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Abstract

We prove the occurrence of a waiting time phenomenon in space dimengiens for the thin film equation subjected to
Navier’s slip condition or even weaker slip conditions. We state a sufficient criterion on the smoothness of initial data which
guarantees a local delay of the onset of spreading wherever the support of initial data locally satisfies an exterior cone condition.
Our method combines a Hardy-type inequality valid on infinite cones with recently established weighted energy estimates and a
novel iteration technique developed in [R. Dal Passo, L. Giacomelli, G. Griin, Ann. Scuola Norm. Sup. Pisa 30 (2001) 437-463].
On account of formal considerations, we conjecture our criterion to be optimal.
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Résumé

Dans cet article nous nous intéressons au comportement qualitatif de la frontiere libre des solutions de I'équation des films
minces soumise aux conditions de glissement de type Navier ou aux conditions de glissement plus faibles. Nous montrons
I'apparition d’'un phénomeéne de temps d’attente dans les dimensions d'e€pade Nous formulons un critére suffisant pour
la régularité des données initiales, qui garantit un délai local pour le début de la propagation, ol que soit satisfaite localement une
condition conique extérieure par le support des données initiales. Notre méthode combine une inégalité de type Hardy valide
sur un cone infini avec des estimations récentes pondérées d’énergie, et avec une nouvelle technique d’itération développée
dans [R. Dal Passo, L. Giacomelli, G. Griin, Ann. Scuola Norm. Sup. Pisa 30 (2001) 437—-463]. En raison de considérations
formelles, nous formons la conjecture que notre critere est optimal.
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1. Introduction

In this paper, we derive a criterion on the smoothness of initial data which guarantees the occurrence of a waiting
time phenomenon for strong solutions to the Cauchy problem associated with the fourth order degenerate parabolic
equation

ug+div(lu"VAu) =0 inRY x RT (1.1)
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in space dimension¥ < 4 for parametera < [2, 3). Equipped with non-negative, integrable initial data having
H1l-regularity, Eq. (1.1) is a model problem for a class of fourth order degenerate parabolic equations that arise
in materials sciences and fluid dynamics (cf. [5,8,19] and the references therein). In the version given above,
u describes the thickness of a thin film of viscous liquid that spreads on a horizontal surface under the influence
of surface tension. In generalis chosen to be a positive number. The particular values2 andn = 3 are
distinguished from a physical point of view. With a grain of salt, the expomen® corresponds to the assumption

of Navier’s slip condition at the liquid—solid-interfaédn the physical literature, also weaker slip conditions are
suggested (cf. [2] and the references therein) which entail exponents2 3. The parameter = 3, however, is
associated with a no slip condition and plays the role of a borderline value in the theory of Eq. (14)>RBor

formal calculations (and rigorous results established:for 4 in one space dimension by Beretta, Bertsch and

Dal Passo [1]) suggest that the solution’s support is constant in time. kor & 3, in contrast, solutions exist

which spread and which have the property of finite speed of propagation. In a series of publications (see Bernis
[3], Hulshof and Shishkov [16], Bertsch, Dal Passo, Garcke, Griin [4] and Grin [13]), it was possible to establish
in all space dimension¥ < 4 and forn € (0, 3) optimal estimates on the spreading rate.

Even more refined results on the behaviour of the free boundary, i.e. the boundary @f(supp, can be
obtained provided appropriate smoothness conditions on initial data are imposed. Dal Passo, Giacomelli and the
author formulated in [6] in one space dimension (andrif@r (0, 2) also in space dimensioné < 4) a sufficient
criterion to guarantee the occurrence of a waiting time phenomenon. This means that for sufficiently small times
the support locally does not increase. Surprisingly, both result and technique to be applied differ depending on
whethem € (0, 2) orn € [2, 3). To put it briefly, in the former range a waiting time phenomenon occurs at a point
X0 € d[SUpfup)] providedup(x) grows at most likex — xo|*™ in a neighborhood afy. In contrast, fon € [2, 3)

a slightly stronger condition has to be imposed which requires the derivative of initial data to satisfy locally

|up(x) — up(xo)| < Clx — xol*" .

On a merely technical level, this may be explained by the fact that ¢0, 2) the reasoning is based on the so
calleda-entropy estimate

T

1 a+1 —1// 1)/4)4 2 1)/2|2 1 1

L TY+C vy letntb/4% | p2, (atntl)/ < / atl 1.2

o [ ([t vy <2 fugt )
RV 0 RV RV

In the case of non-negative, not strictly positive initial data this estimate does only hold for

«e (max{—lé—n},Z—n)\{O}. (1.3)

Note that condition (1.3) does not permit to choose the pararagtesitive for values of: € [2, 3). Therefore, it

is not possible to control the entropy ! at timesT > 0 in terms of the initial entropy, and the entropy estimate
seems to be inappropriate to yield results on the qualitative behaviour of the free boundary. Hence, in the parameter
regimen € [2, 3) the argumentation has to be based upon other tools. As comparison principles do not hold for
fourth order parabolic equations, the remedy seems to be to exploit the only remaining integral estimate which is
the energy estimate

1 1
5/\vu(.,T)|2+/u”wAng§/|w0|2. (1.4)
Q2 Q2r Q2

1 More precisely, Navier’s slip condition entails a nonlinearityt ) := u3+ Bu?, where the positive parametgiis the slip length (cf. [19]).
However, the qualitative behavior of solutions is governed by the smoothnese)ah its point of degeneracy. Therefore, we may confine
ourselves to the case(u) = u?.
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Apparently, it provides estimates only in terms of the gradient of initial data.

In contrast to the parameter regime= (0, 2) where the one-dimensional techniques were generalized to the
multi-dimensional case with at most small a time delay, the situation turned out to be much more intricate for
n € [2,3). Indeed, questions about finite speed of propagation or occurrence of a waiting time phenomenon in
higher space dimensions remained open for quite a while. This was particularly unsatisfactory since the case
n = 2 corresponds to the assumption of Navier's slip condition which is — according to Jager and Mikelic [17]

— the effective boundary condition for laminar flow over rough surfaces. The main obstacle was to make the
term fu”|VAu|2, which physically represents the dissipated energy, accessible to Gagliardo—Nirenberg-type
interpolation arguments. This hurdle was overcome by virtue of the interpolation inequality

/|vu<”+2>/6|6+/|VAM("+2>/2|2<C(n,N)/u”|VAu|2 (1.5)
2 2 2

which holds on convex domain for positive functions of clas& 2 having zero normal derivative on the boundary
and which was proven in Grin [12] (see also the recently published paper Griin [11]). This estimate was the
key ingredient to establish in [12] the existencestrbng solutiongo the Cauchy problem in multiple space
dimensions which satisfy besides tlieentropy estimate in particular a weighted version of the energy estimate
(1.4). Moreover, it was the starting point to prove qualitative and quantitative results on finite speed of propagation
for the solution to the Cauchy problem constructed in [12]. And implicitly, it will also serve as a main tool to
formulate a sufficient criterion for the occurrence of a waiting time phenomenon in this paper.

A simplified version of our result reads as follows. Assume the existence of an infiniteCc¢ofe6) with
vertexxo € d[SUpfup)] and with opening angleg2such that

C(xo, 20) Nsupfug) = 9.

There is a finite timd, > 0 such that the solution stays zero on a c60®), ) having the same symmetry axis as
C(xo, 20) providedVug satisfies an estimate of the form

|Vuo(x) — Vuo(xo)| < Clx — xo/"~2 (1.6)

within a neighborhood afo.

On account of formal considerations, partially already presented in [6], we believe the expeadyii to be
optimal. However, it remains open whether the condition on the derivative can be replaced by the slightly weaker
condition

|uo(x) — uo(xo)| < Clx — xo|*" (1.7)

which involves values of the functiar only.

Let us describe our method and the outline of the paper. The result is based on a new Hardy-type inequality
valid on infinite cones, it is based on the recently established, aforementioned weighted energy estimate and on
the novel technique developed together with Dal Passo and Giacomelli in [6]. In Section 2, we will summarize the
properties of the strong solutions to the Cauchy problem established in [12]. Section 3 is devoted to the proof of the
announced new Hardy-type inequality valid on cones. Combining that inequality with the weighted energy estimate
of Section 2, the firstingredient for our method is readily prepared. In Section 4 we state and prove the main result of
this paper. Hereby, we take advantage of a number of auxiliary results, for instance an iteration lemma formulated in
[6] reminiscent of Stampacchia’s lemma. All these auxiliary tools will be listed in the appendix. Finally, we sketch
a refined qualitative result on finite speed of propagation in Section 5 which uses the new Hardy-type inequality for
cones and which hence permits to provide local results also in the case of initial data having non-convex support.

Throughout the paper, we will use the standard notation for Sobolev spaces. With a slight misuse of notation,
we write ||lu||, for ([ lu|?)Y/P also in the case & p < 1. {e1, ..., en} denotes the canonical basis®¥, x;,
i=1,...,N, are the coordinates of an element R" with respect to that basis. Sometimes, we will decompose
x =xp ey +Xxn. Both B(x, R) andBg(x) denote the ball with radiuB aroundx. Finally, we will write [u > O]
for {(x,1) e RN x (0, T) | u(x,t) > 0}.
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2. Definition and properties of strong solutions

Eq. (1.1) together with non-negative, compactly supported initial data of éfdssnplicitly defines a free
boundary problem where the free boundary is giverdsupfu(-,7))]. Since the governing equation is fourth
order, we cannot expect solutions to be unique unless three conditions are prescribed at the free boundary.
Therefore, the natural conditions

ulysuppu(-,0)1 = 0, (2.8)

u” 9 Au =0 (conservation of mass) (2.9)

v Torsupmuc-.o)
(v the outer normal to sugp(-, ¢))) have to be supplemented by a third one. A possible choice might be a condition
on the normal derivative — or to put it in physical terms — a condition on the contact angle. With the exception of the
work of Otto [20] on fixed-nonzero-contact-angle-solutions in one space dimension for the Hele—Shaw problem
(n = 1), the analytic work concentrated so far on so cadledng solutionsi.e. solutions for which a zero-contact
angle has implicitly been imposed via the entropy estimate (1.2). In [12], we proved the following existence result
for strong solutions to the Cauchy problem in the multi-dimensional case.

Theorem 2.1.Letn € 2 — VI—N/(8+ N),3), N < 4, and assumeig € HL(RV) to be non-negative with
compact support in the sense thaix) = 0 almost everywhere dR" \ Bg,(0) for a positive numbeRg. Then, a
non-negative function exists that has the following properties

() Regularity
AN

ur € LR (Whr(2))') forp > CTr S and any2 e RV, (2.10)
ue L®(RT; HY(RY)), (2.11)
VAutd2 e [2(RY x RT), (2.12)
Vu"t2/6 ¢ LSRN x RT), (2.13)
D2t tD/2 e [2(RN x RY)  foranya € (max{—1,1/2—n},2—n), (2.14)
Vi@t e LHARY x RY)  foranya e (max—1,1/2—n},2—n), (2.15)

_ {unVAu onfu > 0] c LZ(R+; 14 (RN)) (2.16)

0 on[u=0]r
foranyl<gq < 4—N
2N +n(N = 2)
(ii) u is a solution to the Cauchy problem in the sense that
T

/(”h¢>(W1»P(B(O)))’><W1»P(B(O)) - / u"VAuVe =0 (2.17)
0 [u>0]r

for p > Wgw)' arbitrary 7 > 0 and for all test functions contained inL2((0, T'); W% (R")) such that
Ute(O,T) supgeo (-, 1)) C B(0), whereB(0) is an arbitrary ball centered in the origif € RV . In particular,
initial data uq are attained continuously in time with respect to t&norm for all1 < 8 < %

Remark. (1) The condition om is a consequence of the validity range of inequality (1.5).



G. Grun/Ann. I. H. Poincaré — AN 21 (2004) 255-269 259

(2) The reason for the restriction of the spatial dimension to valies4 is rather subtle. It is connected with
results on compactness in time of solutions to approximating auxiliary problems. For more details, we refer the
reader to [12] (or to [5] where similar restrictions can be found).

In addition, the following quantitative result on finite speed of propagation holds which was established in [13].
Theorem 2.2.Letu be a solution to the Cauchy problem associated with(Ed.) as constructed in Theorethl
Then a positive constat exists which only depends anN and the mass of initial data such that
suppu(-, 1) € B(0, Ry + C - 1Y/ &1 (2.18)
forall 7 > 0.

Remark. This result is optimal in the sense that the exponent ﬁ is identical with the exponent that
determines the radial growth rate of the support of self-similar solutions which were studied by Ferreira and

Bernis [9].
For the purposes of this paper, we need the following corollary.
Corollary 2.3. Suppose in addition to the assumptions of The@eithat is a non-negative function i62(R").

Then, a positive constaih, = C2(n, N) exists such that the following weighted energy estimate is satisfied by the
solutionu constructed in Theore 1

T T
/Iﬂ6|vu(‘,T)|2+C21{//I/f6|Vu(n+2)/6|6+//¢6|VAM("+2)/2|2}
RN

0 RN 0 RN
T
2 3
</w6|vMo|2+cz/fu"+2{|w|6+|Dzw| V22 + | D2y [Py (2.19)
RN 0 RN

for arbitrary T > 0.

Proof. In [12], Theorem 6.1.1, a similar result was established on bounded convex dofagimevided the
tangential component 6y vanishes o 2. In the case of interest here —i®@.= R" and no requirements to be
imposed on the tangential componendaf on the boundary of bounded domains — we may use an approximation
argument based on the finite speed of propagation propertyasfestablished in Theorem 2.2. For givén- 0,

we choose the radiuB(T) > 0 such large that

J supdu(.n) c B(R(D)). (2.20)
te(0,7)
Taking a smooth non-negative localization functighwith the properties
gr=1 onB(R(T)),
or=0 onB(2R(T))

and choosing the test-functiai(x) - ¢7 (x) — which is admissible — a predecessor of (2.19) with right-hand side
given by

T
//u"+2{|vo/fw>|6+ \D2por) PV Wer) [Plwer 2+ | D2 Wer) [Plver )

0 RN
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can easily be established along the lines of proof of Theorem 6.2.1 in [12]. By virtue of the finite-speed-of-
propagation ofi, the assertion follows. O

3. A Hardy-type inequality valid on infinite cones

In this section, we present a new Hardy-type inequality valid on infinite cones which will be an essential tool
for the results to follow. Before stating and proving it, let us recall the classical Hardy inequality (for a proof see
[14,15] and the monograph [18]):

Lemma 3.1.Let —oo < a < b < oo be real numbers and assume thag p < g < oo. For weight functions), w
which are non-negative and measurable(anb), consider the quantities

Fr(x):=Fz(x;a,b,w,v,q, p)= le/q ||q ||v71/p Hp

Sax) /,(x,b)
and

Ag:=Ag(a,b,w,v,q,p)= sup Fg(x).

a<x<b

Then for every
e ACx(a,b) = [u e Wt b): lim u(x) = o},
R loc b

the Hardy-inequality

1 - 1

H“ cwt Hq,(a,b) < Cg H“X v /p”p,(a,b) (3.1)
holds, if and only ifA 3 < oc.

Moreover, the best possible constah in (3.1) satisfies the estimate

Ag<Cp<k(g,p) -Af (3.2)

where
q 1/q I 1/p'
k(q, p) = <1+ ?) <1+ ;) . (3.3)

Our result reads as follows. To avoid unnecessary technicalities, we formulate it for a cone with symmetry axis
given by thexy-axis.

Lemma 3.2.Considert_he coné(y,0) :={x e RY: |iy — jn| < (xy — yn) tand} with opening anglé < (0, 7/2)
and vertexy € RY. LetZ, :C(y, ) — R be defined as

- N — yn|?
$y(xXn, xN) == (x§ — YN) t:’:mzé'—lNinl2 . (3.4)
(xN —¥N)
Then a constank = K (0) exists such that
=42 ze| du ?
/ {y u < K(@0)- / Qa (3.5

C(y.0) C(y.0)
for arbitrary u € H1(C(y, 0)).
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Proof. W.l.o.g. we may assumg = 0, and we abbreviatg := tand. Let us apply the one-dimensional Hardy-
inequality (3.1) along half-lines parallel to thg-axis. Abbreviating’ (6) := C(0, 6), we have by virtue of Fubini's
theorem that

/U(x)dx: / ( / U()EN,XN)de)d)EN. (3.6)

C® RN=1 xyl-71
Let us consider the quantities

z 1/2 00 1/2
Fg(z: Xy) = f E“(xN,xN)de) ( / E—G@N,xN)de> 3.7)
|xn|-871 <
and
Ap(xy):=  sup  Fg(y;Xn). (3.8)
YE(lxn|/B,00)

In (3.7), we shortly wrote (<, xn) for o(Xn, xn).
Assuming for the moment that

K(0) := esssupAp(xy) < oo, (3.9)

iyeRN-1

we conclude by virtue of (3.1) as follows:

f thu? = / ( f E“(»zN,xN)-uzaN,xN)de)de

C®) RV-1 jxy|-p-1

2
de) dxy

-6 - ou _
< K(©6) / < / £°(xN, xN) - E(XN,XN)

RN-1 jxy|-p-t

=K(0) / z®.

C®)
It remains to prove (3.9). Writing
202 1z 2 1

- xyBe— XN _ _1\ XN+ XN
CGn, xn) = M = B%(xy — |in| - B 1).713

XN XN

ou
0x

(3.10)

and recalling that
[*n|
XN > ——

B

onC(#), we estimate easily

,32<XN - %) <L (N, xn) < 2,32<XN - %) (3.11)
onC(b).
Hence,

; i\t r T 1684
Fg(z; iv)? < 16- g8 / <XN—%> de',BlZ/<XN—%) dry = 55-

lxn|B~t z
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This proves the assertion of the lemmag
For further purposes, we will need the following

Lemma 3.3.Consider forr € R the functiorg, : RY — Rg defined by

12
&r(Xn, xy) = (e —r)[tar?6 — %] onCer-ew, 0),

0 onRN\ C(r - ey, 0).

There exists a positive constatit= C (9) such that
IV < C

and
D% |- <C

on the whole oR”.

Proof. We use again the abbreviatign= tang and obtain

—2%N
XN—F
Vir(x) = ’ in[2 onC(r-en,0),
+
(xy—r)
2 2%y
2 TEerANL Gy
D¢ (x) = -~ ol 2 onC(r-epn,0).
(xn—r)2 T y—r)3

Hence,

- 2 - 2 2\ 1/2
\Vgr(x>|<6(%+(ﬁ2+ ﬂ)) onC(r - en, )
-

(xny —r)?
and
Ve =0 onRN\C(r-ey,0).
On the other hand,

3k
(xn —1r)?

< ,82
forx e C(r - ey, 0) by construction and therefore

VS < C(B).

Estimate (3.13) follows in a similar fashion

(3.12)

(3.13)
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4. A sufficient criterion for the occurrence of a waiting time phenomenon
In this section, we state and prove the main result of this paper. It reads as follows.

Theorem 4.1.Letu be a solution of(1.1)to compactly supported, non-negative initial data haviitrregularity
as constructed in Theorethl Assume thap is a boundary point oupfup) and that the following properties
hold:

e foranumbel0 < 0 < /4, there is a con€(y, 20) := {x e RV: |3y —Xy| < (xy — yn) - tan D} with opening
angle26 and vertexy such thatsuppuo) NC(y, 20) =0,
e initial data satisfy

lim suprz’zV][ |Vuol?dx < oo. (4.1)
r—0
B(y,r)

Then the following is trudf y > 4/n, then the solutiom exhibits a waiting time phenomenon locallyyirin the
following sensethere exists a positive timeg* = T*(n, N, ug, y, #) such that

supu(-, 1)) NC(y,0) =9 (4.2)
forr [0, T%).

Remark. (1) For notational simplicity, we only consider cones with symmetry axis given by thaxis. The
general case can easily be dealt with by an appropriate rotation argument.

(2) It is surprising that the result can be proven without usinglthdound onv Au*+2/2_ Instead, we take
advantage of thd.%-integrability of Vu*+2/6_ This way, further technical difficulties related to interpolation
arguments can be avoided. Moreover, note that formal calculations performedwitli*2/2 yield the same
result as presented in the theorem. This seems to be due to the fact that both bounds imply the same smoothness
result foru at the free boundary.

Proof. W.l.o.g. we assumg = 0. Let us first fix a positive numbet;. Consider for O< R < R1 the cones

C(—R) :=C(—Ren,0).

Fig. 1. Provided initial data are sufficiently smooth in a neighborhoog ttie solutioru stays zero for finite time within the inner cone.
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By virtue of elementary geometric reasoning, it becomes evident that
C(—R)\C(0,20) C B(O, R) (4.3)

for all 0 < R < R;. Combining Corollary 2.3 with (3.12), (3.13) and with a straightforward approximation
argument, the following key estimate can be obtained.

T T
sup g§R|vu(.,t)|2+C2—1/ / g§R|vu<"+2>/6|6< / g§R|wo|2+c2/ / u"t?  (4.4)

te(0,T)
C(—R) 0 C(—R) C(—R) 0 C(—R)

for 0 < R < R1 and arbitraryl’ > 0.
By virtue of Hardy’s inequality (3.5) we see that

8u
/ ¢- R|VM| / {: R > C(0) / {: RM
C(-R) C(—R) C(-R)
hence,
T T
_ 6

sup [ et eyt [ [ S vu 2o [ vl f
te(0,7)

C(-R) 0 C(-R) C(—R) 0 C(—R)

On the other hand, we find for0 p < R that
_r(x)= (R —p)tarfe forallx € C(—p).

Hence,

T
sup w?(-.t)+ (R —,0)2/ / |Vu+2/8)°
te(O,T)

C(—p) 0 C(fp)

S&R= p)“{ /g""v"‘o' +// } (*5)

0 C(—R)
By virtue of an appropriate version of Gagliardo—Nirenberg’s inequality (see Lemma A.3), we infer that

[ [ oeen(] [ s )(/ ()

0 C(—R) 0 C(-BR

12/(nN+12)

Young'’s mequallty entails that

z (n+2)/2
p
0

0 C(—R) C(-R)
altogether:

T
sup u?(-, 1)+ (R — ,0)2/ / |Vu (26 6

te(0,7)
C(—p) 0 C(—p)
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‘ . ; (n+2)/2
<8(R—p)2/ / |Vu /8] +Cg(R—,0)_(4+"N/2)/( / )
0

0 C(—-R) C(—R)
b | IVl (4.6)
(R—p)? —REE '
C(—R)
Introducing
V(p) := sup u?(-, 1),
te(0,T)
C(—p)
T
U(p) ::/ / |Vu(n+2)/6|6’
0 C(—p)
C 7 (n+2)/2 C
e 2 _c 6 2
Felo )= (R—p)4+"N/2/< / ”) e | Vel
0 C(—R) C(—R)

we rewrite (4.6) as

V(p)+ (R —p)%-U(p) <&(R—p)%-U(R)+ Fe(p, R)

valid for0< p < R < R1.
An appeal to the iteration method presented in [16] entails the following estimate which holds-fér
sufficiently small with a new constaikt. dependent only os:

(R — p)?
V(o) + TU(;O) <KeFe(p,R) YO<p<R<R;.

Rewriting in terms of: and takings > 0 sufficiently small, but fixed, we obtain

T
sup w?(-.t)+ (R —,0)2/ / |Vu+2/8)°
te(O,T)

C(—p) 0 C(—p)

I (n1+2)/2
S R=pyon e p)4+"N/2[/ ( / ) +R— / gER'V”O'Z]'
0

C(—R) C(—=R)
By virtue of the estimate

z (n+2)/2 (n+2)/2
J o™ e (]
te(0,T)

0 C(—p) C(=p)

we end up with
; n_-52 CcC.-T ; 'HZ—Z N LJZFZ
/( / uz) < _NL[/< / u2> +(R-p)Z / §6R|Vu0|2j| ) (4.7)
0o cp (R—p) 27 [ cr) cR)

Combining (4.3) with (4.1) and with (3.11), we estimate
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(R—p)"N/2 / 8, IVuol? < (R — p)™N/2 / ¢85 Vuol?
C(—R) B(O,R)

B(O,R)
This implies that
limsup(R — p)™V/? / 8| Vuol? < K(6) - RHNF2r+nN/2 (4.8)
R—0
C(—R)
With new coordinate§ = R1 — p andn = R1 — R and with the function

z (n+2)/2
e[ o)

0 CE¢-Ry
(4.7) finally assumes the form
Cc-T

2)/2
G(§) < TSI YR [G(n) + K(©) - (R — 77)4+N+2y+nN/2](n+ )/

which holds for all 0< n < & < R1. Applying the iteration Lemma A.2, we see that

T (+2)/2
) om-a

0 CO
provided (i) T is such small that
T 2
(n+2)/2 n/ N 5
RE>C-T. ( / uz) N Rz11+1v+2y+n1v/z) with o <4+ n?> n er 4.9
0 C(-Ry)
and (ii)

S (44+nN/2)(1+n/2)

N
44 N+2y+ 0> (4.10)
n/2

2

By the absolute continuity of Lebesgue’s integral, (4.9) can be satisfied far 70 < T* with T* =
T*(n, N, v, uo, ) sufficiently small.
Condition (4.10) is equivalent to the conditigprn> 4/n. This proves the theorem.O

5. Arefined result on finite speed of propagation

In this section, we use the Hardy-type inequality (3.5) to provide local qualitative results on finite speed of
propagation forn € [2, 3) in higher space dimensions also in the case that the support of initial data is not convex,
but satisfies locally an exterior cone condition. In this way, previous results of [12] and [10] are essentially
improved. For the ease of presentation, we confine ourselves again to the case of cones axial-symmetric to the
xy-axis. The general case follows easily by an rotation argument.

Theorem 5.1.Letu be a solution of(1.1)to compactly supported non-negative initial data haviig-regularity
as constructed in Theoretl Assume thato is a boundary point oSupfo). LetC(yo, 0) := {x e RV: |xy —
yon| < (xy —yon) -tanf}, 0 < 6 < /2, be an infinite cone with opening angesuch thasupguo) NC(yo, 6) = @.
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Consider forR > 0 cones
C(yo+R-en,0):={x eR": |y — Jon| < (xn — (yov + R)) tand}.
Then a continuous, increasing functi@n [0, co) — Rg, R(0) =0, exists such that
supu(-, 1)) NC(yo+ R(t) -en,0) =¥

forall r e RY.
In particular:

(5.1)

T (n+2)/2\ "/ ()
R(T)gC(n,N,e)Tl/“(/ u? )
0

C(y0,6)
witha = (84+nN)(n + 2)/4.

Remark. (1) Note that — via Corollary 2.3 — the proof of Theorem 5.1 makes use of the weaker result on finite
speed of propagation presented in [12] and [10].

(2) There exist still rather simple geometric settings which are not completely covered by the theorem, for
instance supfo) given by an annulus. To prove a corresponding result also in that case, a new version of a
weighted energy estimate would be needed which replaces the termis @stimate (2.19) by terms involving the
productpu whereg is an appropriate spatial localization function. In space dimensienl, such an estimate is
available (see [16]), in the multi-dimensional case its justification would be rather tedious. Therefore, we omit this
here.

Proof. W.l.o.g. we may assumg = 0. Choosing

§R(x).={(xN—R>[tan29— D) xeC(R),

(R—xn)?
x e RN\ C(R)
we infer by virtue of a similar reasoning as in the proof of Theorem 4.1 that

sup cru(-, 0%+ //;\Vu(’“rz)/ﬂ <C- // (5.2)
te(0,7) cir)

0 C(R) 0 C(R)
for all R > 0. As before, we estimate
¢r(x) > (R — p)tarfo (5.3)

forall x e C(p), p > R > 0, and we obtain by a similar iteration method as in the proof of Theorem 4.1

p (n+2)/2 c.T T (n4+2)/2\ (+2)/2
u? < u?
(p— R)(4+nN/2)(n+2)/2

0 C(p) 0 C®

forall p > R > 0.
Writing
T

) (n+2)/2
([

0  Cp)
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and using the classical iteration lemma of Stampacchia (see Lemma A.1), we filigl that O provided

z (n+2)/2\ /2
()

0 C®
with « = (8+nN)(n + 2)/4. Hence, (5.1) holds true.o
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Appendix A

In this section, we collect a couple of auxiliary results which were used in the paper. We begin with an iteration
result by Stampacchia [21].

Lemma A.1 (Stampacchia’s iteration lemmafssume that a given non-negative, non-increasing function
G : (0, po) — R satisfies

co
G() <
(& —m~
for 0 < n < & < po and positive numbers, «, 8 with 8 > 1. Assume further that
pg > 20B/(B=1) .co - G(o)ﬂfl'

Then,G has a root inpg.

G(n)P

The following modification was proposed by Dal Passo, Giacomelli and the author in [6].

Lemma A.2. Assume that a given non-negative, non-increasing funetio(®, pp) — R satisfies

€0 o\B
G@é) < G(m) + (po—n) Al
& - n)“( ) (A1

for 0 < n < & < pp and positive numbers, «, 8, o such that

g>1 and 02%_1. (A.2)
Assume further that

pg > 2#P1B-D (14 204/(/3—1)—0)/3 cco- (G(O) + pg)/f‘—l. (A.3)
Then

G(po) =0.

Finally, we need Gagliardo—Nirenberg’s inequality in the following form (for a proof, we refer to [7]).

Lemma A.3.Letl<r <00,0<g < p, m € N, such that
1 m 1

r N p
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If 2 c RN is bounded with piecewise smooth boundary, then positive constamatsd c, depending only on
£2,r, p, m andg exist such that for any € L1(£2) satisfyingD™u € L" (£2), the following inequality holds

lullp < ca| D™ u]fllully™ + c2llull, (A.4)
— (1 _2yy il m_1
wherea_(q p)/(q +x — )

Especially, if2 is an infinite cone, i.e. for given points, yo € RY, xo ¢ B1(yo) a set
Croyo =12 €RY | z=x0+A(y — x0). y € B1(30), A >0},
then(A.4) holds with constants; = ¢(||xo — yoll, , p, m, q) andcz = 0.
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