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ABSTRACT. - In this paper we prove some Liouville theorems for non-

negative viscosity supersolutions of a class of fully nonlinear uniformly
elliptic problems in © 2000 Editions scientifiques et médicales Else-
vier SAS

RESUME. - Dans ce travail nous demontrons des theoremes de

Liouville pour des sur-solutions de viscosite positives de problemes
uniformement elliptique completement non lineaires dans © 2000

Editions scientifiques et médicales Elsevier SAS

1. INTRODUCTION

The aim of this paper is to prove the Liouville property for nonnegative
viscosity supersolutions of a class of fully nonlinear uniformly elliptic
equations in the whole space We consider problems of the form

* This work was partially supported by the TMR Network "Viscosity Solutions and
Applications".
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where for fixed 0  ~,  A , is the Pucci extremal operator

with

(SN denotes the space of all real symmetric N x N matrices), or of the
form

where r is a unitormly elliptic operator with ellipticity constants U  ~. ~
A . Precisely, we assume that F : x is a continuous function

satisfying, for some 0  ~,  A , the following conditions:

for all M, P E SN with P > 0 (i.e. nonnegative definite) and

For problem (1.1) we prove that u is necessarily a constant, provided that
N  1 + f (see Theorem 3.2).
On the other hand for problem (1.2), under some restrictions on hand

p (see Theorem 4.1 ), the only solution is u = 0.
Note that in the case £ = A = 1 the operator reduces to

the Laplace operator so that the first result generalizes the well-known
Liouville property for nonnegative superharmonic function in with

N ~2.
A major step in the proof of Theorem 3.2 is to establish a convexity

result for viscosity solutions of (1.1) in the spirit of the Hadamard three
circles theorem (see Theorem 3.1 ).
The result of Theorem 3.2 is optimal: there are examples of nontrivial

solutions of (1.1) if N > 1 + f (see Remark 2).
Moreover, for a general fully nonlinear uniformly elliptic operator

F : x SN - R, the problem

with N > 2, may have nonconstant viscosity solutions (see Remark 3).
Let us observe at this purpose that, in the case of equality, the Liouville
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property holds true: the constant functions are the only bounded either
from above or from below viscosity solutions of

This result can be found in [8]; its proof relies on the Krylov-Safonov-
Harnack inequality (see also [15]).
The fully nonlinear problem (1.2) will be considered in our Section 4:

in Theorem 4.1 we obtain the Liouville property assuming that h is a

nonnegative continuous function on satisfying the growth condition

for some constants ro, H > 0 and y > - 2 and provided that the exponent
p satisfies

and

Let us recall that the semilinear case

has been already treated in the case p > 1 and y > -2 (see [2,3,6,9,10]):
it is known that if

then zero is the only solution, as well as if p > (N + y ) / (N - 2) then
there exists a nontrivial solution (see [6,10] for a counterexample). We
notice that, setting ~8 = ~ (N - 1 ) -I- 1, condition (1.5) reads as

it is then clear the analogy between (1.8) and (1.9) and their consistency,
being ~6 = N in the case A = ~,. Moreover we consider the cases 0  p 

1 and y = -2. 
°
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We also prove that the result is optimal: adapting the counterexample
produced in [10], we show the existence of nontrivial solutions of (1.2)
(for a particular F) in the cases

p > 1 when y = - 2 and p > 0 when y  - 2.
Let us finally remark that the Liouville property for semilinear elliptic

and degenerate elliptic equations, posed in the whole space or in

cones or halfspaces, has been the object of a keen interest in the literature
also for its connection with the problem of the a priori bounds and the
existence of positive solutions of superlinear boundary value problems
in bounded domains. The first results in this direction are contained in

[13,14] in which the semilinear uniformly elliptic equation in JRN and in
halfspaces is considered; under different assumptions, analogous results
for the equation have been subsequently obtained also in [1,22]. Again
the equation but in an elliptic degenerate case is considered in [18,24,25].
The inequality in the whole space and in cones has been treated in [2,3,6]
and in [4,5,10,12] for some elliptic degenerate cases. Anyway, we refer to
[9] for a general overview on this subject. The extension of these results
to the fully nonlinear case will be the subject of a forthcoming paper.

2. PRELIMINARIES

In this section we recall some basic notions and known results about

fully nonlinear elliptic equations. For further details we refer to, e.g., [8,
11].
Here and in the sequel SN denotes the set of all symmetric N x N

matrices, and the dimension N will be always assumed to satisfy N > 2.
A continuous function F : x SN -~ R will be referred to as a

uniformly elliptic operator with ellipticity constants 0  ~,  A if, for all
M, P E SN with P > 0 (i.e., nonnegative definite), and for all x E it

results

In the rest of the paper we will always consider uniformly elliptic
operators F (x, M) such that
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The simplest example of operator F satisfying (2.1 ) (and (2.2)) is the
linear map

where A E SN is a positive definite matrix the eigenvalues of which
belong to [~., A].

Let us indicate with the set of all such matrices A, i.e.

Since the family of uniformly elliptic operators having common elliptic-
ity constants is closed under the sup or the inf process, the definitions

produce other two significant examples of uniformly elliptic operators,
called extremal operators (see [7,8]), related by the identity

Slightly different extremal operators have been firstly introduced by
Pucci in [20], where the inf and sup are taken on the class Ba, a > 0,
defined as

.(see also [15]). Thus, the Pucci extremal operators are defined as

Observing that if A belongs to then the normalized matrix tr A A
belongs to and, conversely, if A belongs to then A belongs to

it results

and, analogously,
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In the sequel we will always deal with the extremal operators and

.J~t ~, n , even if the previous inequalities show that every argument could
be carried out for the Pucci operators ~a and with a appropriately
chosen.

It is not hard to check that the operators and may be

equivalently defined respectively as

and

where ei (i = 1,..., N) denote the eigenvalues of the matrix M.
The adjective "extremal" is also due to the fact that for every operator

F satisfying (2.1 ) and (2.2) with ellipticity constants and 11, it results:

for all x E JRN and M E SN.
Next, let us recall the notion of viscosity sub and supersolutions of the

equation

where F : Q  R x continuous map with F (x, t, M)
satisfying (2.1) for every fixed t E R and for all x E Q, and Q c II~N
is an open domain (for more details see, e.g., [11]).

Definition 2.1. - A continuous function u : S2 -~ II~ is a viscosity
supersolution (subsolution) of (2.8) if, for all § E C2 (SZ ) and x0 ~ S2
such that u - ~ has a local minimum (maximum) at xo, it results

If u is a viscosity supersolution (subsolution) we also say that u verifies

in the viscosity sense.
Finally u is a viscosity solution of (2.8) if it simultaneously is a

viscosity sub and supersolution.
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Let us observe that inequalities (2.7) still hold in the viscosity sense,
that is if a function u is a viscosity solution of F (x, D 2 u )  (~)O, with F
as in (2.7), then J1 il ~, , ~ ( D 2 u )  0 (respectively, .J1 iI ~ ~ ( D 2 u ) > 0) in the
viscosity sense.

In the following sections we will make use of the so called Comparison
Principle and Strong Maximum Principle for viscosity solutions of

the extremal operators and the proofs of which can be
respectively found in [16] and [8]. 

THEOREM 2.1 (Comparison Principle). - Let Q C RN be a bounded
open set and let f E C (S2 ) ; if u 1 and u 2 are respectively a super- and a
subsolution either of (D2u) = f(x) or of {D2u) = f(x) in
Q and if u1  u 2 on ~03A9, then u 2 in Q.

THEOREM 2.2 (Strong Maximum Principle). - Let Q C JRN be a
bounded open set and let u be a viscosity supersolution (subsolution)
either of (D2u) = 0 or of (D2u) = 0 in Q. If u attains its
minimum (maximum) at an interior point of S2, then u is constant.

3. HADAMARD TYPE THEOREMS AND THE LIOUVILLE
PROPERTY FOR EXTREMAL OPERATORS

In this section we extend to viscosity sub- and supersolutions of the
nonlinear operators M+ and .J~I- the classical Hadamard’s three circles
and three spheres theorems about sub- and superharmonic functions.
We recall (for more details see [17,21]) that if u is a continuous

superharmonic function in a plane domain containing the closed ring
{x E r2  [ ~ with ri > r2 > 0, then the Hadamard’s three
circles theorem states that the function m (r) = min|x |=r u (x) is a concave
function of log r, that is, for r2  r  ri , it satisfies

If u is a superharmonic function in a domain of with A~ ~ 3,
containing the closed ring {x E Y2  I x I ~ then, by the

Hadamard’s three spheres theorem, is a concave function of r2-N,
that is, for it satisfies
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Of course, there are the "reversed" results for subharmonic functions:

if u is subharmonic in a plane domain, then the function M (Y) -
max|x|=r u (x) is a convex function of log r, that is, for r2  r  rl , it

satisfies

as well as if u is subharmonic in a domain of JRN, with N > 3, then M(r)
is a convex function of that is, for r2  r  ri it satisfies

From inequality (3.1) (respectively, (3.3)), the classical Liouville’s

theorem easily follows, stating the nonexistence of nonconstant bounded
from below (above) superharmonic (subharmonic) functions in II~2 ~ f 0} .
On the contrary, it is well known that inequality (3.2) does not lead to a
Liouville type theorem; indeed, for example the radial function

is a nonconstant bounded superharmonic function in all of N > 3.
These different results are evidently due to the different behaviour of the
fundamental solution of the Laplace equation in which, as it is well

known, is unbounded as x ( -~ if and only if N = 2.
In order to generalize these results to the nonlinear case, first of all we

have to determine the corresponding "fundamental solutions". We need
the following simple technical Lemma.

LEMMA 3.1. - Let (0, 1I~ be a C2 function. For every
x E {0~ the eigenvalues of the Hessian matrix of the radial function
~ (x ) _ are which is simple, and which has

multiplicity (N - 1).

Proof - A direct computation shows that:
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where IN is the identity matrix and x @ x is the matrix whose entries are
Hence we have

for every vector $ such that ~ ~ x = 0. D

Using this lemma one can find, by a similar argument as in [20], radial
functions which are classical solutions of the equation

and are either concave and increasing or convex and decreasing.
By Lemma 3.1 and the identity (2.5), the concave and increasing

functions cp have to be looked for among the solutions of the ordinary
differential equation

as well as the convex and decreasing solutions cp must satisfy

In both cases the solutions cp depend on the values of the dimension N
and of the ellipticity constants and A . More precisely, in the first case,
setting

and observing that a > 1, we obtain the solutions

with constants 0 and C2 E R, whereas in the second case, setting
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and observing that ~8 > 2 (since A~ ~ 2), the solutions are given by

Therefore, the radial functions

with ~pl and ~p2 respectively given by (3.7) and (3.9), are classical
solutions (in particular, viscosity solutions) of Eq. (3.5).

In the following theorems they will play the same role played in the
Hadamard and Liouville Theorems by the fundamental solution of the
Laplace equation, and it is in this respect that they will be considered
as the "fundamental solutions" of Eq. (3.5). Let us point out, moreover,
that in the particular case in which £ = ll, Eq. (3.5) reduces to Laplace
equation; in this case, it results a = 03B2 = N and the function 03A61 ~ 03A62
coincides with the classical fundamental solution.

Remembering the relationship (2.3) between and .J1 il ~, , ~ , we
have also found that the functions

are the "fundamental solutions" of the equation

with --_ such that is a concave and

increasing function in (0, co), and --_ 1/r2(~x~) _ such that

~Z(r) is a convex and decreasing function in (0, oo).

THEOREM 3.1 (Nonlinear Hadamard Theorems). - Let D be a do-
main of RN containing the closed ball BYl centered at the origin and
with radius rl > 0. Then:

(i) if u E c(D) is a viscosity solution of

then the function
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is,. respectively, a concave function of log r if a = 2 and of r2-«
if a ~ 2, with a given by (3.6). More precisely, for every fixed
r2  rl and for all r2  r  rl, it results

(ii) if u E c(D) is a viscosity solution of

then m (r) is a concave function of log r if ,B = 2, and of 
if 03B2 > 2, with ,B given by (3.8). More precisely, for every fixed
rz  rl and for all r x rl, it results

Before giving the proof of the theorem, let us observe that, by the
relationship (2.3) between and .I1 ~l ~ , ~ , statement (i) is equivalent
to the following one: 

(j) if u E C(D) is a viscosity solution of

then the function

satisfies, for all /"2 ~ ~ ~ rl ,
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Analogously, an equivalent form of (ii) is
(jj) if u E C(D) is a viscosity solution of

then M(r) satisfies, for all r2  r  rl,

Proof - By the assumptions, the respectively increasing and decreas-
ing functions M(r) and mer) are well defined in [0, rl].

Let us consider the case (i), that is, let u E C (D) be a viscosity solution

Fixed ri > r2 > 0, let ~/r~ (r) _ (r), with ~pl (r) defined by (3.7), with
constants 0 and C2 E R chosen in such a way that (rl ) = m (rl )

= m (r2 ) . This yields:

We know that the is a viscosity solution of
equation (3.10). Applying the Comparison Principle (Theorem 2.1) to
the functions u (x ) and W (x) in the ring {r2  C D, we deduce
that 

’

Hence, for all r in [r~, rl] and the claim is proved.
The proof of (ii) is completely analogous to that of (i), with the

obvious difference that now u has to be compared with the function
03A62(x) = where 03C62 is given by (3.9). D

Looking at the previous result, as well as at the just constructed
"fundamental solutions" of Eqs. (3.5) and (3.10), and having in mind
the linear case, we expect a Liouville type theorem in two cases:
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. the case of bounded from below (above) viscosity supersolutions
(subsolutions) of (3.10) ((3.5)) in all of with the parameter a,
defined by (3.6), satisfying a x 2,

. the case of bounded from below (above) viscosity supersolutions
(subsolutions) of (3.5) ((3.10)) in all of with the parameter ~8,
defined by (3.8), satisfying 03B2 = 2.

Let us observe that the case ~B = 2 only occurs when £ = A and N = 2,
i.e., the case of the Laplace operator in the plane.

Since viscosity subsolutions (supersolutions) of the Laplace equation
are precisely the same as continuous subharmonic (superharmonic)
functions (as it can be deduced, for example, from Proposition 3 .2.10’
of [17]), this case reduces to the well-known Liouville theorem for

subharmonic (superharmonic) functions in 
Therefore, the first case is the only one which has to be considered.

THEOREM 3.2. - Let u E viscosity solution either of

or of

If u is, respectively, bounded either from below or from above, and if the
parameter a, defined by (3.6), satisfies a  2 (i. e., N x f + 1 ), then u is
constant.

Proof - Consider the case 0, u bounded from below.
By the previous theorem (case (i)), u satisfies (3.11) for all r in [r2, rl],
for every fixed rl > r2 > 0.

Being m (r) a bounded function since u is bounded from below, and
being a  2, passing to the limit as rl --~ -I-oo in (3.11 ) leads to

Since m (r ) is obviously a decreasing function, we deduce that m (r ) ==
const = m(0) = u(0). Therefore, u attains its minimum at an interior

point and, by the Strong Maximum Principle (Theorem 2.2), u is

constant. D
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Remark 1. - The assumption on the boundedness of u in the previous
Theorem can be weakened: indeed, in the proof we only needed that

Thus the Liouville Theorem for inequality (3.15) can be reformulated
by saying that, for every nonconstant viscosity solution of (3.15), the
function mer) decreases as r --~ +00 at least like -r2-a if a  2 and

like - log r if a = 2.
The result is optimal; indeed, the function

satisfies (3.15).

Remark 2. - The previous result does not hold if a > 2, i.e., if N >

~ + 1. Indeed, in this case, the function

provides an example of a non constant bounded classical solution of
(3.15), -u obviously being a non constant bounded classical solution
of (3.16).

Remark 3. - Referring to the discussion before Theorem 3.2, we
observe that a Liouville type theorem does not hold in fact neither for

viscosity solutions of
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nor, equivalently, for viscosity solutions of

except that for 03B2 = 2, ,B being defined in (3.8). Indeed, if ,B > 2, then the
function

works as a counterexample for (3.17), as well as -u does for (3.18). 
’

Remark 4. - If (3.15) or (3.16) are required to hold as equalities, then
the Liouville theorem can be obtained without any assumption on the
parameter a. More in general, for bounded either from above or from
below viscosity solutions of a uniformly elliptic equation such as

with F satisfying (2.1) and (2.2), the Liouville property may be derived
in a standard way as a consequence of the strong Harnack inequality, see
[8].

We have seen that in the cases a, fJ > 2 a Liouville type result does
not hold respectively for nonnegative viscosity solutions u of (3.15) and
(3.17). Nevertheless we can still deduce in such cases some important
properties of the function m (r) = inf|x|r u (x) . Since we are going to use
them in the next section, we state the result separately.
COROLLARY 3.1. - Let u E viscosity solution of

(respectively of

then, set ~B = ~ (N - 1) + 1 (a = n (N - 1) + 1), the function

is increasing.
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Proof - We can consider only the case ( D 2 u )  ~ 0; the other one
being absolutely analogous.
From inequality (3.12), letting ri -~ +00 and being 0, it

follows

Remark 5. - If u E C is a viscosity solution of

the same holds true for the radial function = infB|x| u .
Indeed, since the operator .I1~I ~, ~ is rotations invariant, u ( Px ) is again

a supersolution for every matrix P satisfying PT = ( pT and P -1
denote respectively the transposed and the inverse matrices of P). Then
the claim follows observing that the minimum of supersolutions is again
a supersolution and that, in view of the Strong Maximum Principle
(Theorem 2.2), m can be written as

= min u = min u (Pxo) for some xo with |x0| = |x|.

An analogous result holds true for subsolutions.

4. LIOUVILLE THEOREM FOR FULLY NONLINEAR

EQUATIONS HAVING ZERO ORDER TERMS

In this section we are concerned with the Liouville property for

viscosity supersolutions of the uniformly elliptic equation

with N > 2 as usual, where F satisfies (2.1) and (2.2), h (x) is a

nonnegative continuous function in and p is a positive exponent.
First of all, we observe that if u E is a viscosity supersolution

of (4.1), then, by (2.7), u satisfies


