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Abstract

In this paper we study the long time asymptotic behavior for a class of diffusion–aggregation equations. Most results except
the ones in Section 3.3 concern radial solutions. The main tools used in the paper are maximum principle type arguments on mass
concentration of solutions, as well as energy method. For the Patlak–Keller–Segel problem with critical power m = 2 − 2/d, we
prove that all radial solutions with critical mass would converge to a family of stationary solutions, while all radial solutions with
subcritical mass converge to a self-similar dissipating solution algebraically fast. For non-radial solutions, we obtain convergence
towards the self-similar dissipating solution when the mass is sufficiently small. We also apply the mass comparison method to
another aggregation model with repulsive–attractive interaction, and prove that radial solutions converge to the stationary solution
exponentially fast.
© 2013 Elsevier Masson SAS. All rights reserved.

1. Introduction

Recently there has been a growing interest in the study of nonlocal aggregation phenomena. The most widely
studied models are the Patlak–Keller–Segel (PKS) models, which describe the cell movement driven by chemotaxis
[22,28,25]. In this paper, we study the PKS equation in dimension d � 3 with degenerate diffusion, given by⎧⎪⎨

⎪⎩
ut = �um + ∇ · (u∇c), x ∈R

d , t � 0,

�c = u, x ∈R
d , t � 0,

u(x,0) = u0(x) ∈ L1+
(
R

d; (1 + |x|2)dx
) ∩ L∞(Rd), x ∈R

d ,

(1.1)

here m > 1 models the local repulsion of cells with anti-crowding effects [30,31]. This model is a generalization of
the classical parabolic–elliptic PKS model in 2D, which has been extensively studied over the years (see the review
[25,7,17,10,9]).

Throughout this paper, we focus on the critical power m = md := 2 − 2/d , which produces an exact balance
between the diffusion term and the aggregation term when one performs a mass-invariant scaling. To study the
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well-posedness of (1.1), the following free energy functional (1.2) is an important quantity, where the first term is
usually referred to as the entropy and the latter term is referred to as the interaction energy:

F(u) =
∫
Rd

(
1

m − 1
um + 1

2
u(u ∗N )

)
dx. (1.2)

Here N (x) = − 1
(d−2)σd

|x|2−d is the Newtonian potential in d � 3, with σd the surface area of the sphere S
d−1 in R

d .
In [8, Definition 3.1], a notion of free energy solution is defined, which is a weak solution to (1.1) such that the free
energy is non-increasing in time and satisfies some inequalities. Indeed, it is formally shown that (1.1) is the gradient
flow for F with respect to the Wasserstein metric (see for example [1] and [14]).

The key observation in [8] is the sharp Hardy–Littlewood–Sobolev inequality, which bounds the interaction term
in the free energy functional by the entropy term:∣∣∣∣

∫
Rd

u(u ∗N ) dx

∣∣∣∣� C∗‖u‖2/d

L1(Rd )
‖u‖m

Lm(Rd )
, (1.3)

where C∗ is a constant only depending on the dimension d . This inequality suggests that the behavior of the solution
depends on its mass. Making use of this inequality, it is proved in [8] (and generalized by [4] for more general kernels)
that there exists a critical mass Mc only depending on d , such that all the solutions with mass M < Mc exist globally in
time, whereas for all supercritical mass M > Mc one can construct a solution which blows up in finite time. Although
the global existence/blow-up results are well understood, the asymptotic behavior of the solution has not been fully
investigated: this motivates our study. In this paper we study the asymptotic behavior of solutions with mass M � Mc,
and try to answer the open questions raised in [8] and [7].

◦ Critical case:

When M = Mc, it is proved in [8] that the global minimizers of the free energy functional F have zero free energy,
and are given by the one-parameter family

uR(x) = 1

Rd
u1

(
x

R

)
(1.4)

subject to translations. Here u1 is the unique radial classical solution to

m

m − 1
�um−1

1 + u1 = 0 in B(0,1), with u1 = 0 on ∂B(0,1). (1.5)

It was unknown that whether this family of stationary solutions attract some solutions.
In Section 3.1, we prove the convergence of radial solutions towards this family of stationary solution (see Theo-

rem 3.2) using a combination of mass comparison and energy method. The mass comparison property is a version of
comparison principle on the mass distribution of solutions (see Proposition 2.4), which has been introduced in [23].
Although it only works for radial solutions, it provides more delicate control than the energy method: it has been re-
cently used in [3] to prove finite time blow-up of solutions with supercritical mass for a diffusion–aggregation model
where Virial identity does not apply. We mention that the mass comparison property has been previously observed for
the porous medium equation [32] and PKS models with linear diffusion [21,6].

◦ Subcritical case:

When 0 < M < Mc , the free energy solution exists globally in time, as long as its initial Lm-norm is finite [8,4].
Moreover it has been proved in [8] that there exists a dissipating self-similar solution, with the same scaling as the
porous medium equation. However it was unknown whether this self-similar solution would attract all solutions in the
intermediate asymptotics.

In Section 3.2, we prove algebraic convergence of radial solutions towards this self-similar dissipating solution,
given that the initial data is bounded and compactly supported. This is done by constructing explicit barriers in the
mass comparison sense.
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For general (non-radial) solutions, the asymptotic behavior of solution to (1.1) is unknown for all mass sizes when
m = 2 − 2/d . In Section 3.3, we prove that when the mass is sufficiently small, every solution to (1.1) with compactly
supported initial data converges to the self-similar dissipating solution. We mention that for the PKS equation in
2D with linear diffusion, similar results for small-mass solutions are obtained by [11], and recently the small-mass
assumption is removed by [15], where they prove that all solutions with subcritical mass converge to the self-similar
solution with exponential rate after proper rescaling. Both of these results are based on a spectral gap method, hence
cannot be generalized to (1.1) due to the nonlinear diffusion term.

When dealing with non-radial solutions with small mass, our key result is the uniqueness of stationary solution
(in rescaled variables), which is proved using a maximum principle type argument (see Theorem 3.11). We point out
that although it is well known that the global minimizer to the rescaled energy (3.15) is unique [8], there are few
results concerning the uniqueness of stationary solutions for nonlocal PDEs, except in the following special cases: the
stationary solution to a similar equation is proved to be unique by [12] in the 1D case, and stationary solution to the
2D Navier–Stokes equation (in rescaled variable) is proved to be unique by [20], where their proof is based on the fact
that all stationary solutions have the same second moment, thus cannot be applied to (1.1).

In Section 4 we generalize the mass comparison methods to an aggregation equation

ut − ∇ · (u∇K ∗ u) = 0, (1.6)

and prove that the radial solution converges towards the stationary solution exponentially fast for a class of kernel K .
Eq. (1.6) appears in various contexts as a mathematical model for biological aggregations [27,31]. In order to capture
the biologically relevant features of solutions, it is desirable for the interaction kernel K to be repulsive for short-range
interactions and attractive for long-range. Aggregation equations with such kinds of kernel are studied in [2,26,19,
18,24]. In this paper we adopt the kernel K proposed in [19], which has a repulsion component in the form of the
Newtonian potential N and an attraction component satisfying the power law:

K(x) =N (x) + 1

q
|x|q, (1.7)

here when q = 0 the second term is replaced by ln |x|. We assume that the attraction part is less singular than the
repulsion part at the origin, i.e. q > 2 − d . In addition, we assume q � 2, i.e. the long-range attraction does not grow
more than linearly as the distance goes to infinity. Note that in [18] they mostly focus on the case q � 2.

The existence and uniqueness of weak solution is established in [18] for q > 2 − d . In addition, they proved that
for any mass there is a unique radial stationary solution which is continuous in its support. While numerical results
in [18] suggest that this stationary solution should be a global attractor, there is no rigorous proof. We prove that when
2 − d < q � 2, the mass comparison argument can be easily generalized to (1.6), then we construct barriers in the
mass comparison sense to prove that all radial solution converges to the stationary solution exponentially fast.

Outline of the paper. In Section 2 we state a mass comparison result for a general diffusion–aggregation equation.
In Section 3 we apply it to the PKS model with critical power, and obtain some asymptotic results for radial solutions
with critical and subcritical mass sizes respectively. In Section 4 we demonstrate that the mass comparison can also
be applied to an aggregation model with repulsive–attractive interaction, and prove the asymptotic convergence of
solution towards the stationary solution.

1.1. Summary of results

By constructing explicit barriers in the mass comparison sense and using energy method, we obtain the following
results for radial solutions of (1.1):

Theorem 1.1. Suppose d � 3 and m = 2 − 2/d . Let u(x, t) be the free energy solution to (1.1) with mass A and initial
data u0, where u0 is continuous, radially symmetric and compactly supported. Then the following results hold:

• If 0 < A < Mc , u(·, t) converges to the dissipating self-similar solution uA as t → ∞, where the Wasserstein
distance between u(·, t) and uA decays algebraically fast as t → ∞. (Corollary 3.8)

• If A = Mc and u0 satisfies ∇um
0 ∈ L2(Rd) in addition to the assumptions above, then u(·, t) → uR0 in L∞(Rd)

as t → ∞ for some R0 > 0, where uR0 is a stationary solution defined in (1.4). (Theorem 3.2)
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For general (possibly non-radial) initial data, we use a maximum principle type method to prove that when the
mass is sufficiently small, every compactly supported stationary solution must be radially symmetric. This leads to
the following asymptotic convergence result:

Theorem 1.2. Suppose d � 3 and m = 2 − 2/d . Let u(x, t) be the free energy solution to (1.1) with mass 0 < A <

Mc/2 being sufficiently small, and the initial data u0 is continuous and compactly supported. Then we have

lim
t→∞

∥∥u(·, t) − uA

∥∥
p

= 0 for all 1 � p �∞,

where uA is the self-similar dissipating solution defined in (3.17). (Corollary 3.13)

In Section 4 we generalize the mass comparison methods to the repulsive–attractive aggregation equation (4.1),
and obtain the following asymptotic convergence result for 2 − d < q � 2:

Theorem 1.3. Assume 2 − d < q � 2. Let u be a free energy solution to (1.6) with initial data u0 and mass A, where
u0 ∈ L1(Rd) ∩ L∞(Rd) is non-negative, radially symmetric and compactly supported. In addition, we assume that
u0 is strictly positive in a neighborhood of 0. Let us be the unique stationary solution with mass A, as given by
Proposition 4.2. Then as t → ∞, u(·, t) converges to us exponentially fast in Wasserstein distance. (Theorem 4.5)

2. Mass comparison for radial solutions

In this section we consider the following type of diffusion–aggregation equation

ut = c1�um + ∇ · (u∇(
u ∗ (c2N + c3K) + V

))
, (2.1)

where N (x) = − 1
(d−2)σd

|x|2−d is the Newtonian potential in d � 3, with σd the surface area of the sphere Sd−1 in R
d .

We make the following assumptions on the kernel K, the potential V and the coefficients:

(C) c1, c3 � 0, and c2 ∈R can be of any sign.
(K1) K is radially symmetric.
(K2) �K ∈ L1(Rd), �K� 0 and is radially decreasing.
(V1) V ∈ C2(Rd) is radially symmetric.

For a radially symmetric function u(x, t), we define its mass function M(r, t;u) by

M(r, t;u) :=
∫

B(0,r)

u(x, t) dt, (2.2)

and we may write it as M(r, t) if the dependence on the function u is clear. The following lemma describes the PDE
satisfied by the mass function.

Lemma 2.1 (Evolution of mass function). Let u(x, t) be a non-negative smooth radially symmetric solution to (2.1).
Let M(r, t) = M(r, t;u) be as defined in (2.2). Then M(r, t) satisfies

∂M

∂t
= c1σdrd−1∂r

(
∂rM

σdrd−1

)m

+ ∂rM
c2M + c3M̃

σdrd−1
+ ∂rM∂rV, (2.3)

where

M̃(r, t;u) :=
∫

B(0,r)

u ∗ �K dx. (2.4)

Proof. Due to divergence theorem and radial symmetry of u, we have

∂M = σdrd−1[c1∂ru
m + u

(
∂r

(
u ∗ (c2N + c3K)

) + ∂rV
)]

. (2.5)

∂t
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Note that radial symmetry of u also gives

u(r) = ∂rM

σdrd−1
. (2.6)

It remains to write ∂r (u ∗N ) and ∂r(u ∗K) in terms of M . For ∂r (u ∗N ), divergence theorem gives

∂r(u ∗N ) =
∫
B(0,r)

�u ∗N dx

σdrd−1
= M(r, t)

σdrd−1
. (2.7)

We can similarly obtain

∂r(u ∗K) =
∫
B(0,r)

u ∗ �K dx

σdrd−1
= M̃(r, t)

σdrd−1
, (2.8)

where M̃(r, t;u) := ∫
B(0,r)

u ∗ �K dx. Plug (2.6), (2.7) and (2.8) into Eq. (2.5), and then we can obtain (2.3). �
Definition 2.2. Let u1 and u2 be two non-negative radially symmetric functions in L1(Rd). We say u1 is less concen-
trated than u2, or u1 ≺ u2, if∫

B(0,r)

u1(x) dx �
∫

B(0,r)

u2(x) dx for all r � 0.

Definition 2.3. Let u1(x, t) be a non-negative, radially symmetric function in L1(Rd) ∩ L∞(Rd), which is C1 in
its positive set. We say u1 is a supersolution of (2.1) in the mass comparison sense if M1(r, t) := M(r, t;u1) is a
supersolution of (2.3), i.e. M1(r, t) and M̃1(r, t) := M̃(r, t;u1) satisfy

∂M1

∂t
� c1σdrd−1∂r

(
∂rM1

σdrd−1

)m

+ ∂rM1
c2M1 + c3M̃1

σdrd−1
+ ∂rM1∂rV , (2.9)

in the positive set of u1, where M̃(r, t;u1) is as defined in (2.4).
Similarly we can define a subsolution of (2.1) in the mass comparison sense.

Proposition 2.4 (Mass comparison). Suppose m > 1, and c1, c2, c3,V ,K satisfy the assumptions (C), (K1),
(K2), (V1). Let u1(x, t) be a supersolution and u2(x, t) be a subsolution of (2.1) in the mass comparison sense
for t ∈ [0, T ]. Further assume that both ui are bounded, and ui ’s preserve their mass over time, i.e.,

∫
u1(·, t) dx

and
∫

u2(·, t) dx stay constant for all 0 � t � T . Then their mass functions are ordered for all times: i.e., if
u1(x,0) � u2(x,0), then we have u1(x, t) � u2(x, t) for all t ∈ [0, T ].

Proof. Let Mi(r, t) be the mass function for ui , where i = 1,2. We claim that M1(r, t) � M2(r, t) for all r � 0 and
t ∈ [0, T ], which proves the proposition.

For the boundary conditions of Mi , note that⎧⎪⎨
⎪⎩

M1(0, t) = M2(0, t) = 0 for all t ∈ [0, T ],
lim

r→∞
(
M1(r, t) − M2(r, t)

) =
∫
Rd

(
u1(x,0) − u2(x,0)

)
dx � 0 for all t ∈ [0, T ].

As for initial data, we have M1(r,0) �M2(r,0) for all r � 0.
For given λ > 0, we define

w(r, t) := (
M2(r, t) − M1(r, t)

)
e−λt ,

where λ is a large constant to be determined later. Suppose the claim is false, then w attains a positive maximum at
some point (r1, t1) in the domain (0,∞)× (0, T ]. Moreover, since the mass of both u1 and u2 are preserved over time
and thus are ordered, we know that (r1, t1) must lie inside the positive set for both u1 and u2, where Mi ’s are C

2,1
x,t .
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Since w attains a maximum at (r1, t1), the following inequalities hold at (r1, t1):

wt � 0 ⇒ ∂t (M2 − M1) � λ(M2 − M1), (2.10)

wr = 0 ⇒ ∂rM1 = ∂rM2 > 0, (2.11)

wrr � 0 ⇒ ∂rrM1 � ∂rrM2. (2.12)

Now we will analyze the terms on the right-hand side of (2.9) one by one. For the first term, (2.11) and (2.12) imply
that

c1∂r

(
∂rM2

σdrd−1

)m

− c1∂r

(
∂rM1

σdrd−1

)m

� 0 at (r1, t1). (2.13)

For the term coming from Newtonian potential, we have

∂rM1
c2(M2 − M1)

σdrd−1
= c2u1(r1, t1)(M2 − M1) � umax|c2|(M2 − M1), (2.14)

where umax := max{supRd×[0,T ] u1, supRd×[0,T ] u2} is finite by assumption on u1 and u2.
We next claim

∂rM1
c3(M̃2 − M̃1)(r1, t1)

σdrd−1
� umaxc3‖�K‖1(M2 − M1)(r1, t1). (2.15)

To prove the claim, note that M̃2 − M̃1 can be rewritten as

M̃2(r1, t1) − M̃1(r1, t1) =
∫
Rd

(
(u2 − u1) ∗ �K

)
χB(0,r1) dx

=
∫
Rd

(u2 − u1)(χB(0,r1) ∗ �K) dx. (2.16)

Note that �K� 0 is radially decreasing due to assumption (K2), thus χB(0,r1) ∗�K is non-negative, radially decreas-
ing and has maximum less than or equal to ‖�K‖1. Therefore we can use a sum of bump function to approximate
χB(0,r1) ∗ �K, where the sum of the height is less than ‖�K‖1. Hence

M̃2(r1, t1) − M̃1(r1, t1) � ‖�K‖1 sup
x

(M2 − M1)(x, t1) = ‖�K‖1(M2 − M1)(r1, t1),

which proves the claim (2.15). Finally, for the last term in (2.9), as a result of (2.11) we have

∂rM2∂V − ∂rM1∂V = 0. (2.17)

Now we subtract (2.9) with the corresponding equation for the subsolution. Due to the inequalities (2.13), (2.14),
(2.15) and (2.17), we obtain that

∂t (M2 − M1) � umax
(|c2| + c3‖�K‖1

)
(M2 − M1).

Hence if we choose λ > umax(|c2| + c3‖�K‖1) in the beginning of the proof, the inequality above will contra-
dict (2.10). �
Remark 2.5. If both u1 and u2 are supported in some compact set B(0,R) for 0 � t � T , then the assumption (K2)
can be replaced by (K2′) as follows:

(K2′) �K ∈ L1
loc(R

d), �K � 0 and is radially decreasing.

The proof under condition (K2′) is almost the same, except that there is some change in (2.15). Note that in this
case (2.16) still holds, and we can bound the maximum of χB(0,r1) ∗ �K by

∫
B(0,R)

�K dx. This yields an inequality
similar to (2.15), with the ‖�K‖1 in the right-hand side replaced by

∫
B(0,R)

�K dx.
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3. Application to critical Patlak–Keller–Segel models

3.1. Convergence towards stationary solution for critical mass

In this subsection, we prove that every radial solution with mass Mc and continuous, compactly supported initial
data will be eventually attracted to some stationary solution within the family (1.4).

If the initial data is bounded above and has the critical mass Mc, then it is proved in [8] that the free energy solution
to (1.1) exists globally in time. In the next lemma we prove the solution has a global (in time) L∞ bound. In addition,
if the initial data is radially symmetric and compactly supported, then the support of the solution would stay uniformly
bounded in time.

Lemma 3.1. Suppose d � 3 and m = 2 − 2/d . Consider the problem (1.1) with initial data u0 ∈
L1+(Rd ; (1+|x|2) dx)∩L∞(Rd), where u0 is continuous and has critical mass Mc . Then the L∞-norm of the weak so-
lution u(x, t) is globally bounded, i.e. there exists K1 > 0 depending on ‖u0‖∞ and d , such that ‖u(·, t)‖L∞(Rd ) � K1
for all t � 0.

If u0 is radially symmetric and compactly supported in addition to the assumptions above, then there exists some
R2 > 0, such that {u(·, t) > 0} ⊆ B(0,R2) for all t � 0, where R2 depend on d and u0.

Proof. In order to bound the L∞-norm of u(·, t), we first consider Eq. (1.1) with symmetrized initial data, which is
described below. Let ū(·, t) be the solution to (1.1) with initial data u∗

0, where u∗
0(·) is the radial decreasing rearrange-

ment of u0. Here the radial decreasing rearrangement of a non-negative function f is defined as

f ∗(x) :=
∞∫

0

χ{f >t}∗(x) dt. (3.1)

Since ū has a radially symmetric initial data and has mass Mc, due to [8], we readily obtain that ū exists globally in
time, and ū is radially symmetric for all t � 0. We first prove that there is a global L∞ bound for ū.

Since ‖ū(·,0)‖∞ = ‖u0‖∞ < ∞, we can choose R1 > 0 depending on ‖u0‖∞, where R1 is sufficiently small such
that u∗

0 ≺ uR1 , where uR1 is as defined in (1.4). Then the mass comparison result in Proposition 2.4 yields that

ū(·, t) ≺ uR1 for all t � 0. (3.2)

Now we go back to the original solution u, and compare u with ū. It is proved in Theorem 6.3 of [23] that

u∗(·, t) ≺ ū(·, t) for all t � 0.

Combining the above two inequalities together, we readily obtain that

u∗(·, t) ≺ uR1 for all t � 0,

which implies that u∗(0, t) � uR1(0) for t � 0. Note that u∗(·, t) is radially decreasing for all t � 0 by definition, and
uR1 is radially decreasing due to [8]. Hence the above inequality implies that∥∥u(·, t)∥∥∞ = ∥∥u∗(·, t)∥∥∞ � ‖uR1‖∞ = R−d

1 u1(0) for t � 0, (3.3)

thus u has a global L∞ bound R−d
1 u1(0), where u1 is as defined in (1.4).

Next we hope to show that if u0 is radially symmetric and compactly supported in addition to the conditions above,
the support of u(·, t) will stay in some compact set for all time. We first prove it for the case where u0(0) > 0. Due
to the continuity of u0, we have u0 is uniformly positive in a neighborhood of 0. This enables us to choose R2 > 0
sufficiently large such that u0 � uR2 , where uR2 is as defined in (1.4). Proposition 2.4 again gives us u(·, t) � uR2 for
all t � 0, which implies that

suppu(·, t) ⊆ suppuR2 = B(0,R2) for all t � 0.

If u0(0) = 0, we claim that after some finite time t1, u(0, t1) becomes positive, and u(·, t1) has a compact support,
where t1 depends on d and u0. Then we can take t1 as the starting time and argue as in the case u0(0) > 0.
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Now we will prove the claim. This is done by performing the mass comparison between u and w, where w is the
solution to the porous medium equation

wt = �wm in R
d × [0,∞), (3.4)

with initial data w(·,0) = u0. It can be readily checked that u is a supersolution of (3.4) in the mass comparison sense,
hence Proposition 2.4 implies that u(·, t) � w(·, t) for all t � 0, which yields

u(0, t) �w(0, t) and suppu(·, t) ⊆ suppw(·, t) for all t � 0. (3.5)

For the porous medium equation (3.4), it is well known that the solution will eventually converge to the self-similar
Barenblatt profile (see [32] for example), which has a positive density at 0 for all t � 0. Hence there exists some t1 � 0
such that w(0, t1) > 0. In addition, w(·, t1) has a compact support, due to the finite speed of propagation property of
porous medium equation [32]. Therefore (3.5) yields that u(0, t1) � w(0, t1) > 0 and u(·, t1) is compactly supported,
which prove the claim. �

Next we prove that under the conditions in Lemma 3.1, every radial solution converges to some stationary solution
in the family (1.4) as t → ∞. To do this we investigate the free energy functional (1.2), and make use of the following
result proved in [8] and [4]: Let u be a free energy solution (for definition, see [8, Definition 3.1]) to (1.1), then it
satisfies the following energy dissipation inequality for almost every t during its existence:

F
(
u(t)

) +
t∫

0

∫
Rd

u

∣∣∣∣ m

m − 1
∇um−1 + ∇N ∗ u

∣∣∣∣2

dx dt �F(u0). (3.6)

Theorem 3.2. Suppose d � 3 and m = 2 − 2/d . Let u(x, t) be the free energy solution to (1.1) with critical mass Mc

and nonnegative initial data u0, where u0 is continuous, radially symmetric and compactly supported, and satisfies
∇um

0 ∈ L2(Rd). Then there exists R0 > 0 depending on u0 and d , such that u(·, t) → uR0 in L∞(Rd) as t → ∞,
where uR0 is as defined in (1.4).

Proof. Due to Lemma 3.1, we obtain the existence of a free energy solution globally in time, which has a global L∞
bound. In addition, by treating u ∗ N as an a priori potential in (1.1) and applying the continuity result in [16], we
obtain that u(x, t) is uniformly continuous in space and time in [τ,∞) for all τ > 0.

Our preliminary goal is to find a time sequence {tn} which increases to infinity, such that u(tn) uniformly converges
to some stationary solution as n → ∞. Note that F(u(·, t)) is non-increasing for almost every t due to (3.6), and is
bounded below as t → ∞. This enables us to find a time sequence {tn} which increases to infinity, such that

lim
n→∞

∫
Rd

u(tn)

∣∣∣∣ m

m − 1
∇u(tn)

m−1 + ∇N ∗ u(tn)

∣∣∣∣2

dx = 0. (3.7)

We will slightly abuse the notation and denote u(tn) by un. Note that {un} is uniformly bounded and equicontinuous,
hence Arzelà–Ascoli theorem enables us to find a subsequence of {un}, such that

un → u∞ uniformly in n, (3.8)

where u∞ is some radially symmetric and continuous function. Moreover, Lemma 3.1 implies that the support of {un}
all stays in some fixed compact set, hence we have u∞ is compactly supported as well, and it has mass Mc. We will
prove that u∞ is indeed a stationary solution later.

We first claim that {∇um
n } are uniformly bounded in L2(Rd). To prove the claim, note that∫

Rd

∣∣∇um
n + un∇N ∗ un

∣∣2
dx � ‖un‖∞

∫
Rd

un

∣∣∣∣ m

m − 1
∇um−1

n + ∇N ∗ un

∣∣∣∣2

dx,

where the right-hand side is uniformly bounded for all n. In addition, since {un} are uniformly bounded and are all
supported in some B(0,R), we know

∫
Rd un|∇N ∗ un|2 dx is also uniformly bounded for all n. Therefore triangle

inequality yields the uniform boundedness of
∫

d |∇um
n |2 dx, which proves the claim.
R
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The uniform boundedness of {∇um
n } in L2(Rd) implies that {∇um∞} is in L2(Rd) as well. Moreover, we can find a

subsequence of {un} (which we again denote by {un} for the simplicity of notation), such that

∇um
n ⇀ ∇um∞ as n → ∞ weakly in L1(

R
d
L : Rd

)
. (3.9)

Using (3.7) and the two convergence properties (3.8) and (3.9), we can proceed in the same way as Lemma 10 in [13]
and prove that u∞ satisfies∫

Rd

u∞
∣∣∣∣ m

m − 1
∇um−1∞ + ∇N ∗ u∞

∣∣∣∣2

dx = 0. (3.10)

Next we claim that u∞ is a radial stationary solution to (1.1). First note that u∞ is continuous, compactly supported
(since the support of u(·, t) is uniformly bounded in t ) and radially symmetric. Moreover, due to (3.10), m

m−1∂ru
m−1∞ =

−∂r(N ∗ u∞) = − M(r)

σdrd−1 � 0 holds almost everywhere in the support of u∞, where M(r) := ∫
B(0,r)

u∞(x) dx is the
mass function for u∞. This implies that u∞(x) must be radially decreasing, hence it only has one positive compo-
nent. In other words, the support of u∞ must coincide with B(0,R0) for some R0. (3.10) then implies m

m−1um−1∞ +
N ∗u∞ = C holds in B(0,R0) for some constant C. Due to the fact that N ∗u∞ is once more differentiable than u∞,
one can iteratively show that u∞ is indeed C∞ in B(0,R0), hence it is a classical solution to the following equation:{ m

m − 1
�um−1∞ + u∞ = 0 in B(0,R0),

u∞ = 0 on ∂B(0,R0),

hence u∞ is indeed in the family (1.4).
Next we will prove that u(·, t) → u∞ uniformly in L∞(Rd) as t → ∞. In order to prove this, we make use of the

monotonicity of the second moment of u(·, t) in time. By combining the following Virial identity

d

dt

∫
Rd

|x|2u(x, t) dx = 2(d − 2)F
[
u(t)

]
for all t (3.11)

with the fact that the minimizer of F has free energy 0, it is shown in [8] that

M2
[
u(·, t)] :=

∫
Rd

|x|2u(x, t) dt is non-decreasing in t. (3.12)

This implies that any subsequence of u(·, t) can converge to only one limit: if not, then we can find another sequence
{t ′n} increasing to infinity, such that u(t ′n) converges to another stationary solution u′∞ uniformly as n → ∞, where
u′∞ is also in the family (1.4). Since u(t ′n) are uniformly bounded and uniformly compactly supported, we have
M2[u(t ′n)] → M2[u′∞]. On the other hand for the time sequence {tn} we have M2[u(tn)] → M2[u∞], hence (3.12)
implies that u∞ and u′∞ must have the same second moment. Since both u∞ and u′∞ are within the family (1.4), they
can have the same second moment only if they are the same stationary solution. �
Remark 3.3. Since the proof is done by extracting a subsequence of time, we are unable to obtain the rate of the
convergence. We also point out that the above proof is for radial solution only; for general initial data the difficulty
lies in the fact that we are unable to bound the solution in some compact set uniform in time.

3.2. Convergence towards self-similar solution for subcritical mass, radial case

In this subsection, we prove that every radial solution with subcritical mass and compactly supported initial data
would converge to some self-similar solution which is dissipating with the same scaling as the solution of the porous
medium equation.

Let u be the free energy solution to (1.1), with mass A ∈ (0,Mc). Following [32] and [8], we rescale u according
to the scaling from porous medium equation:

μ(λ, τ) = (t + 1)u(x, t); λ = x(t + 1)−1/d ; τ = ln(t + 1). (3.13)
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Then μ(λ,0) = u(x,0), and μ(λ, τ) solves the following rescaled equation

μτ = �μm + ∇ ·
(

μ∇ |λ|2
2d

)
+ ∇ · (μ∇(μ ∗N )

)
. (3.14)

It is pointed out in Theorem 5.2 of [8] that the free energy associated to the rescaled problem (3.14) is

G
(
μ(·, t)) :=

∫
Rd

(
m

m − 1
μm + 1

2
μ(N ∗ μ) + |λ|2μ

2d

)
dλ, (3.15)

and for any mass A ∈ (0,Mc), there is a unique minimizer μA of G in ZA subject to translation, where ZA :=
{h ∈ L1(Rd) ∩ Lm(Rd): ‖h‖1 = M and

∫
Rd |x|2h(x)dx � ∞}. In addition, μA is continuous, radially decreasing

and has a compact support, and μA satisfies

m

m − 1

∂

∂r
μm−1

A + r

d
+ M(r;μA)

σdrd−1
= 0 (3.16)

in its positive set, where the mass function M is as defined in (2.2).
Since μA is a stationary solution of (3.14), if we go back to the original scaling, μA gives a self-similar solution

of (1.1):

uA(x, t) = (t + 1)−1μA

(
x

(t + 1)1/d

)
. (3.17)

It is then asked in [8] and [7] that whether this self-similar solution attracts all global solutions.
We will first prove that all radial solutions to the rescaled equation (3.14) converge to μA. The following lemma

constructs a family of explicit solutions to (3.14), which all converge to μA exponentially fast as τ → ∞.

Lemma 3.4 (A family of explicit solutions). Suppose d � 3 and m = 2 − 2/d . For 0 < A < Mc, we denote by μA the
stationary solution of (3.14). Let μ̄ be defined as

μ̄(λ, τ ) := 1

Rd(τ)
μA

(
λ

R(τ)

)
, (3.18)

where R(τ) solves the ODE⎧⎨
⎩ Ṙ(τ ) = 1

d

(
1

Rd
− 1

)
R,

R(0) = R0,

(3.19)

where R0 > 0 is a constant. Then for any R0 > 0, μ̄(λ, τ ) is a weak solution to (3.14).

Proof. Since μ̄ is a self-similar function, it can be easily verified that μ̄ solves the following transport equation

μ̄τ + ∇ ·
(

μ̄
Ṙ(τ )

R(τ)
λ

)
= 0.

On the other hand, note that (3.14) can also be written as a transport equation

μτ = ∇ · (μ�v),

where

�v = m

m − 1
∇μm−1 + λ

d
+ M(|λ|, τ ;μ)

σd |λ|d−1

λ

|λ| .
Therefore, to prove that μ̄ solves (3.14), it suffices to verify that

− Ṙ(τ )

R(τ)
r = m

m − 1

∂

∂r
μ̄m−1︸ ︷︷ ︸
T

+ r

d
+ M(r, τ ; μ̄)

σdrd−1︸ ︷︷ ︸ for 0 � r � R(τ). (3.20)
1 T2
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Since μ̄ is a rescaling of μA,

T1 = 1

R(m−1)d+1

(
∂

∂r
μm−1

A

)(
r

R(τ)

)
= 1

Rd−1

(
∂

∂r
μm−1

A

)(
r

R(τ)

)
,

where in the last inequality we used the fact that m is the critical power, i.e. m = 2 − 2/d . For T2 in (3.20), the
definition of μ̄ gives

T2 = 1

R(τ)d−1

M( r
R(τ)

;μA)

σd( r
R(τ)

)d−1
for 0 � r � R(τ).

Now recall that μA satisfies (3.16) in its positive set, which implies

RHS of (3.20) = 1

R(τ)d−1

(
m

m − 1

∂

∂r
μm−1

A

(
r

R(τ)

)
+ r

dR(τ)
+ M( r

R(τ)
;μA)

σd( r
R(τ)

)d−1

)
+ 1

d

(
1 − 1

Rd(τ)

)
r

= 1

d

(
1 − 1

Rd(τ)

)
r

= − Ṙ(τ )

R(τ)
r,

where the last equality comes from the definition of R in (3.19). This verifies that (3.20) is indeed true, which com-
pletes the proof. �

Next we use the family of explicit solution constructed above as barriers, and perform mass comparison between
the real solution and the barriers.

Proposition 3.5. Suppose d � 3 and m = 2 − 2/d . Let μ(λ, τ) be a radially symmetric weak solution to (3.14)
with mass 0 < A < Mc, where the initial data μ(·,0) is nonnegative, continuous and compactly supported. Then as
τ → ∞, the mass function of μ converges to the mass function of μA exponentially, i.e.

sup
r

∣∣M(r, τ ;μ) − M(r, τ ;μA)
∣∣ � Ce−τ ,

where μA is as defined in (3.16), and C depends on d,A and μ(·,0).

Proof. Without loss of generality we assume that μ(0,0) > 0. (When μ(0,0) = 0, from the same discussion
in Lemma 3.1, μ(0, τ ) will become positive after some finite time.) Then we can find R01 sufficiently small and
R02 sufficiently large, such that

1

Rd
02

μA

( ·
R02

)
≺ μ(·,0) ≺ 1

Rd
01

μA

( ·
R01

)
,

where in the first inequality we used that μ(0,0) > 0, and in the second inequality we used ‖μ(·,0)‖∞ < ∞.
Let μ1(λ, τ ) and μ2(λ, τ ) be defined as in (3.18), with R(0) equal to R01 and R02 respectively. Then Lemma 3.4

says that both μ1 and μ2 are solutions to (3.14). Note that (3.14) is a special case of (2.1), hence the mass comparison
result in Proposition 2.4 holds here as well, which gives

μ2(·, τ ) ≺ μ(·, τ ) ≺ μ1(·, τ ) for all τ � 0,

or in other words,

M(·, τ ;μ2) �M(·, τ ;μ) � M(·, τ ;μ1) for all τ � 0.

It remains to show that

sup
∣∣M(r, τ ;μi) − M(r;μA)

∣∣ � Ce−τ for i = 1,2.

r
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Recall that both μi ’s are scalings of μA with scaling coefficient Ri(τ ), hence

∣∣M(r, τ ;μi) − M(r;μA)
∣∣ =

∣∣∣∣M
(

r

Ri(τ )
;μA

)
− M(r;μA)

∣∣∣∣. (3.21)

Since μA is bounded and compactly supported, it suffices to show that Ri(τ ) → 1 exponentially as r → ∞. Recall
that Ṙi = 1

d
( 1
Rd

i

− 1)Ri with initial data R0i for i = 1,2, a simple calculation reveals that |Ri(τ ) − 1|� Cie
−τ , where

Ci depends on R0i . This implies that the right-hand side of (3.21) decays like e−τ , which completes the proof. �
Making use of the explicit barriers μ1 and μ2 constructed in the proof of Proposition 3.5, we get exponential

convergence of μ/A towards the μA/A in the p-Wasserstein metric, which is defined below. Note that the Wasserstein
metric is natural for this problem, since as pointed out in [1] and [14], Eq. (1.1) is formally a gradient flow of the free
energy (1.2) with respect to the 2-Wasserstein metric.

Definition 3.6. Let μ1 and μ2 be two (Borel) probability measures on R
d with finite p-th moment. Then the

p-Wasserstein distance between μ1 and μ2 is defined as

Wp(μ1,μ2) :=
(

inf
π∈P(μ1,μ2)

{ ∫
Rd×Rd

|x − y|p π(dx dy)

}) 1
p

,

where P(μ1,μ2) is the set of all probability measures on R
d ×R

d with first marginal μ1 and second marginal μ2.

Corollary 3.7. Let d � 3, and m = 2 − 2
d

. Let μ(λ, τ) and μA be as given in Proposition 3.5. Then for all p > 1, we
have

Wp

(
μ(·, τ )

A
,
μA

A

)
� Ce−τ ,

where C depends on d and μ(·,0).

Proof. The proof is very similar to the proof of Corollary 5.8 in [23], and we will briefly sketch it below for the sake
of self-consistency.

First we state a useful property of Wasserstein distance [33]: for two probability densities f0, f1 on R
d , the

p-Wasserstein distance between them coincides with the solution of Monge’s optimal mass transportation problem.
Namely,

Wp(f1, f0) =
(

inf
T #f0=f1

∫
Rd

f0(x)
∣∣x − T (x)

∣∣p dx

) 1
p

, (3.22)

where T is a “push-forward map” from R
d to R

d , and T # f0 = f1 stands for “the map T transports f0 onto f1”, in
the sense that for all bounded continuous function h on R

d ,∫
Rd

h(x)f1(x) dx =
∫
Rd

h
(
T (x)

)
f0(x) dx.

Without loss of generality we assume the mass A = 1. In order to prove that Wp(μ(·, τ ),μA) is small, it suffices
to show that there is a push-forward map T (·, τ ) satisfying T (·, τ ) # μ(·, τ ) = μA, such that |T (x, τ ) − x| � Ce−τ

holds for all x and τ > 0 for some C.
The exact formula for T (x, τ ) is a little bit complicated, so we will first look for a push-forward map T̃ that pushes

the “subsolution” μ2 to the “supersolution” μ1, where μ2 and μ1 are defined in the proof of Proposition 3.5. Note
that for each τ , μ2 and μ1 are exact scalings of each other:

μ1(·, τ ) = R2(τ )d

d
μ1

( ·R2(τ )
)

,

R1(τ ) R1(τ )
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where R1(τ ) and R2(τ ) are both solutions to (3.19) with initial data R01 and R02 respectively. This means that one
can let T̃ (x, τ ) be a simple scaling T̃ (x, τ ) = x

R1(τ )
R2(τ )

in B(0,R2(τ )) (the definition of T̃ outside of B(0,R2(τ )) is not
important since μ2 is supported in B(0,R2(τ ))), then we would have

T̃ (x, τ ) # μ2(·, τ ) = μ̃1(·, τ ),

and |T̃ (x, τ ) − x| � CR1(τ )/R2(τ ) � Ce−τ for all x ∈ B(0,R2(τ )), which means the Wasserstein distance between
μ1 and μ2 is decaying exponentially fast.

Finally, note that both μ(·, τ ) and μA(·) are “squeezed” between μ1(·, τ ) and μ2(·, τ ) in the mass comparison
sense. This would imply Wp(μ(·, τ ),μA) � Wp(μ1(·, τ ),μ2(·, τ )), which concludes the proof. For details of the
proof, we refer the readers to Corollary 5.8 in [23]. �

Rescaling back to the original space and time variables, we have

u(x, t) = 1

t + 1
μ

(
x

(t + 1)1/d
, ln(t + 1)

)
.

Thus Corollary 3.7 immediately yields the algebraic convergence towards the dissipating self-similar solution (3.17):

Corollary 3.8. Let u(x, t) be a radial solution to (1.1) with mass 0 < A < Mc , where the initial data u(·,0) ∈
L1+(Rd ; (1 + |x|2) dx) ∩ L∞(Rd) is continuous and compactly supported. Let uA be the dissipating self-similar so-
lution with mass A defined in (3.17). Then u/A converges to uA/A in p-Wasserstein distance algebraically fast as
t → ∞ for all p > 1. More precisely,

Wp

(
u(·, t)

A
,
uA

A

)
� Ct−(d−1)/d ,

where C depends on d,A and u(·,0).

3.3. Convergence towards self-similar solution for subcritical mass, non-radial case

In this subsection, we consider the rescaled equation (3.14) with general (possibly non-radial) initial data. The key
result here is that when the mass A < Mc is sufficiently small, the radially symmetric stationary solution μA as defined
in (3.16) is the unique compactly supported stationary solution (in rescaled variables). Then a similar argument as in
Theorem 3.2 shows that every solution to (3.14) with small mass and compactly supported initial data converges
to μA. After scaling back to the original variables, we immediately obtain the convergence towards the self-similar
solution if the mass is small.

We first prove an L∞-regularization result, saying that if the initial mass is small, then the L∞-norm of solution
to (3.14) will become small after unit time, regardless of the L∞-norm of the initial data. We point out that a similar
L∞-regularization result is proved in [29] for the 2D case with linear diffusion, using a De Giorgi type method.

Lemma 3.9. Suppose d � 3 and m = 2 − 2/d . Let μ(λ, τ) be a weak solution to (3.14) with mass 0 < A < Mc/2,
where the initial data μ0 ∈ L1+(Rd ; (1 + |x|2) dx) ∩ L∞(Rd) is continuous. Then we have∥∥μ(·, τ )

∥∥∞ � KA := CA2/d for all τ � 1, (3.23)

where C is some constant depending only on d .

Proof. Similar argument as the proof of Lemma 3.1 yields that

μ∗(·, τ ) ≺ μ̄(·, τ ) for all τ � 0, (3.24)

where μ̄(·, τ ) is the solution to (3.14) with initial data μ∗
0. Since μ∗

0 is radially symmetric and bounded above, we
can find R0 sufficiently small, such that μ∗

0 ≺ 1
Rd

0
μA( ·

R0
), where μA is as defined in (3.16). It then follows from

Proposition 2.4 and Lemma 3.4 that
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μ̄(·, τ ) ≺ 1

R(τ)d
μA

( ·
R(τ)

)
for all τ � 0, (3.25)

where R(τ) satisfies the ODE (3.19) with initial data R(0) = R0. Combining (3.24) and (3.25), we obtain that

∥∥μ(·, τ )
∥∥∞ = ∥∥μ∗(·, τ )

∥∥∞ � 1

R(τ)d
‖μA‖∞ for all τ � 0.

In order to bound the right-hand side of the above inequality, we first find an upper bound for 1/R(τ)d . It can be readily

verified that R̃(τ ) = min{ 1
2τ

1
d+1 , 1

2 } is a subsolution to (3.19) for any R0 > 0, which implies that R(τ) � R̃(τ ) � 1
2

for all τ � 1, thus 1
R(τ)d

� 2d for all τ � 1.
Next we will estimate ‖μA‖∞. Note that μA is radially decreasing for any 0 < A < Mc , moreover ‖μA‖∞ = μA(0)

is increasing with respect to A. Therefore we readily obtain a rough bound ‖μA‖∞ � C1 for all 0 < A < Mc/2, where
C1 = μMc/2(0) only depends on d .

Note that this rough bound of ‖μA‖∞ gives us an upper bound for the velocity field given by the interaction term,
namely

∂r(μA ∗N ) = M(r;μA)

σdrd−1
� C1r

d
. (3.26)

To refine the bound for ‖μA‖∞, we compare μA with μ̃A, where μ̃A is the radial stationary solution to the following
equation

μτ = �μm + ∇ ·
(

μ∇ (1 + C1)|λ|2
2d

)
. (3.27)

Making use of (3.26), mass comparison yields that μA ≺ μ̃A, which implies μA(0) � μ̃A(0). On the other hand note
that (3.27) is a Fokker–Planck equation, whose stationary solution is given by

μ̃A =
(

CA − (1 + C1)(m − 1)

2dm
|λ|2

)1/(m−1)

+
,

where CA > 0 is the unique constant such that ‖μ̃A‖1 = A. A simple algebraic manipulation shows that μ̃A(0) �
CA2/d , where C > 0 depends only on d , therefore we can conclude. �

The next lemma shows that if the mass is small, any solution with compactly supported initial data will eventually
be confined in some small disk.

Lemma 3.10. Suppose d � 3 and m = 2 − 2/d . Then for any R0 > 0, there exists some sufficiently small A0 > 0, such
that all weak solutions to (3.14) with continuous and compactly supported initial data and mass 0 < A < A0 will be
eventually confined in B(0,R0).

Proof. Let μ(λ, τ) be a weak solution to (3.14) with continuous and compactly supported initial data and mass
0 < A < A0, where A0 is a small constant depending on R0 and d to be determined later.

In the proof of this lemma we take τ = 1 to be the starting time, in order to take advantage of the estimate (3.23).
Our goal is to show that if the support of μ(·,1) is contained in some disk B(0,R) where R > R0 − KA and KA is as
defined in (3.23), then there exists some time T > 1 to be determined later, such that

suppμ(·, τ ) ⊂ B(0,R + KA) for all τ ∈ [1, T ], (3.28)

moreover at time T the support can be fit into some disk smaller than B(0,R), namely

suppμ(·, T ) ⊂ B(0,R − KA/2). (3.29)

By taking T as the starting time and repeating this procedure, we know that eventually the support will be confined in
B(0,R0).
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In order to deal with non-radial solution, we shall construct barriers in the density sense instead of in mass sense.
Although comparison principle in density sense does not directly hold for (3.14) due to the nonlocal term, if we treat
V (λ, τ) := μ ∗N as a fixed a priori potential, then (3.14) becomes

μτ = �μm + ∇ ·
(

μ∇
( |λ|2

2d
+ V (λ, τ)

))
, (3.30)

which is a porous medium equation with a drift, and the weak solutions to it enjoy the comparison principle due to [5].
It follows from (3.23) that the following estimates of V hold

�V (λ, τ) � sup
λ,τ

μ� KA for λ ∈R
d , τ � 1,

and ∣∣∇V (λ, τ)
∣∣ � sup

μ,λ

(
μ ∗ 1

σd |λ|d−1

)
� C(d)A

3
d
− 2

d2 for λ ∈R
d , τ � 1.

Note that in both estimates above, the right-hand side will go to zero as A → 0. We also point out that if R � A
3
d
− 2

d2 ,

then ∇V will be dominated by ∇ |λ|2
2d

around r = R.
Next we will construct some explicit supersolution μ̃ to (3.30). More precisely, we hope to find a continuous

radially decreasing function μ̃ defined in {r > R − KA} × [1, T ] for some T , such that μ̃ satisfies the following
inequality

μ̃τ � ∂rr μ̃
m +

(
∂r + d − 1

r

)(
μ̃r

d

)
+ μ̃KA + |∂r μ̃|C(d)A

3
d
− 2

d2 for all r > R − KA, τ ∈ [1, T ], (3.31)

while μ̃ also satisfies the initial condition

μ̃(r,0) � KA for all R − KA � r � R, (3.32)

and the boundary condition

μ̃(r, τ ) � KA at r = R − KA for all τ ∈ [1, T ]. (3.33)

The inequalities (3.31)–(3.34) guarantee that μ̃ is a supersolution to (3.30). If A is small enough such that R >

CA
3
d
− 2

d2 for some large constant C depending on d , one can check that

μ̃(λ, τ ) = [
2KA − τ

(
r − (R − KA)

)]1/m

+
satisfies the inequalities (3.31)–(3.33) for 1 � τ � 4, hence comparison principle yields that μ � μ̃ in {r > R − KA}
for all τ ∈ [1,4].

The reason we choose μ̃ as above is that its support will shrink after some time: note that its support stays in
B(0,R + KA) for τ ∈ [1,4], and most importantly, at τ = 4, the support of μ̃ can be fit into a disk smaller than
B(0,R), namely

supp μ̃(·,4) ⊂ B(0,R − KA/2). (3.34)

Since comparison property gives that suppμ(·, τ ) ⊂ supp μ̃(·, τ ) for all τ ∈ [1,4], we immediately obtain (3.28)
and (3.29), which complete the proof. �

Making use of the above two lemmas, in the next theorem we show that when the mass is sufficiently small, there
cannot be any non-radial stationary solutions.

Theorem 3.11. Suppose d � 3 and m = 2 − 2/d . Then when 0 < A < Mc/2 is sufficiently small, the compactly
supported stationary solution to (3.14) is unique.
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Proof. Due to Corollary 3.7, we know that for any 0 < A < Mc , there does not exist any compactly supported
radial stationary solution other than μA. Hence it suffices to prove that when A is sufficiently small, every compactly
supported stationary solution is radially symmetric.

Suppose νA(λ) is a compactly supported stationary solution to (3.14), which is not radially symmetric. Since νA is
stationary, it satisfies

m

m − 1
νm−1
A + νA ∗N + |λ|2

d
= C in {νA > 0}, (3.35)

where different positive components of νA may have different C’s. Heuristically, the idea is to argue that the term
νA ∗N must be more “roundish” than m

m−1νm−1
A if νA is non-radial, thus get a contradiction.

We point out that (3.35) implies that νA is continuous in R
d and smooth inside its positive set. This enables us to

find two points a, b ∈ R
d in the same connected component of {νA > 0}, satisfying |a| = |b| and

νA(a) − νA(b) = sup
|x|=|y|

(
νA(x) − νA(y)

)
> 0. (3.36)

We claim that when A is sufficiently small, the following inequality holds

m

m − 1

∣∣νm−1
A (a) − νm−1

A (b)
∣∣ >

∣∣(νA ∗N )(a) − (νA ∗N )(b)
∣∣, (3.37)

then (3.37) would contradict (3.35).
We start with the left-hand side of (3.37): Lemma 3.9 implies that both νA(a) and νA(b) are much smaller than 1

when A is small. Since 0 < m − 1 < 1, it follows that
m

m − 1

∣∣νm−1
A (a) − νm−1

A (b)
∣∣ >

∣∣νA(a) − νA(b)
∣∣,

if A is sufficiently small. In order to prove (3.37), it suffices to show that∣∣(νA ∗N )(a) − (νA ∗N )(b)
∣∣ <

∣∣νA(a) − νA(b)
∣∣. (3.38)

We introduce a linear transformation T : Rd → R
d which is a rotation that maps a to b. Then radial symmetry

of N yields that (νA ∗N )(b) = ((νA ◦ T ) ∗N )(a).
In addition, T being a rotation implies that |T (x)| = |x| for any x = R

d , hence from the way we choose a and b,
we have |νA(T (x)) − νA(x)| � νA(a) − νA(b) for any x ∈R

d . Thus∣∣(νA ∗N )(a) − (νA ∗N )(b)
∣∣ = ∣∣(νA ∗N )(a) − (

(νA ◦ T ) ∗N
)
(a)

∣∣
�

∫
Rd

∣∣νA(y) − νA

(
T (y)

)∣∣∣∣N (a − y)
∣∣dy

�
(
νA(a) − νA(b)

) ∫
B(0,R)

∣∣N (y)
∣∣dy,

where B(0,R) is the smallest disk that contains the support of νA. Now we make use of Lemma 3.10, which shows
that we can fit the support of νA into an arbitrarily small disk by letting A be sufficiently small. Therefore we can
choose R such that

∫
B(0,R)

|N (y)|dy < 1/2, then let A be sufficiently small such that suppνA ⊂ B(0,R). This gives
us (3.38), which leads to a contradiction and hence completes the proof. �
Remark 3.12. For general 0 < A < Mc , we are unable to prove the uniqueness of the compactly supported stationary
solution. The difficulty lies in the fact that for larger mass we are only able to show the support lies in a disk with
radius O(1). Hence instead of (3.38), we can only obtain |(νA ∗N )(a) − (νA ∗N )(b)| < C|νA(a) − νA(b)|, where C

might be a large constant, which stops us from getting a contradiction.

Once we obtain the uniqueness of compactly supported stationary solution for small mass, the following corollary
shows that all solution with compactly supported initial data must converge to this unique stationary solution as
τ → ∞.
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Corollary 3.13. Suppose d � 3 and m = 2 − 2/d . Let μ(λ, τ) be a weak solution to (3.14) with mass 0 < A < Mc/2
being sufficiently small, where the initial data μ(·,0) is nonnegative, continuous and compactly supported. Then as
τ → ∞, we have∥∥μ(·, τ ) − μA(·)∥∥∞ → 0, (3.39)

where μA is as defined in (3.16).

Proof. The proof is similar as the proof of Theorem 3.2, and actually it is simpler here since there is a unique
stationary solution, instead of a family of stationary solution in the case of Theorem 3.2.

When the initial data μ(·,0) is bounded and compactly supported, Lemma 3.9 and Lemma 3.10 show that μ(·, τ )

would be uniformly bounded and stay in some fixed compact set for all τ � 1. In addition, the continuity result in [16]
indicates that μ(λ, τ) is uniformly continuous in space and time in R

d × [1,∞).
As a result, for any time sequence τn that increases to infinity, using the same argument as in the proof of Theo-

rem 3.2, we can extract a subsequence τnk
such that μ(·, τnk

) uniformly converges to some continuous function μ∞,
where μ∞ is a compactly supported solution that satisfies (3.35). Theorem 3.11 ensures that μ∞ must coincide with
μA when A is sufficiently small, yielding that μ(·, τ ) indeed converges to μA uniformly as τ → ∞. �
Remark 3.14. Since μ(·,0) is confined in some compact set for all time, (3.39) implies that ‖μ(·, τ )−μA(·)‖p → 0 as
τ → ∞ for all p � 1. Now if we scale back to the original variables, it immediately follows that ‖u(·, t)−uA(·)‖p → 0
as t → ∞ for all p � 1, where uA is the dissipating self-similar solution as defined in (3.17). However the rate of
convergence here is unknown, since the proof is done by extracting a subsequence of time.

4. Application to aggregation models with repulsive–attractive interactions

In this section we consider the following integro-differential equation

ut = ∇ · (u∇K ∗ u), (4.1)

where the interaction kernel K has a repulsion component in the form of the Newtonian potential N (x) =
− 1

(d−2)σd |x|d−2 and an attraction component satisfying the power law, namely

K(x) =N (x) + 1

q
|x|q, (4.2)

where 2 − d < q � 2, and when q = 0 the second term is replaced by ln |x|.
The global existence of weak solution is established in [18] for q > 2 − d . Next we show that mass comparison

holds for (4.1) between weak solutions.

Proposition 4.1. Let u1(x, t), u2(x, t) be two radially symmetric weak solution to (4.1), which are compactly sup-
ported for all t � 0. If u1(·,0) ≺ u2(·,0), then u1(·, t) ≺ u2(·, t) for all t � 0.

Proof. Note that � 1
q
|x|q = (q + d − 2)|x|q−2, which is locally integrable in R

d , nonnegative and radially decreas-
ing when 2 − d < q � 2. Therefore the conditions (C), (K1), (K2′), (V1) are met, (where (K2′) is as defined in
Remark 2.5), and (4.1) becomes a special case of the general equation (2.1) in Section 2. Due to the discussion in
Remark 2.5, we can apply mass comparison to the compactly supported solutions.

Without loss of generality we assume that both u1(·,0) and u2(·,0) are continuous, and for general initial data
we can use approximation. Due to Theorem 2.5 of [18], we have Mi is C1 in both space and time for all t , where
i = 1,2. Now we can apply Proposition 2.4 to conclude that u1(·, t) ≺ u2(·, t) for all time: although the proof of
Proposition 2.4 requires Mi be C2 in space, the C2 requirement are only for the diffusion term. Since the right-hand
side of (4.1) only has aggregation terms, C1 continuity of Mi is sufficient. �

The following existence and uniqueness result of a stationary solution is established in [18].
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Proposition 4.2. (See [18, Theorem 3.1].) For every q > 2 − d and mass A > 0, there exists a unique radius RA (that
depends on q and d only) and a unique steady state us of the aggregation model (4.1)–(4.2) that is supported on
B(0,RA), has mass A and is continuous on its support.

In addition, us is radially decreasing in B(0,RA) if q � 2, and is radially increasing if q � 2.

It is proved by [18] that in its positive set, us satisfies ∇K ∗us = 0, which can also be written as −us +�( 1
q
|x|q)∗

us = 0, i.e.

−us + (q + d − 2)|x|q−2 ∗ us = 0 in {us > 0}. (4.3)

In the proposition below, we construct a family of explicit subsolutions, all of which are compactly supported and
converge to the stationary solution us exponentially fast.

Lemma 4.3 (A family of explicit subsolutions). Suppose d � 3 and 2 − d < q � 2. Let us be the stationary solution to
(4.1) with mass A, as given by Proposition 4.2. We define the self-similar function ū as

ū(x, t) := 1

Rd(t)
us

(
x

R(t)

)
, (4.4)

where R(t) solves the ODE{
Ṙ(t) = C1

(
1 − Rd+q−2)R−d+1,

R(0) = R0,
(4.5)

where R0 > 1, and C1 is some fixed constant only depending on q , d and A. Then for all t ∈ [0,∞), ū(x, t) is a
subsolution to (4.1) in the mass comparison sense.

Proof. The proof is similar to the proof of Lemma 3.4. Since ū is a self-similar function, it can be easily verified that
ū solves the following transport equation

ūt + ∇ ·
(

ū
Ṙ(t)

R(t)
x

)
= 0,

which implies that the mass function of ū satisfies

Mt(r, t; ū) = σdrd−1Mr(r, t; ū)

(
− Ṙ(t)

R(t)

)
r. (4.6)

Our goal is to show that ū is a subsolution to (4.1) in mass comparison sense, which is equivalent to the following
inequality due to Lemma 2.3:

Mt(r, t; ū)� σdrd−1Mr(r, t; ū)

[
M(r, t; ū)

σdrd−1
+ M̃(r, t; ū)

σdrd−1

]
, (4.7)

where M̃(r, t; ū) = ∫
B(0,r)

(q + d − 2)(|x|q−2 ∗ ū)(x, t) dx.

We point out that Mr is nonnegative by definition, since Mr(r, t; ū) = σdrd ū, where ū is nonnegative. By compar-
ing (4.6) and (4.7), it suffices to prove that the following inequality holds for ū(r, t) for all 0 � r � R(t):

− Ṙ(t)

R(t)
r � −M(r, t; ū)

σdrd−1
+ M̃(r, t; ū)

σdrd−1
. (4.8)

Next we will investigate the terms on the right-hand side of (4.8). Since ū is defined as a continuous scaling of us , for
the first term on the right-hand side of (4.8), we have

M(r, t; ū) = M

(
r

R(t)
;us

)
.

For the second term, we obtain that for any 0 � r � R(t),
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M̃(r, t; ū) = (q + d − 2)

∫
B(0,r)

∫
Rd

|x − y|q−2 1

R(t)d
us

(
y

R(t)

)
dy dx

= (q + d − 2)R(t)q−2
∫

B(0,r)

∫
Rd

∣∣∣∣ x

R(t)
− z

∣∣∣∣q−2

us(z) dz dx
(
z := y/R(t)

)

= (q + d − 2)R(t)q−2
∫

B(0,r)

(|x|q−2 ∗ us

)( x

R(t)

)
dx

= R(t)q−2
∫

B(0,r)

us

(
x

R(t)

)
dx

(
by (4.3)

)

= R(t)d+q−2M

(
r

R(t)
;us

)
.

Putting the above two equations together yields

RHS of (4.8) = (−1 + R(t)d+q−2)M( r
R(t)

;us)

σdrd−1

� C1
(−1 + R(t)d+q−2)R(t)−dr, (4.9)

where C1 only depends on q , d and A. Here in the last inequality we used the fact that us is radially decreasing,
which implies that M(r;us) � CA|B(0, r)| for all 0 � r � RA, where CA is the average density of us in its support
B(0,RA).

Since Ṙ = C1(1 − Rd+q−2)R−d+1 by definition, the above inequality implies that (4.8) is true, which completes
the proof. �
Remark 4.4. Similarly, we can construct a family of explicit supersolutions ū in the mass comparison sense: here ū is
defined in (4.4), where R(t) solves the ODE (4.5) with initial data 0 < R0 < 1, and the constant C1 in (4.5) is replaced
by some other fixed constant C2, which also only depends on q , d and A.

Making use of the subsolutions and supersolutions we constructed in Lemma 4.3 and Remark 4.4 respectively,
we next prove that all radial solutions with compactly supported initial data will converge to the unique stationary
solution exponentially fast.

Theorem 4.5. Suppose d � 3 and 2 − d < q � 2. Let u be a weak solution to (4.1) with initial data u0 and mass A,
where u0 ∈ L1(Rd) ∩ L∞(Rd) is non-negative, radially symmetric and compactly supported. In addition, we assume
that u0 is strictly positive in a neighborhood of 0. Let us be the unique stationary solution with mass A, as given by
Proposition 4.2. Then as t → ∞, u(·, t) converges to us exponentially fast in Wasserstein distance.

Proof. The proof is similar to the proof of Proposition 3.5. Since u0 is bounded, and is strictly positive in a neighbor-
hood of 0, we can find R01 sufficiently large and R02 sufficiently small, such that

1

Rd
01

us

( ·
R01

,0

)
≺ u0 ≺ 1

Rd
02

us

( ·
R02

,0

)
.

Let ū1 be the subsolution given by Lemma 4.3 with initial data 1
Rd

01
us(

·
R01

,0), and ū2 be the supersolution given by

Remark 4.4 with initial data 1
Rd

02
us(

·
R02

,0). Then mass comparison in Proposition 2.4 yields ū1(·, t) ≺ u(·, t) ≺ ū2(·, t)
for all t .

Now it suffices to show that ū1 and ū2 both converge to us exponentially fast in Wasserstein distance. Note that
ū1(·, t) is a continuous scaling of us with scaling coefficient R(t), where R(t) satisfies the ODE (4.5) and hence
converges to 1 exponentially. More precisely, we have
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∣∣R(t) − 1
∣∣� C′

1e
−C1(d+q−2)t ,

where C1 is as given in Lemma 4.3, and C′
1 depends on q , d and R01. Similar result holds for the supersolution ū2.

Then argue as in Corollary 3.7, we have for all p > 1 that

Wp

(
ui(·, t)

A
,
us

A

)
� c1e

−Ci(d+q−2)t for i = 1,2,

where ci depends on R0i respectively. Since us is squeezed between ū1 and ū2 in the mass comparison sense, the
inequality above yields

Wp

(
u(·, t)

A
,
us

A

)
� C′e−C(d+q−2)t for i = 1,2,

where C := min(C1,C2) depends on d, q and A, while C′ depends on d , q , A and u(·,0). �
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