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ABSTRACT. – We prove the existence of positive regular solutions of the Cauchy problem for
the nonlinear heat equationut =�u+ |u|αu, with initial valueµV , for all µ> 1 close enough
to 1, whereV is the singular stationary solution inRN . This result is obtained whenN > 2 and

2
N−2 < α < α

∗, whereα∗ is the critical power for the intersection properties ofV with regular
stationary solutions. Moreover, forµ as above, there exist at least two positive regular solutions
with initial valueµV . These results are optimal since it is known that no such solution exists if
α � α∗.
 2003 Éditions scientifiques et médicales Elsevier SAS

MSC:35K15; 35K55

RÉSUMÉ. – Nous montrons l’existence de solutions positives régulières du problème de
Cauchy pour l’équation de la chaleur non linéaireut =�u+|u|αu, avec donnée initialeµV , pour
toutµ > 1 assez proche de 1, oùV est la solution stationnaire singulière dansR

N . Ce résultat
est obtenu pourN > 2 et 2

N−2 < α < α
∗, où α∗ est la puissance critique pour les propriétés

d’intersection deV avec les solutions stationnaires régulières. De plus, pourµ comme ci-dessus,
il existe au moins deux solutions positives régulières avec donnée initialeµV . Ces résultats sont
optimaux, car on savait déjà que de telles solutions ne peuvent exister siα � α∗.
 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

In this paper we study solutions of the nonlinear heat equation

ut =�u+ |u|αu, t > 0, x ∈ R
N, (1.1)
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which have singular initial values. Hereu= u(t, x) ∈ R, α > 0 and we sometimes write
u(t) for the spatial functionu(t, ·). If N > 2 andα > 2

N−2, then (1.1) has a positive
singular stationary solutionV (x) given by

V (x)= β1/α|x|−2/α, (1.2)

where

β = 2

α

(
N − 2− 2

α

)
. (1.3)

V is a stationary solution of (1.1) in the sense of tempered distributions: each term
of (1.1) with u(t, x) = V (x) is in L1(RN) + L∞(RN). Even thoughV is a stationary
solution, it turns out, for certain values ofα, thatV is not the minimal positive solution
of (1.1) whose initial value isV . Indeed, ifN > 10, let

α∗ = 4

N − 4− 2
√
N − 1

. (1.4)

(We takeα∗ = ∞ if N � 10.) This number first appeared in [5] in the study of stationary
solutions of (1.1). Galaktionov and Vazquez [3] have proved that if2

N−2 < α < α
∗, then

there exists aC∞, positive solutionu(t, x) of (1.1), for t > 0, such thatu(t)→ V in S ′,
indeed inL1(RN)+L∞(RN), ast → 0+.

The purpose of this paper is to improve the result of Galaktionov and Vazquez by
showing that initial valuesµV are allowed for someµ> 1.

THEOREM 1.1. –LetN > 2 and 2
N−2 < α < α

∗. There existsε > 0 such that for all
µ ∈ (1,1+ ε), there is aC∞ positive solutionu of (1.1)such that

u(t)→ µV in L1(
R
N
)+L∞(

R
N
)
, as t → 0+ .

Moreover,u ∈ C(0,∞;Lq(RN)) for all q > Nα
2 , andlim t→∞ u(t)= 0 in Lq(RN) for all

q > Nα
2 .

This result calls for several remarks. First of all, the powerα∗ is optimal in
Theorem 1.1. By Theorem 10.4 in [3], no nonnegative solution of (1.1) with intial value
aboveV exists if α � α∗. On the other hand, Theorem 10.4 in [3] also states that if

2
N−2 < α < α

∗, then there is no solution of (1.1) with initial value aboveV and which
remains aboveV for t > 0. Theorem 1.1 shows that this cannot be improved. Also, it
should be pointed out that ifµ is sufficiently large, then there is no local nonnegative
solution of (1.1) with initial valueµV . See Theorem 1 in [9].

For the equation with|u|αu replaced by eu, Vazquez [7] has shown that there exists
a regular solution whose initial value is equal to the singular stationary solutionplus a
small positive constant.

Finally, the situation for singular stationary solutions contrasts markedly with that for
initial values which are multiples ofregularstationary solutions. Indeed, ifφ is a positive
regular stationary solution of (1.1) either onR

N or on a bounded domain (with Dirichlet
boundary conditions), then the solution of (1.1) with initial valueµφ, for anyµ > 1 is
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nondecreasing in time, and therefore exhibits one of the following three behaviors: finite
time blow up, infinite time blow up, or convergence to another positive regular stationary
solution.

We prove Theorem 1.1 by proving the existence of a positive, radially symmetric
(forward) self-similar solution of (1.1) with the necessary properties. Such a solution is
given by

u(t, x)= t−1/αf

(
r√
t

)
, (1.5)

wherer = |x|. The functionf : [0,∞)→ R is called the (spatial) profile of the solution
u; indeedu(1, x)= f (|x|). As is well-known, the functionu given by (1.5) is a solution
of (1.1) if and only iff is a solution of the profile equation:

f ′′(r)+
(
N − 1

r
+ r

2

)
f ′(r)+ f (r)

α
+ ∣∣f (r)∣∣αf (r)= 0. (1.6)

The initial value problem associated with (1.6) was first studied in [4]. In particular
(Theorem 5′ in [4]), if fλ is the solution of (1.6) such thatfλ(0)= λ andf ′

λ(0)= 0, then

L(λ)≡ lim
r→∞ r

2/αfλ(r) (1.7)

exists and is a locally Lipschitz function ofλ ∈ R. If u(t, x) is the resulting solution of
(1.1) given by (1.5) withf = fλ, then it is easy to see that|u(t, x)| �M|x|−2/α (for some
M > 0) andu(t, x)→ L(λ)|x|−2/α, uniformly on any subset ofRN bounded away from
0, and sou(t)→ L(λ)|x|−2/α in L1(RN)+L∞(RN), ast → 0+. It is also easy to check
thatu(t) satisfies the integral equation associated to(1.1) with u(0)=L(λ)|x|−2/α .

The point of [4] was to show that if2
N
< α < 4

N−2, thenL(λ0)= 0 is attained for some
λ0> 0 such thatfλ0(r) > 0,∀r > 0. Moreover, the analysis in [4] shows (for these values
of α) that there exist infinitely many pairsλ1, λ2 such that 0< λ1 < λ2 < λ0,L(λ1) =
L(λ2), and bothfλ1 andfλ2 are everywhere positive. Indeed, theλ0 shown to exist in the
proof of Proposition 3.7 in [4] has the property that if 0< λ< λ0, thenfλ(r) > 0,∀r > 0.
Thus,L is a nonnegative, continuous function on[0, λ0] with L(0)= 0 andL(λ0)= 0;
and soL attains every value in the interval(0,maxλ∈[0,λ0]L(λ)) at least twice. In other
words, for these values ofL(λ), there are at least two positive, regular, self-similar
solutions of (1.1) with the same singular initial valueL(λ1)|x|−2/α = L(λ2)|x|−2/α .
Furthermore, by Proposition 3.6 in [4],L(λ) > 0 if λ > 0 is sufficiently small, and so
maxλ∈[0,λ0]L(λ) > 0.

The point of the present paper is to show forα in the range specified in Theorem 1,
that L(λ′) = µβ1/α is attained in (1.7) for someλ′ > 0 such thatfλ′(r) > 0, ∀r > 0
and for some value ofµ > 1. In the subcritical case,α < 4

N−2, Theorem 1.1 is a direct
consequence of Theorem 4.4 and Proposition 3.5 proved in the main body of this paper.
Moreover, Dohmen and Hirose [2, Theorem 1.2] have shown that if2

N−2 � α < 4
N−2

andλ > λ0, thenfλ assumes negative values, and so it must be thatλ′ ∈ (0, λ0). (In
fact, Dohmen and Hirose [2] show the uniqueness of theλ0 proved to exist in [4].
See Weissler [8] for the same result in the caseN = 1 and Yanagida [10] in the case
α � 2

N−2.) Since as just noted, if2
N
< α < 4

N−2, thenL attains every value in the
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interval (0,maxλ∈[0,λ0]L(λ)) at least twice, Theorem 1.1 has the following immediate,
but unexpected, consequence.

THEOREM 1.2. –If N > 2 and 2
N−2 < α <

4
N−2 , then there existsε > 0 such that for

all µ ∈ (0,1+ ε), there are at leasttwo differentC∞ positive solutionsu of (1.1) such
that

u(t)→ µV in L1(
R
N
)+L∞(

R
N
)
, as t → 0+,

u ∈ C(0,∞;Lq(RN)) for all q > Nα
2 , and lim t→∞ u(t)= 0 in Lq(RN) for all q > Nα

2 .

This result is all the more surprising since an existenceand uniquenessresult
for solutions of the type described in Theorem 1.2 is already known. Specifically,
Theorem 6.1 in [1], says that ifα > 2

N
(with no upper limit) and ifµ> 0 andM > 0 are

sufficiently small (and verify a certain nonlinear relationship), then there exists a unique
(necessarily self-similar) solutionu of the integral equation corresponding to (1.1) with
initial valueµ|x|−2/α such that

sup
t>0
t

1
α− N

2q
∥∥u(t)∥∥

Lq
�M, (1.8)

where

1<
q

α + 1
<
Nα

2
< q.

It is clear that thesupremumin (1.8) is finite for the self-similar solutions which provide
the non-unique solutions in Theorem 1.2. Nonetheless, for one of the two solutions, this
supremummust stay bounded away from 0, even asµ→ 0.

The situation for critical and supercriticalα is more intricate. In the supercritical case,
we will show thatL(λ), which is known to be positive forλ > 0, oscillates aroundβ1/α

infinitely often asλ→ ∞. In the critical case,L(λ) = β1/α for at least two values of
λ > 0. More precisely, we have the following results, which are proved in Section 4
below.

THEOREM 1.3. –Let N > 2 and α = 4
N−2 . There existsε > 0 such that for all

µ ∈ [1,1 + ε), there are at leasttwo differentC∞ positive solutionsu of (1.1) such
that

u(t)→ µV in L1(
R
N
)+L∞(

R
N
)
, ast → 0+,

u ∈ C(0,∞;Lq(RN)) for all q > Nα
2 , and lim t→∞ u(t)= 0 in Lq(RN) for all q > Nα

2 .

THEOREM 1.4. –LetN > 2 and 4
N−2 < α < α

∗. For every positive integerm, there
existsε = ε(m) > 0 such that for allµ ∈ (1 − ε(m),1 + ε(m)), there are at leastm
differentC∞ positive solutionsu of (1.1)such that

u(t)→ µV in L1(
R
N
)+L∞(

R
N
)
, as t → 0+,

u ∈ C(0,∞;Lq(RN)) for all q > Nα
2 , and lim t→∞ u(t)= 0 in Lq(RN) for all q > Nα

2 .
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Our basic approach to studying the attainable values ofL(λ) is to transform (1.6)
so that the behavior asr → ∞ is translated into the behavior near 0. Motivated by the
precise asymptotic behavior of solutions to (1.6) as given in Theorem 1 in [6], we set

f (r)= r−2/αw
(
r−2)= s1/αw(s), w(s)= s−1/αf

(
1√
s

)
= r2/αf (r), (1.9)

wheres = r−2. A straightforward calculation shows thatf : (0,∞)→ R satisfies (1.6)
if and only ifw : (0,∞)→ R satisfies the following differential equation:

4s2w′′(s)+ 4
(

2

α
− N − 4

2

)
sw′(s)−w′(s)

− 2

α

(
N − 2− 2

α

)
w(s)+ ∣∣w(s)∣∣αw(s)= 0. (1.10)

We refer to (1.10) as theinvertedprofile equation, to reflect the fact that behavior at 0
and∞ are interchanged in passing fromf to w. If u is a self-similar solution of (1.1)
with profilef , and iff andw are related by (1.9), then

u(t, x)= r−2/αw

(
t

r2

)
. (1.11)

This shows thatw is in fact thetime profileof the self-similar solution, i.e.u(t,1) =
w(t), where by abuse of notation, we writeu(t, r) instead ofu(t, x) with |x| = r .

It is important to note that iff andw are related by (1.9), and ifw is continuous
at s = 0, then limr→∞ r2/αf (r) = w(0). Thus, studying solutionsw of (1.10) having
a specified initial valuew(0) is equivalent to studying solutionsf of the original
profile equation (1.6) with limr→∞ r2/αf (r) = w(0). If, in addition, f is the profile
of a self-similar solutionu of (1.1), then the initial value of this solutionu is given by
u(0, x) = w(0)|x|−2/α. Hence the study of solutions to (1.10) having a specified initial
valuew(0) is related to the study of solutions to (1.1) with a specified singular initial
valueu(0, x)=w(0)|x|−2/α.

Throughout this paper,β, α∗ andV are as in (1.3), (1.4) and (1.2) above. Moreover,
we use the following notation:

γ = 2

α
− N − 4

2
.

For future reference, we note that:

β > 0 ⇔ α >
2

N − 2
;

γ > 1 ⇔ α <
4

N − 2
.

As is common practice, conditions such asα > 2
N−2 are meant to imply thatN > 2, and

conditions such asα < 4
N−2 are meant to be vacuous ifN = 1 or 2. Also,g :R → R, and

its primitiveG :R → R, are the functions given by:
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g(x)= −βx + |x|αx, G(x)= −βx
2

2
+ |x|α+2

α+ 2
.

We define

Gmin = min
x∈R

G(x).

In the caseα > 2
N−2, Eq. (1.10) has a unique nontrivial positive constant solution, i.e.

w(s)≡ β1/α, which corresponds to the singular stationary solutionV of (1.1).
With the above notation, the inverted profile equation (1.10) takes the following form:

4s2w′′(s)+ 4γ sw′(s)−w′(s)+ g(w(s))= 0. (1.12)

Given a solutionw of (1.12), we define its “energy” by

H(s)=Hw,w′(s)= 2s2w′(s)2 +G(w(s)). (1.13)

It is straightforward to check that

H ′(s)=w′(s)2
[
1− 4(γ − 1)s

]=w′(s)2
[
1− 2s

(
4

α
− (N − 2)

)]
. (1.14)

This last formula depends only on the fact thatG′ = g and Eq. (1.12), and not on the
specific form of the functionsg andG.

The rest of this paper is organized as follows. In the next section, we prove local
existence and uniqueness of solutions to the inverted profile equation (1.12) on an
interval [0, T ]. Because of the strong singularity ats = 0, one cannot specify bothw(0)
andw′(0). See Proposition 2.4 and Theorem 2.5 below. In the following section, we
show that these solutions can be continued for alls > 0 and investigate their asymptotic
behavior ass → ∞. In particular, Proposition 3.5 states that ifw is a solution of (1.12)
such that lims→∞w(s) = 0, then the resulting self-similar solution of (1.1) obtained
via (1.9) and (1.5) is regular. Finally, in the last section, we prove the main results
of the paper. In the subcritical case,α < 4

N−2, we use a shooting argument based on
the solutionsw of (1.12). See Theorem 4.4. In the supercritical and critical cases, we
use properties of solutions to (1.12) nears = 0 (Proposition 2.7) to obtain detailed
information about the intersections of the solutionsfλ of (1.6) with the singular solution
V and the values attained byL(λ). See Lemmas 4.5–4.8.

2. Local existence and uniqueness theory for the inverted profile equation

The purpose of this section is to prove an existence and uniqueness theorem for
solutions of (1.12) on an interval[0, T ]. To accomplish this, we need first to re-write
(1.12) in various equivalent forms, and then transform it into an integral equation which
has solutions continuous ats = 0. To this end, we consider the three following equations:

d

ds

(
4sγ e

1
4s w′(s)

)= −sγ−2e
1
4s g
(
w(s)

); (2.1)



P. SOUPLET, F.B. WEISSLER / Ann. I. H. Poincaré – AN 20 (2003) 213–235 219

w′(s)= s−γ e− 1
4s T γe

1
4T w′(T )+ 1

4
s−γ e− 1

4s

T∫
s

σ γ−2e
1

4σ g
(
w(σ)

)
dσ ; (2.2)

w(t)=w(t0)+
(
T γe

1
4T

t∫
t0

s−γ e− 1
4s ds

)
w′(T )

+ 1

4

t∫
t0

s−γ e− 1
4s

T∫
s

σ γ−2e
1

4σ g
(
w(σ)

)
dσ ds. (2.3)

It is simple to verify that (2.1) is the same as (1.12). Moreover,w is a solution of
(2.1) on some intervalJ ⊂ (0,∞) if and only ifw is a solution of (2.2) onJ , as long as
T ∈ J . In a like manner, ift0 is also inJ , thenw is a solution of (2.3) onJ if and only
if it is a solution of (2.2).

In order to study solutions which are continuous on [0,T], we need the following
elementary results.

LEMMA 2.1. –

lim
s→0+

1

4
s−γ e− 1

4s

T∫
s

σ γ−2e
1

4σ dσ = 1.

COROLLARY 2.2. –If h : [0, T ] → R is a continuous function, then

lim
s→0+

1

4
s−γ e− 1

4s

T∫
s

σ γ−2e
1

4σ h(σ )dσ = h(0).

LEMMA 2.3. –

lim
T→0+

1

4
T γ−2e

1
4T

T∫
0

s−γ e− 1
4s ds = 1.

Lemmas 2.1 and 2.3 are proved with l’Hôpital’s rule. Corollary 2.2 is a straightforward
consequence of Lemma 2.1.

PROPOSITION 2.4. –If w ∈ C2((0, T ]) is a solution of(2.1), thenw ∈ C1([0, T ]).
Moreover,

w′(0)= g(w(0)), (2.4)

andw is a solution of the following integral equation on[0, T ]:

w(t)=w(0)+
(
T γe

1
4T

t∫
0

s−γ e− 1
4s ds

)
w′(T )

+ 1

4

t∫
0

s−γ e− 1
4s

T∫
s

σ γ−2e
1

4σ g
(
w(σ)

)
dσ ds. (2.5)
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Furthermore, ifw ∈ C([0, T ]) is a solution of

w(t)=w(0)+
(
T γe

1
4T

t∫
0

s−γ e− 1
4s ds

)
ν

+ 1

4

t∫
0

s−γ e− 1
4s

T∫
s

σ γ−2e
1

4σ g
(
w(σ)

)
dσ ds,

thenw ∈ C1((0, T ]), with w′(T ) = ν, and is also a solution of(2.2) (and therefore in
C2((0, T ]) and a solution of(2.1)).

Proof. –Without loss of generality, we may chooseT > 0 small enough so that
H ′(s) � 0 on (0, T ]. Indeed, this is always true ifα � 4

N−2. Otherwise, it suffices to
require thatT < 1

4(γ−1) . It follows that for all s ∈ (0, T ],G(w(s)) � H(s)� H(T ). In
particular, |w(s)| is bounded on(0, T ]. The integral equation (2.3), witht0 = T for
example, along with Lemma 2.1, now shows that limt→0+w(t) exists. Lettingt0 → 0+
in (2.3), we obtain (2.5).

Next, Eq. (2.2) and Corollary 2.2 imply that lims→0+w′(s) exists and equalsg(w(0)).
Thus,w extends to aC1 function on[0, T ], verifying (2.4). The last statement in the
proposition is obvious. ✷

In the above proposition, the continuity ofw at t = 0 corresponds to the existence of
limr→∞ r2/αf (r), wheref andw are related by (1.9), which is well known. The new
aspect of the above result is the differentiability ofw at t = 0 and the fact thatw′(0) is
determined byw(0). This means in particular, that in proving local existence of solutions
to the inverted profile equation (2.1), we cannot hope to specify bothw(0) andw′(0).

Givenµ,ν ∈ R andT > 0, we define a mappingFµ,ν :C([0, T ])→ C([0, T ]) by

Fµ,νw(t)=µ+
(
T γe

1
4T

t∫
0

s−γ e− 1
4s ds

)
ν

+ 1

4

t∫
0

s−γ e− 1
4s

T∫
s

σ γ−2e
1

4σ g
(
w(σ)

)
dσ ds. (2.6)

It is clear from what has come before thatFµ,ν does indeed mapC([0, T ]) into itself,
and that a fixed point ofFµ,ν is a solution of (2.5), withw(0)= µ andw′(T )= ν, and
thus a solution of (2.1).

We denote byCM([0, T ]) the set of functionsw ∈C([0, T ]) such that supt∈[0,T ] |w(t)|
�M .

THEOREM 2.5. –Let R > 0,M > 0 be such that5R < M . There existsT0 =
T0(R,M) > 0 such that if

(i) 0< T � T0,
(ii) |µ| � R,
(iii) T 2|ν| �R,

then Fµ,ν is strict contraction onCM([0, T ]), and so has a unique fixed point in
CM([0, T ]), which is a solution of(2.5)withw(0)= µ andw′(T )= ν.
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Furthermore, there existsC = C(R,M,T0) such that ifµ1, ν1 and µ2, ν2 are two
pairs of real numbers satisfying the above conditions for the sameT ∈ (0, T0], andw1

andw2 the two corresponding fixed points, then

sup
t∈[0,T ]

∣∣w1(t)−w2(t)
∣∣+ sup

t∈[0,T ]

∣∣w′
1(t)−w′

2(t)
∣∣

� C
(|µ1 −µ2| + |ν1 − ν2|)= C(∣∣w1(0)−w2(0)

∣∣+ ∣∣w′
1(T )−w′

2(T )
∣∣). (2.7)

Proof. –ForT > 0, set

K1(T )= T γ−2e
1

4T

T∫
0

s−γ e− 1
4s ds,

K2(T )= sup
s∈(0,T ]

1

4
s−γ e− 1

4s

T∫
s

σ γ−2e
1

4σ dσ.

By Lemmas 2.1 and 2.3 it is clear that bothK1 andK2 can be considered as continuous
functions on[0,∞), with K1(0) = 4. (Indeed,K2(T ) is a nondecreasing function
of T > 0, and so has a limit asT → 0+.) Let µ1, ν1,µ2, ν2 ∈ R. It follows that if
w1,w2 ∈ CM([0, T ]) andt ∈ [0, T ], then:∣∣Fµ1,ν1w1(t)−Fµ2,ν2w2(t)

∣∣
� |µ1 −µ2| + T 2K1(T )|ν1 − ν2| + TK2(T ) sup

t∈[0,T ]

∣∣g(w1(t)
)− g(w2(t)

)∣∣
� |µ1 −µ2| + T 2K1(T )|ν1 − ν2| + TK2(T )D sup

t∈[0,T ]

∣∣w1(t)−w2(t)
∣∣, (2.8)

whereD = sup|x|�M |g′(x)|.
We first apply (2.8) in the case whereµ2 = 0, ν2 = 0,w2(t)≡ 0, and for simplicity of

notation, we suppress the subscripts inµ1, ν1 andw1. Suppose further that conditions
(ii) and (iii) in the statement hold. It follows from (2.8) that

∣∣Fµ,νw(t)∣∣� R+K1(T )R + TK2(T )DM.

In particular, if

R

M

(
1+K1(T )

)+ TK2(T )D � 1, (2.9)

then Fµ,ν mapsCM([0, T ]) into itself. Next we apply (2.8) withµ1 = µ2 = µ and
ν1 = ν2 = ν. This gives

∣∣Fµ,νw1(t)−Fµ,νw2(t)
∣∣� TK2(T )D sup

t∈[0,T ]

∣∣w1(t)−w2(t)
∣∣.

Condition (2.9) thereby further implies thatFµ,ν is a strict contraction onCM([0, T ]).
Finally, suppose (2.9) holds and thatµ1, ν1 andµ2, ν2 are two pairs of real numbers

satisfying conditions (ii) and (iii) in the statement. Ifw1 andw2 are the respective fixed
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points ofFµ1,ν1 andFµ2,ν2, then (2.8) implies that

sup
t∈[0,T ]

∣∣w1(t)−w2(t)
∣∣� |µ1 −µ2| + T 2K1(T )|ν1 − ν2|

1− TK2(T )D
.

To obtain a similar estimate for supt∈[0,T ] |w′
1(t)−w′

2(t)| we use (2.2):

sup
s∈[0,T ]

∣∣w′
1(s)−w′

2(s)
∣∣� ( sup

s∈[0,T ]
s−γ e− 1

4s T γe
1

4T
)∣∣w′

1(T )−w′
2(T )

∣∣
+K2(T )D sup

t∈[0,T ]

∣∣w1(t)−w2(t)
∣∣.

To conclude the proof, we just have to observe that there existsT0 > 0 such that all
the conditions can be verified uniformly forT ∈ (0, T0]. Indeed, sinceK1 andK2 are
continuous on[0,∞), andK1(0)= 4, it is clear from the assumption that 5R <M that
there existsT0 > 0 such that (2.9) holds for allT ∈ (0, T0]. Furthermore,T 2K1(T ) is
bounded on(0, T0], and since

lim
T→0+ sup

s∈[0,T ]
s−γ e− 1

4s T γe
1

4T = 1,

so is sups∈[0,T ] s−γ e− 1
4s T γe

1
4T . ✷

Remark2.6. – It is clear from the previous proof that if 5R <M1 <M2, then there
exists T0 = T0(R,M1,M2) such that the conclusions of Theorem 2.5 are valid for
all M ∈ [M1,M2] with the same value ofT0. Indeed, it suffices that (2.9) hold for
all T ∈ (0, T0] and allM ∈ [M1,M2], which is clearly possible. The advantage of
so choosingT0 is that Theorem 2.5 thereby gives existence of solutions to (2.5) in
CM1([0, T ]) anduniquenessof solutions in the larger spaceCM2([0, T ]). We will use
this fact in the proof of the following proposition, which plays a fundamental role in the
proofs of Theorems 1.3 and 1.4 in Section 4 below.

PROPOSITION 2.7. –Let R > 0,M > 0 (with 5R < M) and T0 = T0(R,M) > 0 be
as in the statement of Theorem2.5, and suppose(as per the previous remark) that
the same value ofT0 is valid in Theorem2.5 with M replaced byM + 1. Let µ,ν
and T ∈ (0, T0] satisfy conditions(i), (ii) , and (iii) in the statement of Theorem2.5.
Let w ∈ CM([0, T ]) ∩ C2((0, T ]) ∩ C1([0, T ]) be the resulting solution of(2.5) with
w(0)= µ andw′(T )= ν, and suppose thatw is not an identically constant solution. It
follows that:

(i) there is at most one value ofs ∈ [0, T ] such thatw′(s)= 0;
(ii) if N > 2, α > 2

N−2 andw(0) > 0, there is at most one value ofs ∈ [0, T ] such
thatw(s)= β1/α.

Proof. –(i) We consider first the case whereg(µ)= 0. By Proposition 2.4, we know
thatw′(0) = 0. Suppose that there existsT1 ∈ (0, T ] such thatw′(T1) = 0. We apply
the uniqueness part of Theorem 2.5 on the interval[0, T1] ⊂ [0, T ]. Sinceg(µ) = 0,
one solution of (2.5) withw(0) = µ andw′(T1) = 0 is the constant solution equal to
µ. It follows thatw must be that solution on[0, T1], and therefore by local uniqueness
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of solutions to (1.12) starting from any positive point,w is identically constant for all
s ∈ [0, T ].

We consider next the case whereg(µ) �= 0, and sow′(0) �= 0. Suppose there exist
0 < T1 < T2 � T such thatw′(T1) = w′(T2) = 0, and thatw′(s) �= 0,∀s ∈ (T1, T2).
For everyτ ∈ (0, T ], let wτ be the solution constructed by the fixed point argument
in Theorem 2.5 with|wτ(s)| �M on [0, τ ],wτ (0)= µ andw′

τ (τ )= 0. By uniqueness,
it follows thatwT1 =w on [0, T1] andwT2 =w on [0, T2]. It is clear thatwτ(τ) can never
be equal to a zero ofg. Indeed, that would meang(wτ (τ))= 0 andw′

τ (τ ) = 0, and so
by local uniqueness (starting ats = τ ) it would follow thatwτ(s)≡ wτ(τ),∀s ∈ [0, τ ].
Since (as we show below)wτ(τ) is a continuous function ofτ ∈ (0, T ], it follows that
g(wτ(τ)) must all be of the same sign, and in particularg(w(T1)) andg(w(T2)) have
the same sign. By (1.12), this implies thatw′′(T1) andw′′(T2) have the same sign; but
this is impossible sinceT1 andT2 are successive zeroes ofw′.

To prove thatwτ(τ) is a continuous function ofτ ∈ (0, T ], we fix τ0 ∈ (0, T ] and
suppose thatτ → τ0 in (0, T ]. We claim that ifτ is close enough toτ0, thenwτ0 can
be defined on[0, τ ] and obtained from Theorem 2.5 using the dataµ = wτ0(0) and
ν = w′

τ0
(τ ). This is clear in the caseτ < τ0. If τ > τ0 (and so necessarilyτ0 < T ),

we note that by local existence and uniqueness starting atτ0, wτ0 can be continued as
a solution on[0, τ0 + ε] for someε > 0. Moreover, ifε is small enough, it follows
that s2|w′

τ0
(s)| � R,∀s ∈ [τ0 − ε, τ0 + ε] and |wτ0(s)| � M + 1,∀s ∈ [0, τ0 + ε]. By

uniqueness of solutions inCM+1([0, τ ]), it follows that wτ0 is indeed the solution
obtained from Theorem 2.5 on[0, τ ] with the dataµ = wτ0(0) andν = w′

τ0
(τ ). Next,

we write

wτ(τ)−wτ0(τ0)=wτ(τ)−wτ0(τ )+wτ0(τ )−wτ0(τ0).
On the one hand, sincewτ0 is continuous, we know thatwτ0(τ )→ wτ0(τ0) asτ → τ0.
On the other hand, (2.7) applied towτ andwτ0 on the interval[0, τ ] implies that

∣∣wτ(τ)−wτ0(τ )∣∣� C∣∣w′
τ0
(τ )
∣∣,

whereC depends only onT0, not onτ . Sincew′
τ0
(τ )→ 0 asτ → τ0, we conclude that

wτ(τ)→wτ0(τ0).
(ii) Suppose first thatw(0)= β1/α . The first part of the proposition implies thatw is

either decreasing or increasing on(0, T ], and thus cannot equalβ1/α at anys ∈ (0, T ].
Suppose next that 0< w(0) < β1/α, and that there exist 0< s1 < s2 � T such that

w(s1) = w(s2) = β1/α . Sincew′(0) < 0 (by Proposition 2.4), it follows thatw′ must
have a zero on each of the intervals(0, s1) and(s1, s2), contradicting the first part of the
proposition. The casew(0) > β1/α is handled similarly. ✷

Remark2.8. – As used implicitly in the previous proof, a given solution of (2.5) can
be obtained from Theorem 2.5 on intervals[0, T ], with different values ofT . Obviously,
the dataν = w′(T ) will change asT changes, in order to produce the same solution.
Furthermore, it is clear from Proposition 2.4 that any solution of (1.12) on an interval
(0, T ′) can be obtained via Theorem 2.5. In other words, given any solution on(0, T ′),
the part of that solution on(0, T ), T � T0, can be obtained as a result of the contraction
mapping argument used in the proof of Theorem 2.5 for sufficiently smallT0. Indeed,
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given finitely many such solutions, one can choose the parametersR, M and T0 in
Theorem 2.5 so that all of these solutions will be produced in the same manner via
Theorem 2.5, for allT ∈ (0, T0] with appropriate choices ofµ andν.

This is also true for any collectionE of solutions of (1.12) defined on a common
interval (0, T1) for which Hw,w′(T ) ranges over a bounded set forw ∈ E , for some
fixed T ∈ (0, T1). To see this note first that by continuous dependence starting at any
s > 0, it follows thatH(T ′) ranges over a bounded set for any fixedT ′ ∈ (0, T1). Thus,
by choosingT ′ ∈ (0, T1) small enough (in the caseγ > 1), we may assume thatH is
nondecreasing on[0, T ′]. Suppose thatHw,w′(T ′) � D for all w ∈ E . It follows that
G(w(s)) � D and 2s4w′(s)2 � s2(D − Gmin), for all w ∈ E and all s ∈ [0, T ′]. It is
therefore clear that there existR,M andT0 (with 5R <M) such that for allw ∈ E ,∣∣w(0)∣∣�R,

T 2∣∣w′(T )
∣∣� R, ∀T ∈ [0, T0],∣∣w(s)∣∣�M, ∀s ∈ [0, T0].

By choosingT0 > 0 smaller if necessary, it is clear that all the solutionsw ∈ E can be
obtained from Theorem 2.5 for the same values ofR,M andT0, and on all subintervals
[0, T ] ⊂ [0, T0].

It is also worth noting that, with the exception of the second part of Proposition 2.7,
the results of this section are all valid ifγ is considered as an arbitrary but fixed real
number and ifg is replaced by an arbitrary locally Lipschitz functiong :R → R, with
primitiveG such thatG(0)= 0 and lim|x|→∞G(x)= ∞.

3. Global existence and asymptotic behvavior of the inverted profile

In this section we show that the solutionsw(s) of (2.5), and therefore (1.12), shown to
exist in Theorem 2.5 can be continued for alls > 0 and study their behvavior ass→ ∞.

PROPOSITION 3.1. –Let w : (0, T ) → R be a solution of(1.12). Thenw can be
(uniquely) continued as a solution of(1.12)on (0,∞).

(i) If α � 4
N−2 , then|w(s)| and |sw′(s)| are bounded on(0,∞).

(ii) If α > 4
N−2 , thenH(s) � C(1 + s2(1−γ )) = C(1 + sN−2−4/α), whereH is the

functional defined by(1.13). In particular, |sγ w′(s)| is bounded ass→ ∞.

Proof. –We need to obtain ana priori bound onw(s) andw′(s) on any finite interval.
We note that by (1.13) and (1.14),

H ′(s)=w′(s)2
[
1− 4(γ − 1)s

]= [
H(s)−G(s)]1− 4(γ − 1)s

2s2
.

We consider first the caseα � 4
N−2, and soγ � 1.

H ′(s)�
[
H(s)−G(s)] 1

2s2
�
[
H(s)−Gmin + 1

] 1

2s2
,
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and so
H ′(s)

H(s)−Gmin + 1
� 1

2s2
.

Integrating this last relationship gives ana priori bound onH(s) on any interval(ε,∞).
This completes the proof in the caseα � 4

N−2. (We have already observed thatH ′(s)� 0
for smalls > 0, and soH(s) is bounded on(0, ε).)

If α > 4
N−2, the above calculation is modified to give:

H ′(s)
H(s)−Gmin + 1

� 1+ 4(1− γ )s
2s2

.

When integrated, this shows thatH(s) stays bounded on any bounded interval, proving
thatw(s) can be continued for alls > 0, and gives the growth estimate claimed in the
statement. ✷

PROPOSITION 3.2. –If w : (0,∞)→ R is a solution of(1.12)such thatlims→∞w(s)
= l ∈ R exists, theng(l)= 0.

Proof. –The proof is based on Eq. (2.1), and we treat separately the three cases
α < 4

N−2, α = 4
N−2, andα > 4

N−2.
In the first case, whereγ > 1, if g(l) �= 0, then the right-hand side of (2.1) is not

integrable ass → ∞. We deduce thatsγ e
1
4s w′(s) behaves likeCsγ−1 as s → ∞ for

someC �= 0, and sow′(s) behaves likeCs−1. This contradicts the hypothesis that
lims→∞w(s)= l ∈ R exists.

In the second case, whereγ = 1, if g(l) �= 0, then the right-hand side of (2.1) is still
not integrable ass → ∞. We deduce thatse

1
4s w′(s) behaves likeC logs as s → ∞,

and sow′(s) behaves likeC logs
s

, which is likewise not integrable ass→ ∞. This again
contradicts the hypothesis that lims→∞w(s)= l ∈ R exists.

In the third case, sinceγ < 1, we see that the right-hand side of (2.1) is integrable
ass→ ∞. Thus, lims→∞ sγ e

1
4s w′(s)=m ∈ R exists. This limit must in fact be 0, since

otherwisew′(s) would decay asms−γ , and itself would not be integrable ass → ∞,
contradicting the hypothesis that lims→∞w(s)= l ∈ R exists. Integrating (2.1) froms to
∞, taking into accountm= 0, we obtain

4sγ e
1
4s w′(s)=

∞∫
s

tγ−2e
1
4t g
(
w(t)

)
dt.

If g(l) �= 0, then the above integral behaves likeCsγ−1 ass→ ∞, and sow′(s) behaves
like Cs−1. This last contradiction proves thatg(l)= 0. ✷

PROPOSITION 3.3. –Letw : (0,∞)→ R be a solution of(1.12), whereα �= 4
N−2 . If

α > 4
N−2 , suppose in addition thatw is bounded on(0,∞). (This is true automatically

if α < 4
N−2 by Proposition3.1.) It follows that lims→∞w(s) = l ∈ R exists and that

lims→∞H(s)=G(l).
In the caseα > 4

N−2 , it must be thatG(l) � G(w(0)); and if G(l) = Gmin, then
w(s)≡ l.



226 P. SOUPLET, F.B. WEISSLER / Ann. I. H. Poincaré – AN 20 (2003) 213–235

Proof. –We will prove this result by proving in fact that lims→∞G(w(s)) exists
(and is finite). It follows from (1.14) thatH(s) is a monotone function for larges,
nonincreasing ifα < 4

N−2, nondecreasing ifα � 4
N−2. Thus, the following limit exists:

lim
s→∞H(s)=H∞.

In the former case, sinceH is bounded below, we conclude immediately thatH∞ ∈ R.
The same is true in the latter case. Indeed, ifH∞ = ∞, sincew is bounded on(0,∞), it
would follow that lims→∞ s2w′(s)2 = ∞, contradicting the boundedness ofw on(0,∞).
ThusH∞ is finite. As a consequence, (1.13) implies thats2w′(s)2 is bounded on(0,∞),
and (1.14) implies thatsw′(s)2 is integrable ass→ ∞ (sinceα �= 4

N−2).
It is also clear that

lim inf
s→∞ s2w′(s)2 = 0,

since otherwisew could not be bounded. It follows that

lim sup
s→∞

G
(
w(s)

)=H∞.

We now wish to show that lim infs→∞G(w(s)) = H∞. Suppose not. To fix the
notation, letM = sups�0 |w(s)|, D = max|x|�M |g(x)|, andK = sups�0 s|w′(s)|. Since
lim inf s→∞G(w(s)) <H∞, there existsε > 0 and a sequence{sk}k=1,2,3,... such that

(i) sk+1 � skeε/4DK,
(ii) G(w(sk))�H∞ − ε,
(iii) H(s)�H∞ − ε

4 for all s � s1.
If s > sk , it follows that

∣∣G(w(s))−G(w(sk))∣∣�
s∫
sk

∣∣g(w(σ))∣∣∣∣w′(σ )
∣∣dσ �DK

s∫
sk

1

σ
dσ =DK log

s

sk
.

Thus, if s ∈ [sk, skeε/4DK], then

G
(
w(s)

)
�G

(
w(sk)

)+ ε

4
�H∞ − 3ε

4
,

and so

2s2w′(s)2 =H(s)−G(w(s))�H∞ − ε

4
−H∞ + 3ε

4
= ε

2
.

It follows that

sk+1∫
sk

sw′(s)2 ds �
skeε/4DK∫
sk

sw′(s)2 ds � ε

4

skeε/4DK∫
sk

1

s
ds = ε2

16DK
,

which contradicts the fact thatsw′(s)2 is integrable ass→ ∞.
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We have therefore proved that

lim
s→∞G

(
w(s)

)=H∞,

which implies that lims→∞w(s)= l exists (and is finite). Moreover, we note that

H∞ =G(l),

and

lim
s→∞ s

2w′(s)2 = 0.

To prove the last statement in the proposition, we recall thatH ′(s) � 0 for all
s > 0 when α � 4

N−2. ThusG(w(0)) = H(0) � H(s) � H∞ = G(l). Moreover, if
G(l) = Gmin, thenG(w(s)) � Gmin = G(l). Thus, 2s2w′(s)2 = H(s) − G(w(s)) �
G(l)−G(l)= 0. ✷

It is worth noting that the conclusion of the previous proposition is false ifα = 4
N−2.

Indeed,H is a nondecreasing function, which therefore has a limit lims→∞H(s)=H∞.
If lim s→∞w(s) = l ∈ R, thensw′(s) must also have a limit, which must be zero since
w is bounded. It follows thatH∞ =G(l) ∈ R. Furthermore, sinceH is nondecreasing,
it is clear thatG(w(0))=H(0)�H∞ =G(l). By Proposition 3.2, it must also be that
g(l)= 0. This is impossible ifG(w(0)) is bigger than all the values ofG on the zeroes
of g. Since all solutions are bounded in this case, it follows that there are indeed many
bounded solutions which do not converge ass→ ∞.

The following proposition is not directly needed for the proof of Theorem 1.4 in the
next section. It is, however, of some independent interest, and played and important role
in our investigations.

PROPOSITION 3.4. –If α > 4
N−2 , i.e.γ < 1, there is no solutionw of (1.12)such that

w(s) > 0 andg(w(s)) > 0 for all sufficiently larges > 0. In particular, any unbounded
solution must have infinitely many zeroes.

Proof. –We prove the first statement by contradiction. Thus, we suppose thatw is
indeed a solution such thatw(s) > 0 andg(w(s)) > 0 for all sufficiently larges > 0.
We claim thatw′(s) > 0 for sufficiently larges. Indeed, at any points wherew′(s)= 0,
we havew′′(s)= −g(w(s)), which is negative for larges > 0. Sincew cannot have two
successive strict local maximums,w′(s) must either ultimately be positive or negative.
It w′(s) < 0 for larges > 0, thenw must be bounded (since it is positive) and have a
finite limit. By Proposition 3.3, sincew is not a constant solution, this limit must be 0,
contradicting the fact thatg(w(s)) > 0 for larges. This proves the claim.

Sincew′(s) > 0 for larges > 0, g(w(s)) is increasing for larges. Integrating formula
(2.1) froms to T and lettingT → ∞, we obtain (for larges > 0)

4sγ e
1
4s w′(s)�

∞∫
s

tγ−2e
1
4t g
(
w(t)

)
dt � g

(
w(s)

) ∞∫
s

tγ−2 dt = g(w(s)) sγ−1

1− γ .
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In other words, for larges > 0,

w′(s)
g(w(s))

� C

s

which implies thatw(s) blows up in finite time, contradicting Proposition 3.1.
To prove the second part of the proposition, consider an unbounded solution with

only finitely many zeroes. Without loss of generality, we may suppose thatw(s) > 0 for
sufficiently larges. Sincew is unbounded, it follows thatH(s), which is nondecreasing,
tends to∞ as s → ∞, and soH(s) > 0 for sufficiently larges. In particular, fors
sufficiently largew′(s) cannot have a zero in the range whereG(w(s)) � 0. Since
w(s) > 0, this implies thatw′(s) can equal zero only ifg(w(s)) > 0, and sow′′(s) would
be negative at such a point. Sincew is unbounded, this is impossible, and sow′(s) > 0
for sufficiently larges. It follows thatg(w(s)) > 0 for larges, contradicting the first part
of the proposition.

This proves the proposition.✷
PROPOSITION 3.5. –Supposeα > 2

N−2 and letw be a solution of(1.12)on (0,∞)
such thatw(s) > 0 for all s > 0 andw(s)→ 0 ass→ ∞. Thenlims→∞ s1/αw(s) exists
and is finite. In particular, iff is related tow by (1.9)and ifu is the resulting self-similar
solution of(1.1)given by(1.5), thenu is regular for t > 0 andx ∈ R

N .

Proof. –We set

h(s)= sw′(s)
w(s)

+ 1

α
.

Sincew′(s) cannot have successive zeroes withoutg(w(s)) changing sign, it follows that
w′(s) < 0 for larges. In particular,h(s) < 1

α
for larges. A tedious calculation shows that

d

ds

(
s−

N−2
2 e

1
4s h(s)

)= −s−N
2 e

1
4s

(
1

4αs
+ |w(s)|α

4
+ h(s)2

)
. (3.1)

Thuss−
N−2

2 e
1
4s h(s) is decreasing and

lim
s→∞ s

−N−2
2 e

1
4s h(s)=m<∞

exists. We claim that in factm= 0.
We can easily eliminate the casem > 0, since thenh(s) → ∞ as s → ∞,

contradicting the facth(s) < 1/α for larges. If m < 0, then clearlyh(s), and likewise
sw′(s)/w(s), converge to−∞ ass→ ∞. Moreover, since bothw(s) andH(s) converge
ass → ∞, it follows that s2w′(s)2 must likewise converge; and its limit must be zero,
since otherwisew would not be bounded. Thus,sw′(s)/w(s) is indeterminant of the
form 0

0 ass→ ∞. If we then apply l’Hôpital’s rule, we get thatsw′(s)/w(s) converges
to a finite number. This contradiction eliminates the possibility thatm< 0.

Thus

lim
s→∞ s

−N−2
2 e

1
4s h(s)= 0, (3.2)
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andh(s) > 0, ∀s > 0. Integrating (3.1), taking (3.2) into account, we obtain

t−
N−2

2 e
1
4t h(t)=

∞∫
t

s−
N
2 e

1
4s

(
1

4αs
+ |w(s)|α

4
+ h(s)2

)
ds

� e
1
4t

(
1

4αt
+ |w(t)|α

4
+ sup
s�t
h(s)2

) ∞∫
t

s−
N
2 ds

= 2

N − 2
t−

N−2
2 e

1
4t

(
1

4αt
+ |w(t)|α

4
+ sup
s�t
h(s)2

)
.

Sinceh(s) < 1/α for larges > 0, we see that for larget > 0,

h(t)� 1

2(N − 2)αt
+ |w(t)|α

2(N − 2)
+ 2

(N − 2)α
sup
s�t
h(s),

and so

sup
s�t
h(s)�

1
t
+ α|w(t)|α

2(N − 2)α− 4
. (3.3)

We immediately conclude thath(s)→ 0 ass → ∞. From this fact it follows that
sw′(s)+ ( 1

α
− ε)w(s)� 0 for larges > 0, i.e. (s(1/α−ε)w(s))′ � 0, from which we see

thatw(s) = O(s−(1/α−ε)) as s → ∞. Putting this estimate back into (3.3), we get that
h(s)= O(s−(1−ε)) ass→ ∞, i.e.

w′(s)
w(s)

= − 1

αs
+ O

(
s−(2−ε)).

This implies that lims→∞ s1/αw(s) exists and is finite. It follows thatf (r) has a finite
limit as r → 0, and the regularity off at r = 0 follows from the integral equation
corresponding to (1.6), as in Section 3 of [4].✷

4. Existence of the regular self-similar solutions

PROPOSITION 4.1. –SupposeN > 2 andα > 2
N−2 , and letµ� β1/α . There exists a

solution of(2.5)withw(0)=µ, such that for somes0 ands1 with 0� s0< s1,
(i) w′(s) > 0, ∀s ∈ (0, s0);
(ii) w′(s) < 0, ∀s ∈ (s0, s1];
(iii) w(s1)= 0;
(iv) s0 = 0⇔ µ= β1/α ;
(v) w has precisely one intersection on[0, s1] with the constant solutionβ1/α .

Proof. –LetR > 0,M > 0, andT0 be as in the statement of Theorem 2.5, withR >µ.
In addition, if α < 4

N−2 we requireT0 <
1

4(γ−1) , so that by (1.14),H ′(s) � 0 for any
solution of (2.5) on[0, T ] ⊂ [0, T0].

We apply Theorem 2.5 withµ � β1/α , and we impose the following additional
restrictions onT ∈ (0, T0) andν:
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R2

2T 2
+Gmin − max

[
0,G(M)

]
>

2T 2
0M

2

(T0 − T )2 ,

ν � − R

2T 2
.

Letw be the resulting solution of (2.5), i.e. withw(0)= µ, w′(T )= ν, and|w(s)| �M
on [0, T ]. By Proposition 2.4, we also know thatw′(0)� 0, with equality if and only if
µ= β1/α. If in fact µ= β1/α , it follows from Propsition 2.7 thatw′(s) < 0, ∀s ∈ (0, T ].
On the other hand, ifµ > β1/α, then sincew′(0) > 0 andw′(T ) < 0, it follows
from Proposition 2.7 that there existss0 ∈ (0, T ) such thatw′(s) > 0,∀s ∈ (0, s0) and
w′(s) < 0,∀s ∈ (s0, T ]. In either case, ifw(T )� 0, we are done. Thus, we suppose that
w(T ) > 0.

It is clear that if for someT1 ∈ (T , T0], w(s) � 0 on (s0, T1], thenw′(s) < 0 on
(s0, T1]. Indeed, supposeτ ∈ (T , T1] is the smallest value wherew′(τ ) = 0. Then
0 � w(s) � w(s0) �M on (0, τ ]. By Proposition 2.7 we cannot have bothw′(s0) = 0
andw′(τ )= 0. It also follows thatG(w(s))� max[0,G(M)] on (s0, T1]. Since

H(T )= 2T 2w′(T )2 +G(w(T ))� R2

2T 2
+G(w(T ))� R2

2T 2
+Gmin,

it follows that,

H(s)� R2

2T 2
+Gmin, ∀s ∈ [T ,T0].

Suppose now thatw(s) > 0 on [0, T0]. It follows that fors ∈ [T ,T0],

w′(s)2 = 1

2s2

(
H(s)−G(w(s)))� 1

2T 2
0

(
R2

2T 2
+Gmin − max

[
0,G(M)

])
>

M2

(T0 − T )2 .

In other words,

w′(s)� −M
T0 − T .

Finally, we see that

w(T0)�w(T )+ (T0 − T ) max
s∈[T ,T0]

w′(s) <M −M = 0.

This concludes the proof.✷
LEMMA 4.2. –Suppose 2

N−2 < α <
4

N−2 , and letw be a solution of(1.12)such that
w(s) > 0 for large s > 0. It follows thatlims→∞w(s)= β1/α if and only ifH(s) < 0 for
sufficiently larges > 0.

Proof. –It follows from Propositions 3.2 and 3.3 that either lims→∞w(s)= β1/α, in
which case

lim
s→∞H(s)=G

(
β1/α)=Gmin< 0,

or lims→∞w(s)= 0, in which case lims→∞H(s)= 0. The result follows sinceH(s) is
nonincreasing for larges > 0. ✷
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COROLLARY 4.3. –Assume 2
N−2 < α <

4
N−2 . There existsε > 0 such that for every

µ, β1/α < µ < (1 + ε)β1/α , there is a solutionw of (1.12) with w(0) = µ such that
w(s) > 0 for all s > 0 and lims→∞w(s)= β1/α.

Proof. –We return to the context of the contraction mapping argument (proof of
Theorem 2.5) as described at the start of the proof of Proposition 4.1. We claim that
the set of dataµ=w(0) andν =w′(T ) which give rise to positive solutions converging
to β1/α ass → ∞ is open. Indeed, letw be such a solution. FixT1 >

1
4(γ−1) such that

H(T1) < 0. If z is another solution withz(0) close toµ and z′(T ) close toν, then
z(s) > 0 on [0, T1] andHz,z′(T1) < 0. SinceT1 >

1
4(γ−1) , it follows thatH ′

z,z′(s) � 0,
and thusHz,z′(s) < 0, for all s � T1. This implies thatz(s) �= 0 for all s � T1 and that
lims→∞ z(s)= β1/α. This proves the claim.

The result now follows by applying the claim to the solution identically equal to
β1/α. ✷

THEOREM 4.4. –AssumeN > 2 and 2
N−2 < α <

4
N−2 . There existsε > 0 such that

for everyµ, β1/α < µ< (1+ ε)β1/α, there is a solutionw of (1.12)withw(0)= µ such
thatw(s) > 0 for all s > 0 and lims→∞w(s)= 0.

Proof. –We again use the context of the contraction mapping argument of Theo-
rem 2.5 as specifically described in the proof of Proposition 4.1, and we use the sameε

as in Corollary 4.3. For a fixedµ, with β1/α < µ < (1 + ε)β1/α, the set ofν for which
the solution withw(0)= µ andw′(T ) = ν is of the type described in Corollary 4.3 is
open. Likewise, for a fixed value ofµ > β1/α , the set ofν = w′(T ) which give rise to
solutions becoming negative at some point is clearly open, and non-empty by Propostion
4.1. Thus, there exists a solution withw(0)= µ which is of neither of these two types: it
must be positive but not converge toβ1/α. By Propositions 3.2 and 3.3, it must converge
to 0 ass→ ∞. ✷

We now turn to the critical and supercritical cases. We need to use the properties of
solutions to the profile equation (1.6) with a specified initial value. More precisely, let
fλ denote the solution of (1.6) such thatfλ(0)= λ andf ′

λ(0)= 0. We refer the reader to
Section 3 and Theorem 5 of [4] for the facts about such solutions which we use below.
In particular, the limit

L(λ)≡ lim
r→∞ r

2/αfλ(r)

exists and is a locally Lipschitz function ofλ ∈ R. Moreover, given any- > 0, there
existsM =M(-) > 0 such that for allλ ∈ [−-,-] andr � 0,

(1+ r)2/α∣∣fλ(r)∣∣�M, (4.1)

(1+ r)2/α+1∣∣f ′
λ(r)

∣∣�M. (4.2)

While it is not explicitly stated, the proof of Proposition 3.1 in [4] shows thatM =M(-)
can be taken arbitrarily small if-> 0 is sufficiently small. Sinceα � 4

N−2, Theorem 5
in [4] tells us that ifλ > 0, thenfλ(r) > 0,∀r > 0 andL(λ) > 0. It follows in particular
that for smallλ > 0, 0< fλ(r) < V (r) for all r > 0, whereV is the singular stationary
solution given by (1.2), considered as a function ofr = |x|.
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We next setwλ(s)= s−1/αfλ(1/
√
s), and sowλ andfλ are related by formula (1.9).

Eachwλ is a solution of (1.12) withwλ(0) = L(λ). Also, wλ(s) > 0,∀s � 0,∀λ > 0
and lims→∞wλ(s) = 0. Since the constant solution of (1.12) identically equal toβ1/α

corresponds under (1.9) to the singular solutionV , which as a function ofr > 0 is also a
solution of (1.6), it follows that ifλ > 0 is sufficiently small, thenwλ(s) < β1/α,∀s � 0.
The estimates (4.1) and (4.2) translate for thewλ as

wλ(s)�
M

(1+ s)1/α , (4.3)

s
∣∣w′
λ(s)

∣∣� M

(1+ s)1/α , (4.4)

for all s � 0 and allλ ∈ [−-,-], where perhaps a different value ofM = M(-) is
used. It follows from Remark 2.8 that for any fixed- > 0, the collection of solutions,
wλ,λ ∈ [−-,-], can all be obtained from Theorem 2.5 with the same values ofR, M
andT0, and also withM replaced byM + 1. This allows us to apply the conclusion of
Proposition 2.7 for all such solutions on one common interval[0, T ].

LEMMA 4.5. –Supposeα � 4
N−2 . If 0< λ1 < λ2 are such thatwλ1 and wλ2 have

a different number of intersections with the constant solutionβ1/α , then there exists
λ ∈ [λ1, λ2] such thatwλ(0)= β1/α.

Proof. –Suppose the conclusion is false. Without loss of generality, we assume that
wλ(0)� β1/α − ε for all λ ∈ [λ1, λ2]. Let T > 0. The integral equation (2.5) implies that
for s ∈ [0, T ] andλ ∈ [λ1, λ2],

wλ(s)� β1/α − ε+ T 2K1(T )
∣∣w′
λ(T )

∣∣+ TK2(T )DM,

whereK1(T ) andK2(T ) are as in the proof of Proposition 2.5, andD = maxx∈[0,M] |g′(x)|.
It follows from (4.4) that one can chooseT > 0 small enough so that

T 2K1(T )
∣∣w′
λ(T )

∣∣+ TK2(T )DM � ε

2
,

and sowλ(s)� β1/α − ε
2 for all s ∈ [0, T ] andλ ∈ [λ1, λ2]. Thus, no intersections with

the constant solution can occur on the interval[0, T ]. By the estimates (4.3) and (4.4), no
intersections with the constant solutionβ1/α can occur fors sufficiently large, uniformly
for λ ∈ [λ1, λ2]. Since no intersections can be introduced at some fixed, finites > 0, it
must be that thewλ, for λ ∈ [λ1, λ2] all have the same number of intersections with the
constant solutionβ1/α. This contradiction proves the lemma.✷

LEMMA 4.6. –Supposeα � 4
N−2 and let k > 0 be an integer. Letλ0 > 0 be such

that wλ0(0) = β1/α and wλ0 has preciselyk intersections with the constant solution
β1/α, including the one ats = 0. It follows that there existsε > 0 such that ifλ ∈
(λ0 − ε, λ0 + ε), thenwλ has either exactlyk or exactlyk − 1 intersections with the
constant solutionβ1/α.

Proof. –By the second statement in Proposition 2.7, there existsT1> 0 such that each
solutionwλ, λ ∈ [λ0/2,2λ0] has at most one intersection with the constant solutionβ1/α
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on the interval[0, T1]. Sincewλ0 indeed has an intersection with the constant solution
on [0, T1], i.e. ats = 0, it follows that the other solutions have either the same number
or one less intersection on[0, T1]. Next, by (4.3) and (4.4) there existsT2> 0 such that
the solutionswλ, λ ∈ [λ0/2,2λ0] have no intersections with the constant solution for
s � T2. Note that thatwλ0(T1) �= β1/α andwλ0(T2) �= β1/α . The result follows since we
can chooseε > 0 so that all the solutionswλ, λ ∈ [λ0 − ε, λ0 + ε] have the same number
of intersections with the constant solution on the interval[T1, T2]. ✷

LEMMA 4.7. –Supposeα � 4
N−2 and letk be a positive integer. Ifλ1> 0 andλ2> 0

are such thatwλ1(0) = wλ2(0) = β1/α and thatwλ1 andwλ2 have respectively at most
k and at leastk + 2 intersections with the constant solutionβ1/α (including the one at
s = 0), then there existsλ betweenλ1 andλ2 such thatwλ(0)= β1/α andwλ has exactly
k+ 1 intersections with the constant solutionβ1/α.

Proof. –(We may assume thatλ1 < λ2.) We claim first that there existsλ ∈ (λ1, λ2)

such thatwλ(0) = β1/α . Suppose not. It follows from Lemma 4.5 that all thewλ,
λ ∈ (λ1, λ2) have the same number of intersections with the constant solution. But this
is impossible by Lemma 4.6: forλ close toλ1, wλ can have at mostk intersections
with the constant solution, and forλ close toλ2, thewλ must have at leastk + 1 such
intersections. This proves the claim.

If none of thewλ with λ ∈ (λ1, λ2) andwλ(0)= β1/α have preciselyk+1 intersections
with the constant solution, then by choosing an appropriate subinterval, we are reduced
to the previous situation, withwλ(0) �= β1/α for all λ ∈ (λ1, λ2). ✷

LEMMA 4.8. –Supposeα � 4
N−2 and letk be a positive integer. Ifλ1> 0 andλ2> 0

are such thatwλ1(0) = wλ2(0) = β1/α and thatwλ1 andwλ2 have respectively exactly
k and k + 1 intersections with the constant solutionβ1/α (including the one ats = 0),
then there existsλ betweenλ1 and λ2 such thatwλ(0) �= β1/α and wλ has exactlyk
intersections with the constant solution.

Proof. –As above, we suppose thatλ1< λ2, and we argue by contradiction. Suppose
thatwλ(0)= β1/α,∀λ ∈ [λ1, λ2]. By the second statement in Proposition 2.7, there exists
T1 > 0 such that thesewλ all have the same number of intersections with the constant
solution on[0, T1]. Indeed, these intersections all take place ats = 0. The estimates (4.1)
and (4.2) and continuous dependence easily imply that thewλ all have the same number
of intersections with the constant solution on[0,∞). This contradiction proves that there
existsλ betweenλ1 andλ2 such thatwλ(0) �= β1/α. If it happens thatwλ(0) �= β1/α for all
λ ∈ [λ1, λ2], then it follows from Lemmas 4.5 and 4.6 that thewλ must all have exactly
k intersections with the constant solution. In fact, we can always reduce to this case by
replacingλ1 andλ2 respectively byλ′

1 andλ′
2, where

λ′
1 = sup

{
λ ∈ [λ1, λ2]: wλ(0)= β1/α andwλ has exactlyk intersections with

the constant solutionβ1/α},
λ′

2 = inf
{
λ ∈ [λ′

1, λ2]: wλ(0)= β1/α andwλ has exactly(k+ 1) intersections with

the constant solutionβ1/α}.
This proves the lemma.✷
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Proof of Theorem 1.4. –By the (proof of) Proposition 3.8 in [4], rescaled versions
of the fλ given by λ−1fλ(λ

−α/2r) converge uniformly on compact subsets of[0,∞)
asλ→ ∞ to the regular stationary solution of (1.1)v, which satisfies the initial value
problem:

v′′(r)+ N − 1

r
v′(r)+ ∣∣v(r)∣∣αv(r)= 0,

v(0)= 1, v′(0)= 0.

Joseph and Lundgren [5, Sections VII and VIII] have shown that if4
N−2 < α < α

∗,
thenv has infinitely many intersections with the singular stationary solution of (1.1),
V (r)= β1/αr−2/α . It follows that for largeλ > 0, fλ has an arbitrarily large number of
intersections with the singular solutionV . Thus, for largeλ > 0, wλ has an arbitrarily
large number of intersections with the constant solutionβ1/α of (1.12). Since forλ > 0
small enough,wλ has no intersection with the constant solution, it follows from the
Lemmas 4.5, 4.6, and 4.7 that there exists a sequenceλk, k = 1,2,3, . . . , such thatλk <
λk+1, wλk(0) = β1/α, andwλk has preciselyk intersections with the constant solution.
It then follows from Lemma 4.8 that there exists a second sequenceλ′

k, k = 1,2,3, . . . ,
such thatλk < λ′

k < λk+1, wλ′
k
(0) �= β1/α , andwλ′

k
has preciselyk intersections with the

constant solutionβ1/α. Since the parity (even or odd) of the number of intersections that
wλ′

k
can have with the constant solution depends on whetherwλ′

k
(0) is greater than or

less thanβ1/α, it follows that thewλ′
k
(0) are alternately greater than or less thanβ1/α.

This implies thatL(λ) is greater than (respectively less than)β1/α on an infinite set of
disjoint open intervals separated by points whereL(λ) equalsβ1/α.

This proves Theorem 1.4.✷
Proof of Theorem 1.3. –The proof of Theorem 1.3 uses the same reasoning as in the

proof of Theorem 1.4. The only difference is that the singular stationary solutionV and
the regular stationary solutionv, which is known explicitly in this case, intersect each
other precisely twice. ✷
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