]). But the treatment as an isoperimetric
obstacle problem excluding selfintersections is new. A special feature of
our setting is that the solution itself determines the shape of the obstacle,
which is therefore not known a priori.
We model the centerline of knotted wires as regular, closed space curves

in the Sobolev class

Note that the first derivatives of xEH2~2((0, 2~r), f~3) are defined

everywhere on ~0, 2~r~ because of the embedding H2~2 ( (0, 2~-) ) ~
C~([0,27T]). .

In order to exclude selfintersections we assign to such curves a small
"thickness" 0  b « 1 in the form of an obstacle condition, by which
different curve points x(s) and x(s’) cannot have euclidean distance less
than 8 unless the parameters s and s’ are close to each other:

where L ~S, s ~~ (x) denotes the length of the arc connecting the points x ( s )
and x(s’).

Annales de l’Institut Henri Poincaré - Analyse non linéaire



139ELASTIC KNOTS IN EUCLIDEAN 3-SPACE

Given a curve in C8 we are able to determine its knot or isotopy type
by deforming it continuously and without selfintersections into a standard
knot in ~3. To be more precise, let ... be equivalence classes of
such standard knots in 1R3. Then the isotopy class C6’ is defined as

A curve x is isotopic to y, if and only if there is a continuous

deformation ~ : S1 x [0,1] 2014~ R~ with the following properties:
~(., 0) = x(.), ~(.,1) = y(.), and ~(., T) closed and 1-1 for all TE[0,1].
Isotopy is an equivalence relation, see the simple argument in [18, p. 28].

Restricting our attention to curves of prescribed length l we finally obtain
the class of admissible knots as

Neglecting the effects of physical torsion or twisting and gravity we look
at the following variational problem:

Remark. - Without any normalization like the isoperimetric side condition
one cannot expect to find a minimizer, since the scaling x ~--> Rx

yields F(Rx) = F(x)/R 2014~ 0 as R / oo. The total curvature

T(x) :== fX ~~~ ds, on the other hand, provides a lower bound for the
functional F for closed regular curves x of fixed length l by Holder’s
inequality:

By the classical Fary-Milnor theorem we have the estimate for

knotted curves x, i.e. for XEC6’, see [18, Chapter 2] for an alternative
proof in the H2,2-context.

Using a direct method and drawing extensively from the fact that H2,2
embeds into C1~1~2 we are able to show the following existence result
(Section 2):

THEOREM 1.1. - Let bl/8. If Cs,l is nonempty, then there is a curve

X8 E with = l/2~r for all s E s1 and

Vol. 16, n ° 2-1999.



140 H. VON DER MOSEL

The physical experiments show that we have to take points of selfcontact
into consideration when investigating the regularity of the minimizers.
These are points, where one has equality in the obstacle condition - points,
in fact, with euclidean distance equal 8, as will be shown in Section 3.1.
Our regularity results for different touching situations are based on a lemma
by S. Hildebrandt and H.C. Wente ([6]) that guarantees the existence of
a Lagrange multiplier for obstacle problems with side conditions. Using a
measure theoretic argument we show

THEOREM 1.2. - A minimizer x=x03B4~Cn03B4,l has bounded curvature near
isolated simple touching points. 

~

In fact, we derive H3,1-regularity for such points, which - according to
the experiment - seem to constitute the only type of touching that occurs
in nature. For certain "unhooked", so-called convex touching situations,
we are able to improve the result up to H3,2-regularity employing
Nirenberg’s difference quotient method (§3.4). Finally, we treat two-sided,
i.e., "clamped" contact points in Section 3.5, where we use inverse Holder
inequalities and Gehring’s lemma to show H2,P-regularity for a p>2 near
such a point.
We conclude this introduction by mentioning some interesting open

problems:
1. Is the H3,1-regularity optimal for general isolated simple touching

points ? Due to the fact that the obstacle is not fixed but determined by the
solution itself one might conjecture higher regularity.

2. Are there minimizers that have any other than isolated touching
points? For instance, one could think of a curve that possesses two touching
arcs winding around each other like a part of a circular double helix.

3. The application of Hildebrandt’s and Wente’s Lagrange multiplier
lemma is based on the assumption that the minimizer is not extremal for
the length functional L in the class C6’. In the case of isolated touching
points this assumption is not necessary, but is it conceivable that there are
minimizing knots that are L-extremal ? Geometrically this means that such
a minimizing knot would not have any freely variable arc; in other words,
every point on that curve would be a touching point. In [18, Chapter 4]
we have considerably reduced the class of curves where this problem could
occur.

Let us remark that this paper is self-contained, although at some places
we refer to the author’s thesis [18], where the straightforward but somewhat
tedious admissibility proofs for certain comparison curves are carried out
in detail.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



141ELASTIC KNOTS IN EUCLIDEAN 3-SPACE

The appendix contains a slight generalization of the result by Hildebrandt
and Wente and some technical material.

2. EXISTENCE OF MINIMIZING KNOTS

Proof of Theorem 1.1. - Observing that the functional F is translation
invariant we may assume that there is a minimal sequence C Cs l
with 

(2) lim F(yp) = inf{ F(y)|y ~ Cn03B4,l} and yp(0)=yp(27r)=0.

Using the embedding H2,2((0,203C0))  C1,1/2([0, 203C0]) and the fact that
for all tE81 we find constants s.th. cp > 0 for

all t E S1.

As usual one considers the function [0, ~ [0, L~

which is in 2~r~) and invertible, since ~P(t) _ 
For the derivatives of the inverse function Tp : [0, l] -> (0, 2~r~ E

C1 ( ~0, l~ ) one finds

and

for t==T(S) for almost all 
In particular, Tp is a C1-diffeomorphism with

Then one can show (Lemma A.l in the appendix) that the composition
YP o Tp : [0, l] -~ R~ is in H2,2( (0, l), ~3). Composing this with the linear
transformation A(t) := l ~ one obtains a regularized minimal sequence
XP := y? o TP o A : ~o, 27T~ ~ ~3 E H2,2 ( (0, 2~~ ~ ~3~ with

Vol. 16, n° 2-1999.



142 H. VON DER MOSEL

To get compactness we note (recalling the parametric invariance of F and
using (3)) that there is a positive constant M, such that for all peN

In addition, we have ~xp~L2 = Together with (2), which implies
by the definition of Tp and A, we find a constant C

independent of p, such that

Hence, there is a weakly convergent subsequence xp’ - x E

H2’2((O, 2~r),1~3). The embedding H2,2 ~--~ G’1,1~2, inequality (4) and the
theorem by Arzela-Ascoli imply also the strong convergence xp --~ x in
C1([0,203C0],R3) for a subsequence {xp}~p=1 ~ {xp’}~p’=1.
CLAIM. - X E 

Proof. - 1. The strong convergence in C~ implies the conditions

since this is true for all xp, peN.
2. The parametric invariance of the length functional implies that the

obstacle condition for the original minimal sequence {yp}~p=1 C C?,
carries over to the regularized minimal sequence { 

Annales de l’Institut Henri Poincaré - Analyse non linéaire



143ELASTIC KNOTS IN EUCLIDEAN 3-SPACE

This fact together with the strong C1-convergence Xp ~ x guarantees that
x satisfies the obstacle condition as well, which is shown in Lemma A.2

in the appendix.
3. The reparametrization of the original minimal sequence does not

change the isotopy type of the curve, i.e., xp~Cn03B4 for all peN. The

following lemma together with the C1-convergence yields XEC6’, which
concludes the proof of the claim.

LEMMA 2.1. - Let r~EH2~2 (,S’1, ~3) satisfy

where d > o, 9 E ( o,1 ) . Then there exists a constant E > o, such that all

~3), with ~~~ - are isotopic to r~.

Proof. - The homotopy 03A6 : S 1 x [0, 1] ~ R3 defined by

satisfies 0) = r~(s), 1) _ ~(s) and the curves ~(., t) are closed
for all tE[0,1].

In addition, ~(., t) is injective for E>0 sufficiently small, since by (7)

E : = min ~ d / 2~r, B l / 2 ~ . For convenience, we have denoted
the minimal distance between two parameters s, s’ on S1 ’~’--~’ [0, by
Is - := 2~r - ~ s - s’ ~ ~ and the corresponding arc on S 1
by [s, (Obviously, this proof also works for vector functions r~, ~ that
are Lipschitz continuous.) D

It remains to show that xs . - x actually minimizes the curvature

energy F. Since for all tE81, the functional F is a

Vol. 16, n° 2-1999.
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bounded nonnegative quadratic form on the regularized minimal sequence.
A standard reasoning then shows that F is lower semicontinuous with
respect to the weak convergence x in H2,2. Consequently, since
x E 

3. REGULARITY

3.1. Preliminaries

We first observe that the minimizer x03B4~Cn03B4,l in Theorem 1.1 also

minimizes the functional D(y) := ~S1 |y(03C3)|2 |y(03C3)|3 d03C3 in Cn03B4,l, since by (6)

The following lemma simplifies matters for touching points, i.e., for points,
where there is equality in the obstacle condition:

LEMMA 3.1. - Assuming there exists a ~1  l /8, with Csl ,l I ~ ~ we find a
bo  bl , such that for all 0  b  bo and the corresponding minimizers x03B4~Cn03B4,l
the following holds: 

Proof. - 1. For 0 b b3 we have by definition C6’l,l C Cgi and therefore

Equation (6) then implies

Annales de l’Institut Henri Poincaré - Analyse non linéaire



145ELASTIC KNOTS IN EUCLIDEAN 3-SPACE

We define ~o :== 647r2C1 and

(If s>s’ the length is given by f 2" ~X~ dt + ~’o dt.) 
’

Since bl  l / 8 (compare (45) in the appendix) we have

Consequently, we obtain for 2 L ~s, s ~ ~ S 1 (xs )  b  bo the inequality

The estimate (9) then implies

That is, for equality in the obstacle condition can only occur when

From now on we make the

General Assumption (G) : Let b  bo  bl  l / 8 be fixed, and x :== X8 a
minimizer of the functional F in the class 

Vol. 16, n° 2-1999.



146 H. VON DER MOSEL

3.2. Regularity of free arcs of the minimizer

THEOREM 3.2. - If there is a parameter s~S1 with

then there is an arc Br (s) C centered in s, such that x~C~ (Br (s), R3).
The proof is more or less standard in the calculus of variations and will

only be sketched briefly: First one shows the admissibility of comparison
functions zE ;t : - for all with Eo sufficiently small, i.e.,

E Cs , using continuity arguments to establish the validity of the obstacle
and isotopy condition for zE,t, (Lemma 3.5 in [18]). Then one can derive a
differential equation involving a Lagrange multiplier, and standard regularity
theory including a "bootstrap" argument gives the desired smoothness of x,
([18], pp 50-52).

3.3. H3,1-Regularity
We start out with a simple case of a contact situation, namely with

touching points that are isolated and simple:

DEFINITION. - We call an isolated simple touching parameter (with
respect to x) : ~

(i) ~x(s) - x(s‘) ~ = (x) } for one and only one s‘ ~ s
and

(ii) there is a radius R=R(s), such that for all 

1 ( ) - ( )1 I > min{03B4, 1 2L [03C3,03C3’] S1 (x)} for all 0-’ E 51, 0-’  0-.

The corresponding image point x(s) is called an isolated simple touching
point.

Theorem 1.2 is a consequence of the Sobolev embedding H3,1 ~--~ 
and the following theorem:

THEOREM 3.3. - Let be an isolated simple touching parameter of
a minimizing curve x satisfying the assumption (G). Then there is a radius

such that where R=R(s) is the radius in the

definition above.

Proof of Theorem 3.3.

Step 1. - If x( 8) is contained in a straight part of the curve x, then
we have C°°-regularity near s, and nothing has to be proved. Excluding
this case we show that we can "correct" the length infinitesimally in the
following way:

Annales de l’Institut Henri Poincaré - Analyse non linéaire



147ELASTIC KNOTS IN EUCLIDEAN 3-SPACE

LEMMA 3.4. - There exist arcs 7i, ~2 C n I2=~ and vector
valued functions (~3) for i=1, 2 and TO>O with

a) x + T~Z E C6’ for all ITITp,
b) bL(x, ~i) = 1 for i=1, 2.

Proof. - By choice of a coordinate system and a shift of parameters if

necessary, we can assume that x(s) == and s ~ 0. (Here and

throughout this paper ei denotes the i-th standard basis vector in R~.)
The assumption that x( 8) lies on a curved part of x and the continuity of
x imply that there are parameters 
with X(s2), X(S3) ~ X(s4).

That means, x restricted to 7i .- (sl, s2) or I2 :- (s3, s4) is not a straight
line, hence there are vector functions Q~3) with bL(x, ~i) ~ 0.
The normalization (i := ~i) gives the desired result, if one

proves that x + 03C403B6i~Cn03B4 for ( T (  Tp C l, which can be shown as in [18,
Lemma 3.5]. D

Remark. - It is straightforward to extend this lemma to an arbitrary
finite number N~N of disjoint arcs h , I2 , ... , IN C S 1 and corresponding
vectorfunctions ~i, i = 1,..., N with the properties a) and b).

Step 2. - The following result due to S. Hildebrandt and H.C. Wente is a
valuable tool in deriving a differential inequality for obstacle problems
with a side condition. We will prove a slight generalization in the

appendix (Lemma A.4) in order to treat more general contact situations,
see Section 3.5.

LEMMA 3.5. - Suppose, there are functions 
for and constants ~o, c E (~ with the

properties
(i) 0 = ~i (o) = vi (o) for 2=l, 2,
(ii) v2 (o) = 1,
(iii) the function ~(E, t) .- ~o + ~l (E) + ~2 (t) satisfies

Then we obtain the inequality

The number A :== -§[ (0) is the Lagrange multiplier in this situation.

Vol. 16, nO 2-1999.
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step 3. - By a further rotation and translation of the coordinate system
we may assume that e := = e3 and x(~0, where s’ is the
(unique) touching parameter corresponding to 5.

CLAIM. - There exists a radius such that (x, e) = ~ E
~’(~(~)).

Proof - One has to check that there are constants 1
and such that for comparison curves
~,~ ~ x + + e3] + ~* are admissible, i.e., in the class C~ forall (6,~)e[0,6o) x (- to,to ). Here 7y is an arbitrary nonnegative function
in R+), r ~3!~ } and R~) is
one of the vector valued functions (z in Lemma 3.4. By the choice of r
we have Br(s) n 1* = 0.

In order to apply Lemma 3.5 we define

Then we obtain

for all with v(E, t) = LS~ = l = c.

One observes that Lemma 3.4 implies condition (ii) of Lemma 3.5, hence
inequality ( 10) holds, which in turn gives us a differential inequality in the
coordinates x2 and x3 for all 

with ci := ~7t’2~L2~ c2 := -A . ~ ~2/ ~l~?C3)~ ~l :_ -~2C0~ - -bD X~ (*).
Setting K = 0 and integrating by parts one obtains

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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We can interpret the left-hand side in (12) as a positive distribution T on

setting

Employing an argument of L. Schwartz ([16], p. 29) we find a Radon

measure 11 on Br(s), such that

In the appendix (Lemma A.3) it is shown that for BE(0, 1) one can find a
nondecreasing bounded function such that

An integration by parts yields

which implies

for some numbers and for almost all aEBer (s) by a generalized
version of the fundamental lemma in the calculus of variations. Since

xEH2,2(S1, ~3) ~ G’1,1~2(~0, 2~~, ~3) and g is bounded, the integrand
in (13) is in L’, hence i.e. (x, e) = x3 E 

Step 4. - For K := Ko / 2 in (11) we apply the same method to find a
nondecreasing bounded function such that

for some numbers 3, beR for almost Since and

we obtain

Vol. 16, n ° 2-1999.
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Step 5. - Differentiating the equation ~X(~)~2=l2/4~r2 and recal-

ling that :~1(s)=L/2~r one obtains with 

+ x3(03C3)x3(03C3)]/x1(03C3) for all where R1 : :=

In fact, one estimates

Remark. - With a suitable modification of the admissibility proof in step 2
one can extend this regularity result to more general one-sided contact
points, where the constant Ko now depends on the touching parameter

see [18, pp. 65-72]:

DEFINITION. - A parameter SES1 with

for at least one s’ E ,S’ ~ B ~ s ~ is called a parameter with one-sided contact if
and only if there is a vector such that ( x(s’) - x(s), v ~  0

for all s’ E S1 B ~ s ~, for which (15) holds. Geometrically this means that all
touching points x( Sf) corresponding to x ( s ) lie in an open halfspace Hv
with v 1 8Hv and 

3.4. Higher Regularity

It is an open question, if the H3,1-regularity is optimal for touching points
of the minimizer there are, however, contact situations, where one
can prove higher regularity.

DEFINITION. - E 

(x) ~ ~ be the set of all touching parameters corresponding to

s. Then we call x(s) a convex touching point, if and only if there are radii
R>O and such that

Remark. - This means that we can vary the curve x locally near the
point x(s), as long as we stay in the convex hull of a short arc containing
x(s). Not every isolated touching point is convex - consider for instance

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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two arcs that are "hooked" in the sense that the normals at s and s’ point
at each other. On the other hand, there are convex contact situations that
cannot be treated with the previous method. For simplicity, however, we
will concentrate on convex touching points that are also isolated and simple.
With some technical modifications one can prove the following results for
more general convex touching points, see [18, Chapter 3.4.1].

THEOREM 3.6. - Let be an isolated simple touching point that is
convex with respect to the minimizer x=xs satisfying assumption (G). Then
there is a radius such that x E H3’2(Br(s), (~3), where R=R(s) is
the radius of H3,1-regularity (Theorem 3.3).
The embedding H3 ~ 2 ~~ C2,1 ~ 2 implies that near such contact points the

curvature of x is Holder continuous with exponent 1/2.

Proof. - As before, one shows first that there exists a radius R1=R1 (s),
such that for all functions ( s ) ), there are constants ~0, to E (0,1 ),
such that for all the comparison curves

:= x + + t~* are admissible, i.e., in C6" The vector
valued function (* ~C~0 (I* R3) is chosen from the finitely many 03B6i in the
remark following Lemma 3.4, such that s ~ Ii and s’ ~ Ii. Furthermore
we have used the notation 0394hf(03C3) := ( f ( o- + h ) - f(03C3))/h for difference
quotients. (For the details of the admissibility proof see [18, Lemma 3.24].)
We take [0,1]), r min{R/4, R1} with ~ - 1 on Br(s),

As in the proof of Theorem 3.3 we apply Lemma 3.5 to obtain a diffe-
rential inequality in terms of x and q5 := 

for ci := 6~/~,C2 := -A . ~/(167r~ A := -~D(x,0).
Applying the well-known calculus for difference quotients (see e.g. in [2],

vol. II, p. 84) we arrive at

Vol. 16, n° 2-1999.


