EXOTIC SOLUTIONS OF THE CONFORMAL SCALAR CURVATURE EQUATION IN \mathbb{R}^n

Man Chun LEUNG
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore
Received 13 January 2000

ABSTRACT. – We construct global exotic solutions of the conformal scalar curvature equation
\[\Delta u + \frac{n(n - 2)}{4} K u^{\frac{n+2}{n-2}} = 0 \]
in \mathbb{R}^n, with $K(x)$ approaching 1 near infinity in order as close to the critical exponent as possible. © 2001 Éditions scientifiques et médicales Elsevier SAS

Keywords: Conformal scalar curvature equation; Gluing solutions; Positive scalar curvature
AMS classification: Primary 35J60; Secondary 58J05

1. Introduction

We consider a special class of positive solutions of the conformal scalar curvature equation
\[\Delta u + \frac{n(n - 2)}{4} K u^{\frac{n+2}{n-2}} = 0 \] in \mathbb{R}^n. (1.1)

Here Δ is the standard Laplacian on \mathbb{R}^n equipped with Euclidean metric g_0, K a smooth function on \mathbb{R}^n, and $n \geq 3$ an integer. The solutions we construct breach a rather natural lower bound and have peculiar asymptotic property.

Eq. (1.1) is studied extensively by many authors in connection with the prescribed scalar curvature problem on a Riemannian manifold in general and on \mathbb{R}^n and S^n in particular (on S^2, the Nirenberg problem; cf. [1,3–5,9,12,14,15,17,20,21,23,24,26] and the references within). As in the case of the Yamabe problem, recent studies indicate that the case when K is strictly positive affords many interesting and subtle developments.

Assume that K is bounded between two positive constants in \mathbb{R}^n. An important feature of Eq. (1.1) is the asymptotic behavior of $u(x)$ for large $|x|$ (cf. [2,5–8,10,12,16,18,19,26]).
It is simpler to classify with the help of the Kelvin transformation:

\[
y = \frac{x}{|x|^2} \quad \text{and} \quad w(y) := |y|^{2-n} u(y/|y|^2) \quad \text{for} \; x, y \in \mathbb{R}^n \setminus \{0\}.
\]

(1.2)

From (1.2), \(w\) satisfies the equation

\[
\Delta w(y) + \frac{n(n - 2)}{4} \tilde{K}(y) w^{\frac{4}{n-2}}(y) = 0 \quad \text{for} \; y \in \mathbb{R}^n \setminus \{0\},
\]

where \(\tilde{K}(y) := K(y/|y|^2)\) for \(y \neq 0\) (see, for instance, [18]). \(w\) (and \(u\)) is said to have fast decay if \(w\) has a removable singularity at the origin. Otherwise, it is called a singular solution. In order to have reasonable control on the geometric and analytic behavior of singular solutions, it is crucial to obtain the upper bound or slow decay

\[
w(y) \leq C_1 |y|^{-(n-2)/2} \quad \text{as} \; y \to 0, \quad \text{i.e.,} \quad u(x) \leq C_1 |x|^{-(n-2)/2} \quad \text{for} \; |x| \gg 1,
\]

(1.4)

where \(C_1\) is a positive constant. The question on slow decay is discussed in depth in [2, 5–8,16,18,19,22] (cf. also [27]; note that our definition of slow decay is slightly different from the one in [5] and [8]). Guided by the case when \(K\) is equal to a positive constant outside a compact subset of \(\mathbb{R}^n\) (see [2,16]), it is natural to ask whether a singular positive solution \(u\) with slow decay also satisfies the lower bound

\[
w(y) \geq C_2 |y|^{-(n-2)/2} \quad \text{as} \; y \to 0, \quad \text{i.e.,} \quad u(x) \geq C_2 |x|^{-(n-2)/2} \quad \text{for} \; |x| \gg 1,
\]

(1.5)

where \(C_2\) is a positive constant. If the lower bound holds, then the conformal metric \(u^{4/(n-2)} g_o\) on \(\mathbb{R}^n\) is complete and has bounded (sectional) curvature [8]. The radial Pohozaev number is an essential invariant in the study of equation (1.1) and is given by

\[
P(u) := \lim_{R \to \infty} \int_{B_o(R)} [x \cdot \nabla K(x)] u^{2n/(n-2)}(x) \, dx,
\]

(1.6)

provided the limit exists. Here \(B_o(R)\) is the open ball with center at the origin and radius equal to \(R > 0\). The following result is shown by Chen and Lin in [6] and [8], mindful of the slightly different notations we use.

Theorem 1.7 (Chen-Lin). – Let \(u\) be a positive smooth solution of Eq. (1.1). Assume that \(\lim_{|x| \to \infty} K(x)\) exists and is positive, and there exist positive constants \(l \geq (n-2)/2\) and \(C\) such that

\[C^{-1} |x|^{-(l+1)} \leq |\nabla K(x)| \leq C |x|^{-(l+1)} \quad \text{for all} \; |x| \gg 1.
\]

Then \(u\) has slow decay and \(P(u)\) exists and is non-positive. \(u\) has fast decay if and only if \(P(u) = 0\) (the Kazdan–Warner condition). Furthermore, if \(u\) is a singular solution, then we also have the lower bound \(u(x) \geq C_2 |x|^{-(n-2)/2} \) for all \(|x| \gg 1\) and for some positive constant \(C_2\).
More generally, under the condition that \(\lim_{|x| \to \infty} K(x) \) exists and is positive, and \(|\nabla K| \) is bounded in \(\mathbb{R}^n \), for a positive smooth solution \(u \) of Eq. (1.1) with slow decay, we show in [10] (cf. also [5,8]) that \(P(u) \leqslant 0 \) if \(P(u) \) exists. Moreover, \(P(u) = 0 \) if and only if
\[
\lim_{|x| \to \infty} |x|^{\frac{n-2}{2}} u(x) = 0.
\] (1.8)
In the latter case, the assumption on \(K \) is not strong enough to allow us to deduce that \(u \) has fast decay.

Definition 1.9. – We call a singular positive solution \(u \) of Eq. (1.1) with slow decay an exotic solution if (1.8) holds for \(u \). That is, we cannot find a positive constant \(C_2 \) such that \(u(x) \geqslant C_2 |x|^{-\left(\frac{n-2}{2}\right)} \) for all \(|x| \gg 1 \).

Then it is necessary that \(P(u) = 0 \) if \(P(u) \) exists. Exotic solutions are rather peculiar because from \(P(u) = 0 \) one would expect \(u \) to have fast decay. Instead, they decay slowly and the conformal metric \(u^{\frac{4}{n-2}} g_o \) remains to be complete, but the (sectional) curvature is unbounded [8]. Theorem 1.7 leads to the observation that there are no exotic solutions if \(|\nabla K| \) decays to zero near infinity fast enough.

(Local) Exotic solutions are first found by Chen and Lin in [8]. By a scaling and the Kelvin transform, we may consider the equation
\[
\Delta u + \tilde{K} u^{\frac{n+2}{n-2}} = 0 \quad \text{in} \quad B_o(1) \setminus \{0\}.
\] (1.10)
Assume that \(\tilde{K} \) is radial and non-increasing in \((0, 1] \), and is given by
\[
\tilde{K}(r) = 1 - Ar^l + R(r)
\] (1.11)
for \(r > 0 \) close to zero. Here \(A > 0 \) and \(0 < l < (n-2)/2 \) are constants, and \(R(r) = o(r^l) \) and \(R'(r) = o(r^{l-1}) \) for \(r > 0 \) close to zero. Given a positive number \(\alpha \), let \(u(r, \alpha) \) be the unique solution of the initial value problem
\[
\begin{cases}
 u''(r) + \frac{n+2}{n-2} u'(r) + \tilde{K}(r) u^{\frac{n+2}{n-2}}(r) = 0, \\
 u(0) = \alpha \quad \text{and} \quad u'(0) = 0.
\end{cases}
\]
Chen and Lin [8] show elegantly that there exists a sequence \(\alpha_i \to \infty \) such that \(u(r, \alpha_i) \) converges to an (local) exotic \(C^2 \)-solution of Eq. (1.10) in \(B_o(1) \setminus \{0\} \). Subsequently, Lin [22] obtains characterizations of exotic solutions in terms of the asymptotic expansion of \(\tilde{K} \) near the origin.

The exponent \((n-2)/2 \) is found to be critical. For \(l \geqslant (n-2)/2 \), Theorem 1.7 shows that there are no exotic solutions of Eq. (1.1). In this paper we construct global exotic solutions of Eq. (1.1) in \(\mathbb{R}^n \). As described above, in [8], an abstract existence argument is used to show the existence of (local) exotic solutions. Our construction is explicit by gluing the Delaunay–Fowler-type solutions. Given any positive number \(\delta \), we show that there is an exotic solution of Eq. (1.1) with \(|K - 1| \leqslant \delta^2 \) in \(\mathbb{R}^n \). Moreover, with regard to the critical exponent \((n-2)/2 \), we show that, given any positive function \(\varphi(r) \) defined
for \(r \gg 1 \) such that
\[
\phi(r) \quad \text{is non-decreasing for } r \gg 1 \quad \text{and} \quad \lim_{r \to \infty} \frac{(n-2)}{2} \phi(r) = \infty,
\]
(1.12)

(for example, \(\phi(r) = r^{-(n-2)/2} \ln(r) \) for \(r \gg 1 \)), we construct an exotic solution of Eq. (1.1) with
\[
|K(x) - 1| \leq C_3 \phi(|x|) \quad \text{for all } |x| \gg 1,
\]
(1.13)

where \(C_3 \) is a positive constant. The analytic property of exotic solutions resides in a neighborhood of infinity, or, by the Kelvin transformation, on a neighborhood of the origin. Our emphasis on the whole \(\mathbb{R}^n \) reflects the geometric viewpoint of conformal deformations of Euclidean space \((\mathbb{R}^n, g_0) \). We follow the convention of using \(c, C, C', C_1, \ldots \) to denote positive constants, whose actual values may differ from section to section.

2. Delaunay–Fowler-type solutions

Introduce polar coordinates \((r, \theta)\) in \(\mathbb{R}^n \), where \(r = |x| \) and \(\theta = x/|x| \) for \(x \in \mathbb{R}^n \setminus \{0\} \).

Let \(t = \ln r \) for \(r > 0 \) and
\[
v(t, \theta) = r^{(n-2)/2} u(r, \theta) \quad \text{for } r > 0 \quad \text{and} \quad \theta \in S^{n-1}.
\]
(2.1)

By the above transformation, Eq. (1.1) can be re-written as
\[
\frac{\partial^2 v}{\partial t^2} + \nabla_\theta v - \frac{(n-2)^2}{4} v + \frac{n(n-2)}{4} K v^{\frac{n+2}{4}} = 0 \quad \text{in } \mathbb{R} \times S^{n-1}.
\]
(2.2)

Here \(\Delta_\theta \) is the Laplacian on the standard unit sphere in \(\mathbb{R}^n \) and \(K(t, \theta) := K(x) \), where \(|x| = e^t \) and \(x/|x| = \theta \). For the case \(K \equiv 1 \) in \(\mathbb{R} \times S^{n-1} \), consider radial solutions \(v \) of (2.2) and the ODE
\[
v'' - \frac{(n-2)^2}{4} v + \frac{n(n-2)}{4} v^{\frac{n+2}{4}} = 0 \quad \text{in } \mathbb{R}.
\]
(2.3)

In connection with the study of surfaces of revolution of constant curvature by Delaunay [11] and a class of semilinear differential equations by Fowler [13], positive smooth solutions of Eq. (2.3) are known as Delaunay–Fowler-type solutions. We refer to [16,24,25] for basic properties of the solutions. Eq. (2.3) is autonomous and the Hamiltonian energy
\[
H(v, v') = (v')^2 - \frac{(n-2)^2}{4} [v^2 - v^{2n/(n-2)}]
\]
(2.4)

is constant along solutions of (2.3). For a positive smooth solution \(v \) of (2.3), \(H \) is a non-positive constant in the interval \([-((n-2)/n)^{n/2}(n-2)/2, 0] \) (see [16]). By shifting the parameter, we may normalize the solution so that
\[
v(0) = \max_{t \in \mathbb{R}} v(t).
\]
(2.5)
Let \(v_o \) be a positive solution of Eq. (2.3) with \(H = 0 \). Under the normalization, we have
\[
v_o(t) = (\cosh t)^{(2-n)/2} \quad \text{for } t \in \mathbb{R}.
\]
(2.6)

We note that, by the transformation in (2.1), \(v_o \) corresponds to
\[
u_o(x) = \left(\frac{2}{1 + |x|^2} \right)^{(n-2)/2} \quad \text{for } x \in \mathbb{R}^n,
\]
(2.7)

which is a solution of Eq. (1.1) when \(K \equiv 1 \) in \(\mathbb{R}^n \). In particular, \(u_o \) is smooth near 0, which corresponds to \(s \to -\infty \) for \(v_o \). The other extreme is when \(H = -[(n - 2)/n]^{n/2}(n - 2)/2 \), and the corresponding solution \(v \) is a constant function given by \(v(t) = [(n - 2)/n]^{(n-2)/4} \) for \(t \in \mathbb{R} \).

For \(H \in (-[(n - 2)/n]^{n/2}(n - 2)/2, 0) \), the solution can be indexed by the parameter \(\varepsilon = \min_{t \in \mathbb{R}} v(t) \), which is called the neck-size of the solution, or the Fowler parameter. We have \(\varepsilon \in (0, [(n - 2)/n]^{(n-2)/4}) \) and
\[
H = H(\varepsilon) = \frac{(n - 2)^2}{4} \left[\varepsilon^{2n/(n-2)} - \varepsilon^2 \right].
\]
(2.8)

Denote the normalized positive solution by \(v_\varepsilon \), where \(0 < \varepsilon < [(n - 2)/n]^{(n-2)/4} \). It is known that \(v_\varepsilon \) is periodic with period \(T_\varepsilon \). Moreover, we always have [16]
\[
\varepsilon \leq v_\varepsilon(t) \leq v_\varepsilon(0) < 1 \quad \text{for } t \in \mathbb{R}.
\]
(2.9)

The following result is essentially proved in [24] (cf. also [16]).

Lemma 2.10. \(T_\varepsilon \), the period of \(v_\varepsilon \), is monotone in \(\varepsilon \) for \(\varepsilon \in (0, [(n - 2)/n]^{(n-2)/4}) \). We have \(T_\varepsilon \to 2\pi \sqrt{n - 2} \) as \(\varepsilon \to 0 \) \([n - 2]/n]^{(n-2)/4} \) and \(T_\varepsilon \to \infty \) as \(\varepsilon \to 0^+ \). Furthermore, there exists a positive constant \(C \), independent on \(\varepsilon \), such that
\[
-\frac{4}{n - 2} \ln(C\varepsilon) \leq T_\varepsilon \leq -\frac{4}{n - 2} \ln(C^{-1}\varepsilon) \quad \text{as } \varepsilon \to 0^+.
\]
(2.11)

It is also known that \(v_\varepsilon \) converges uniformly in compact subsets of \(\mathbb{R} \) to the constant solution as \(\varepsilon \to [(n - 2)/n]^{(n-2)/4} \), and to \(v_o(t) = (\cosh t)^{(2-n)/2} \) as \(\varepsilon \to 0^+ \) [16]. For applications in Section 3, we study the order of the latter convergence in more detail. As \(H \) is constant along solutions, we have
\[
H(v_\varepsilon, v_\varepsilon') = -\frac{(n - 2)^2}{4} \varepsilon^2 - \frac{(n - 2)^2}{4} \varepsilon^{2n/(n-2)}(0) \varepsilon^{2n/(n-2)}(0)
\]
for \(\varepsilon \in (0, [(n - 2)/n]^{(n-2)/4}) \). Thus we obtain
\[
v_\varepsilon^2(0) [1 - v_\varepsilon^4/(n-2)](0) = \varepsilon^2 (1 - \varepsilon^{4/(n-2)}) = -\frac{4H}{(n - 2)^2}.
\]
(2.12)

As \(v_\varepsilon(0) > \varepsilon \) when \(\varepsilon \to 0^+ \), it follows from (2.12) that \(v_\varepsilon(0) \to 1 \) and \(\varepsilon \to 0^+ \). Furthermore,
\[
1 - v_\varepsilon^4/(n-2)(0) = O(\varepsilon^2).
\]
We have
\[v_\varepsilon(0) = \left[1 + O(\varepsilon^2)\right]^{(n-2)/4} = 1 + O(\varepsilon^2) \quad \text{as } \varepsilon \to 0^+. \tag{2.13} \]
Hence there exists a positive constant \(C_n \) which depends on \(n \) only, such that
\[|v_\varepsilon(0) - 1| \leq C_n \varepsilon^2 \quad \text{for } \varepsilon > 0 \text{ small}. \tag{2.14} \]
We use the following well-known inequalities a number of times; they can be derived by simple integration methods. For positive constants \(c \) and \(\alpha \geq 1 \), we have
\[|x^{\alpha} - y^{\alpha}| \leq C|x - y| \quad \text{for } 0 \leq x, y \leq c, \tag{2.15} \]
where \(C = C(\alpha, c) \) is a positive constant; moreover, for \(\beta > 0 \),
\[(1 + z)^\beta = 1 + O(|z|) \quad \text{as } z \to 0. \tag{2.16} \]
With \(v_o \) given by (2.6), it follows from (2.9) and (2.15) that
\[|v_\varepsilon(t) - v_o(t)| \leq C_n |v_\varepsilon(t) - v_o(t)|, \tag{2.17} \]
where \(C_n \) is a positive constant depending on \(n \) only. Using Eq. (2.3) we have
\[|v_\varepsilon''(t) - v_o''(t)| \leq \frac{(n - 2)^2}{4} |v_\varepsilon(t) - v_o(t)| + \frac{n(n - 2)}{4} |v_\varepsilon^{\alpha+2}(t) - v_o^{\alpha+2}(t)| \]
\[\leq \left[\frac{(n - 2)^2}{4} + \frac{n(n - 2)}{4} c_n \right] |v_\varepsilon(t) - v_o(t)| \]
\[= \tilde{C}_n |v_\varepsilon(t) - v_o(t)|, \tag{2.18} \]
where \(\tilde{C}_n \) is the positive constant defined in the formula. We claim that
\[|v_\varepsilon''(t) - v_o''(t)| \leq 2C_n \tilde{C}_n \varepsilon^2 \quad \text{for } t \in [0, \rho], \tag{2.19} \]
where \(\rho := 1/(2C_n \tilde{C}_n) \). Here \(C_n \) and \(C_n' \) are the positive constants in (2.14) and (2.18), respectively. Without loss of generality, we may assume that \(\rho < C_n \). By (2.14) and (2.18), the bound holds on a neighborhood of 0. Suppose that it holds on \([0, \sigma]\) for some positive number \(\sigma \) less than \(\rho \). As \(v_\varepsilon'(0) = v_o'(0) = 0 \), we have
\[|v_\varepsilon'(t) - v_o'(t)| \leq 2C_n \tilde{C}_n \varepsilon^2 \sigma \leq \varepsilon^2 \quad \text{for } t \in [0, \sigma]. \]
Hence
\[|v_\varepsilon(t) - v_o(t)| \leq (C_n + \sigma) \varepsilon^2 < 2C_n \varepsilon^2 \quad \text{for } t \in [0, \sigma]. \tag{2.20} \]
By (2.18) we have
\[|v_\varepsilon''(\sigma) - v_o''(\sigma)| < 2C_n \tilde{C}_n \varepsilon^2. \]
Using an connectedness argument, we obtain (2.19) as claimed. A similar bound holds in \([-\rho, 0]\). Upon integration we obtain the following lemma.
LEMMA 2.21. – Let $v_ε$ and v_o be the solutions of Eq. (2.3) discussed above. There exists positive constants $ρ$ and $C_ο$ which depend on n but not on (small enough positive) $ε$, such that

$$|v_ε(t) - v_o(t)| \leq C_οε^2, \quad |v_ε'(t) - v_o'(t)| \leq C_οε^2 \quad \text{and} \quad v_ε(t) \geq 1/2$$

for $t \in [-ρ, ρ]$ and $ε > 0$ close to 0.

3. Gluing solutions

We follow the notations used in Section 2 and consider (2.1) and Eq. (2.2). Slow decay for a positive smooth solution u of equation (1.1) corresponds to $v(s, θ) \leq C$ for $s \gg 1, θ \in S^{m-1}$ and a positive constant C. Moreover, u is an (global) exotic solution if and only if there exists a sequence $\{(s_i, θ_i)\} \subset \mathbb{R} \times S^{m-1}$ such that $\lim_{s_i \to \infty} s_i = \infty$ and $\lim_{s_i \to \infty} v(s_i, θ_i) = 0$, and, when the variable t is changed into r via $t = \ln r$, u is smooth across the origin. Let $φ_1$ be a smooth function on \mathbb{R} such that $0 \leq φ_1 \leq 1$ in \mathbb{R} and

$$φ_1(t) = \begin{cases} 1 & \text{for } t \leq -ρ, \\ 0 & \text{for } t \geq ρ. \end{cases}$$

We also require that

$$|φ_1'(t)| \leq 2/ρ \quad \text{and} \quad |φ_1''(t)| \leq 2/ρ^2 \quad \text{for } t \in (-ρ, ρ).$$

Let $φ_2 = 1 - φ_1$ in \mathbb{R}. Define

$$v = φ_1 v_o + φ_2 v_ε \quad \text{in } \mathbb{R},$$

where $ε > 0$ is close to zero. It follows that

$$-v''(t) + \frac{(n-2)^2}{4} v(t) = \frac{n(n-2)}{4} [φ_1 v_o^{\frac{n+2}{n-2}}(t) + φ_2 v_ε^{\frac{n+2}{n-2}}(t)] + φ_1'(t) [v_o'(t) - v_o'(t)]$$

for $t \in \mathbb{R}$. We also have

$$φ_1(t)v_o^{\frac{n+2}{n-2}}(t) + φ_2(t)v_ε^{\frac{n+2}{n-2}}(t)$$

$$= φ_1(t)v_o^{\frac{n+2}{n-2}}(t) + φ_2(t)v_ε^{\frac{n+2}{n-2}}(t) + φ_2(t) [v_ε^{\frac{n+2}{n-2}}(t) - v_o^{\frac{n+2}{n-2}}(t)]$$

$$= φ_1(t)v_o(t) + φ_2(t)v_ε(t) [v_ε^{\frac{n+2}{n-2}}(t) - v_o^{\frac{n+2}{n-2}}(t)]$$

$$= \left\{ v(t) + φ_2(t) [v_o(t) - v_ε(t)] \right\}^{\frac{n+2}{n-2}} + φ_2(t) [v_ε^{\frac{n+2}{n-2}}(t) - v_o^{\frac{n+2}{n-2}}(t)]$$

for $t \in [-ρ, ρ]$. We obtain

$$\left| -v''(t) + \frac{(n-2)^2}{4} v(t) \right| \left[\frac{n(n-2)}{4} v^{\frac{n+2}{n-2}}(t) \right]^{-1} - 1$$
Denote the period of \(v \) by \(\varepsilon_i \).

By Lemma 2.21, (2.16), (2.17), (3.1) and (3.4) that \(v \) satisfies the equation

\[
\frac{d^2}{dt^2} v - \frac{(n-2)^2}{4} v + \frac{n(n-2)}{4} K \frac{v^2}{v^{n-2}} = 0 \quad \text{in } \mathbb{R},
\]

where \(K \) is a smooth function on \(\mathbb{R} \) such that

\[
|K(t) - 1| = \left| \frac{d^2}{dt^2} v - \frac{(n-2)^2}{4} v + \frac{n(n-2)}{4} v^{n-2} \right|^{1/2} \leq C_1 \varepsilon^2.
\]

for \(t \in [-\rho, \rho] \), and \(K \equiv 1 \) in \(\mathbb{R} \setminus [-\rho, \rho] \). Here \(C_1 \) is a positive constant that depends on \(n \) only, so far as \(\varepsilon > 0 \) is close to zero.

Let \(\{ \varepsilon_i \} \) be a decreasing sequence of small positive numbers such that \(\lim_{i \to \infty} \varepsilon_i = 0 \).

Denote the period of \(v_{\varepsilon_i} \) by \(T_{\varepsilon_i} \) for \(i = 1, 2, \ldots \).

With \(\varepsilon_1 \) small enough, we may assume that \(T_{\varepsilon_i} \gg \rho \).

We construct a positive smooth function by first gluing \(v_o \) and \(v_{\varepsilon_i} \) on \([-\rho, \rho]\) as described above and call the resulting positive smooth function \(v_1 \). Note that \(v_1 = v_{\varepsilon_1} \) in \(\mathbb{R} \setminus (0, \rho) \). As \(v_{\varepsilon_i}(t + T_{\varepsilon_i}) = v_{\varepsilon_i}(t) \) for \(t \in \mathbb{R} \) and \(v_{\varepsilon_i} \) and \(v_1 \) are close to \(v_o \) near \([-\rho, \rho] \), we let

\[
v_{\varepsilon_2}(t) = v_{\varepsilon_2}(t - T_{\varepsilon_1}) \quad \text{for } t \in \mathbb{R},
\]

and glue \(v_{\varepsilon_2} \) and \(v_1 \) (that is, \(v_{\varepsilon_2} \)) on \([T_{\varepsilon_1} - \rho, T_{\varepsilon_1} + \rho] \) in a process similar to the one described above. Call the resulting function \(v_2 \). We continue to glue the solutions on the intervals

\[
[T_{\varepsilon_1} + T_{\varepsilon_2} - \rho, T_{\varepsilon_1} + T_{\varepsilon_2} + \rho], \ldots, \left[\sum_{k=1}^i T_{\varepsilon_k} - \rho, \sum_{k=1}^i T_{\varepsilon_k} + \rho \right], \ldots
\]

by \(v_o, v_{\varepsilon_1}, v_{\varepsilon_2}, \ldots \), respectively, after shifting appropriately. In particular, in the \((i + 1)\)th step, let

\[
v_{\varepsilon_{i+1}}(t) = v_{\varepsilon_{i+1}} \left(t - \sum_{k=1}^{i+1} T_{\varepsilon_k} \right) \quad \text{and} \quad v_{\varepsilon_i}(t) = v_{\varepsilon_i} \left(t - \sum_{k=1}^i T_{\varepsilon_k} \right) \quad \text{for } t \in \mathbb{R},
\]

and glue \(v_{\varepsilon_{i+1}} \) with \(v_{\varepsilon_i} \) on the interval \([\sum_{k=1}^i T_{\varepsilon_k} - \rho, \sum_{k=1}^i T_{\varepsilon_k} + \rho] \). Finally we obtain a positive smooth function \(v \) on \(\mathbb{R} \) which satisfies the equation

\[
v'' - \frac{(n-2)^2}{4} v + \frac{n(n-2)}{4} K v^{n-2} = 0 \quad \text{in } \mathbb{R}
\]
for some smooth function K such that

$$|K(t) - 1| \leq C_2 \varepsilon_1^2 \quad \text{for } t \in \mathbb{R},$$

where C_2 is a positive constant depending on n only. We may choose $\varepsilon_1 > 0$ as small as we like. We also have

$$v\left(\sum_{k=1}^{i} T_{\varepsilon_k} - T_{\varepsilon_i}/2\right) = v_i(T_{\varepsilon_i}/2) = \varepsilon_i \to 0 \quad \text{and}$$

$$v\left(\sum_{k=1}^{i} T_{\varepsilon_k}\right) \to 1^- \quad \text{as } i \to \infty.$$ \hfill (3.9)

As $v(t) = v_0(t)$ for $t \leq -\rho$, by (2.6) and (2.7), the corresponding solution u related to v by (2.1) is smooth across the origin. Thus v corresponds to an exotic solution u of Eq. (1.1) through (2.1).

Given a positive function $\varphi(r)$ defined for $r \gg 1$ which satisfies (1.12), let $\psi(t) = \varphi(e^t)$. It follows that ψ is defined for $t \gg 1$ and

$$e^{(n-2)t/2}\psi(t) \quad \text{(3.10)}$$

is non-decreasing for $t \gg 1$ and unbounded from above. Let

$$\sigma(t) = \ln\left[e^{(n-2)t/2}\psi(t)\right] \quad \text{for } t \gg 1.$$ \hfill (3.11)

We have $\lim_{t \to \infty} \sigma(t) = \infty$. Choose a decreasing sequence of numbers $\{\varepsilon_i\}$ such that ε_1 is small enough and the corresponding periods T_{ε_i} of v_{ε_i} satisfy the relation

$$\sigma(T_{\varepsilon_i}) \geq \frac{n - 2}{2} \sum_{k=1}^{i-1} T_{\varepsilon_k} \quad \text{for } i = 2, 3, \ldots.$$ \hfill (3.12)

By gluing the solutions $v_0, v_{\varepsilon_i}, i = 1, 2, \ldots$, as described above, we obtain a positive smooth function v which satisfies Eq. (3.7) for a smooth function K. Suppose that

$$t \notin [-\rho, \rho] \cup [T_{\varepsilon_1} - \rho, T_{\varepsilon_1} + \rho] \cup \cdots \cup \left[\sum_{k=1}^{i} T_{\varepsilon_k} - \rho, \sum_{k=1}^{i} T_{\varepsilon_k} + \rho\right] \cup \cdots,$$

then $K(t) = 1$. Suppose that

$$t \in \left[\sum_{k=1}^{i} T_{\varepsilon_k} - \rho, \sum_{k=1}^{i} T_{\varepsilon_k} + \rho\right] \quad \text{for some } i \in \mathbb{N}.$$

According to the construction above and Lemma 2.10, we have

$$|K(t) - 1| \leq C_3 \varepsilon_i^2 \leq C_4 \exp\left(-\frac{n - 2}{2} T_{\varepsilon_i}\right)$$
\[C_3 \exp \left(-\frac{n-2}{2} T_{\varepsilon} \right) \leq C_3 \exp \left(-\frac{n-2}{2} \sum_{k=1}^{i} T_{\varepsilon} \right) \leq C_4 \exp \left(\frac{n-2}{2} \right) \psi(t), \]

where \(C_3 \) and \(C_4 \) are positive constants that depend on \(n \) only. Hence we obtain \(|K(t) - 1| \leq C_5 \psi(t) \) for \(t \gg 1 \) and for a positive constant \(C_5 \). The corresponding solution \(u \) is an exotic solution of Eq. (1.1) which satisfies (1.13). We note that \(K(t) \) in this case is not monotonic for large \(t \).

REFERENCES

