ANN VERDOODT

Continued fractions for finite sums

Annales mathématiques Blaise Pascal, tome 1, n° 2 (1994), p. 71-84

<http://www.numdam.org/item?id=AMBP_1994__1_2_71_0>
CONTINUED FRACTIONS FOR FINITE SUMS

Ann Verdoott

Abstract

Our aim in this paper is to construct continued fractions for sums of the type
\[\sum_{i=0}^{n} b_i z^{c(i)} \] or \[\sum_{i=0}^{n} b_i / z^{c(i)} \], where \(b_n \) is a sequence such that \(b_n \) is different from zero if \(n \) is different from zero, and \(c(n) \) is an element of \(\mathbb{N} \).

1. Introduction

\([a_0, a_1, a_2, \ldots]\) denotes the continued fraction \(a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots}} \),

and \([a_0, a_1, \ldots, a_n]\) denotes \(a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \ldots + a_{n-1} + \frac{1}{a_n}}} \).

The \(a_i \)'s are called the partial quotients (or simply the quotients), and \([a_0, a_1, \ldots, a_n]\) is called a finite continued fraction.

Our aim in this paper is to construct continued fractions for sums of the type \(\sum_{i=0}^{n} b_i z^{c(i)} \) or \(\sum_{i=0}^{n} b_i / z^{c(i)} \), where \(c(i) \) is an element of \(\mathbb{N} \).
In section 2, we find continued fractions for finite sums of the type \(\sum_{i=0}^{n} b_i z^i \) (\(c(i) = i \))
or \(\sum_{i=0}^{n} b_i z^i \) (\(c(i) = q_i \)), where \((b_n) \) is a sequence such that \(b_n \) is different from zero if \(n \) is different from zero, and where \(q \) is a natural number different from zero and one.

Therefore, we start by giving a continued fraction for the sum \(\sum_{i=0}^{n} b_i T^i \), where \(b_i \) is different from zero for all \(i \) different from zero (\(b_i \) is a constant in \(T \)). This can be found in theorem 1.

If we replace \(b_i \) by \(b_i z^i \) in theorem 1, and we put \(T \) equal to one, we find a continued fraction for \(\sum_{i=0}^{n} b_i z^i \) (theorem 2), and if we replace \(b_i \) by \(b_i z^i \) in theorem 1, and we put \(T \) equal to one, we find a continued fraction for \(\sum_{i=0}^{n} b_i z^i \) (theorem 3) (\(q \) is a natural number different from zero and one).

In section 3 we find continued fractions for finite sums of the type \(\sum_{i=0}^{n} \frac{b_i}{z^{c(i)}} \), for some sequences \((b_n) \) and \((c(n)) \), where \(c(n) \) is a natural number.

In theorem 4, we find a result for \(c(i) \) equal to \(2^i \) (for all \(i \)).

Finally, in theorem 5, we give a continued fraction for \(\sum_{i=0}^{n} \frac{b_i}{z^{c(i)}} \), where \(c(0) \) equals zero, and \(c(n+1) - 2c(n) \geq 0 \).

The results in this paper are extensions of results that can be found in [2], [3] and [4].

Acknowledgement: I thank professor Van Hamme for the help and the advice he gave me during the preparation of this paper.
2. Continued fractions for sums of the type \(\sum_{i=0}^{n} b_i z^i \)

All the proofs in sections 2 and 3 can be given with the aid of the following simple lemma:

Lemma

Let

\[
\begin{align*}
p_0 &= a_0, & q_0 &= 1, & p_1 &= a_1 a_0 + 1, & q_1 &= a_1, \\
p_n &= a_n p_{n-1} + p_{n-2}, & q_n &= a_n q_{n-1} + q_{n-2} \quad (n \geq 2),
\end{align*}
\]

then we have

ii) \(\frac{p_n}{q_n} = [a_0, a_1, \ldots, a_n] \)

iii) \(p_n q_{n-1} - p_{n-1} q_n = (-1)^{n-1} \quad (n \geq 1) \)

iv) \(\frac{q_n}{q_{n-1}} = [a_n, a_{n-1}, \ldots, a_1] \quad (n \geq 1) \)

These well-known results can e.g. be found in [1].

First we give a continued fraction for the sum \(\sum_{i=0}^{n} b_i T^i \), where \(b_i \) is different from zero for all \(i \) different from zero (\(b_i \) is a constant in \(T \)):

Theorem 1

Let \((b_n) \) be a sequence such that \(b_n \neq 0 \) for all \(n > 0 \).

Define a sequence \((x_n) \) by putting \(x_0 = [b_0 T] \), \(x_1 = [b_0 T, b_1 T^3] \), and if

\[
x_n = [a_0, a_1, \ldots, a_{2n-1}] \text{ then setting } \\
x_{n+1} = [a_0, a_1, \ldots, a_{2n-1}, -b_{2n}/b_{n+1} T^{-3n}, -a_{2n-1}, \ldots, -a_1].
\]

Then \(x_n = \sum_{i=0}^{n} b_i T^i \) for all \(n \in \mathbb{N} \).

Proof

For \(n = 0 \) the theorem clearly holds.

If \(n \) is at least one, we prove that \(x_n = \sum_{i=0}^{n} b_i T^i \) and \(q_{2n+1} = b_1 T^{-3n} \).

We prove this by induction. For \(n = 1 \) the assertion holds.
Suppose it holds for $1 \leq n \leq j$. We then prove the assertion for $n = j+1$.

$x_{j+1} = \lfloor a_0, a_1, ..., a_{2j+1-1} \rfloor$.

$$x_{j+1} = \frac{-q_{2j-1} p_{2j} + q_{2j-2} p_{2j-1}}{-q_{2j-1} q_{2j} + q_{2j-2} q_{2j-1}}$$ \hspace{1cm} (by i), ii) and iv) of the lemma)

$$= \frac{-q_{2j-1}(a_{2j}p_{2j-1} + p_{2j-2}) + q_{2j-2}p_{2j-1}}{-q_{2j-1}(a_{2j}q_{2j-1} + q_{2j-2}) + q_{2j-2}q_{2j-1}}$$ \hspace{1cm} (by i) of the lemma)

now we have $p_{2j-1} q_{2j-2} - p_{2j-2} q_{2j-1} = (-1)^{2j-2} = 1$ \hspace{1cm} (by iii) of the lemma)

$$= \frac{p_{2j-1}}{q_{2j-1}} - \frac{1}{a_{2j}(q_{2j-1})^2}$$

now $a_{2j}(q_{2j-1})^2 = -T^{3j} b_j^2 (b_j^{-1} T^{3j})^2 = -T^{3j+1} b_j^{-1}$

$$x_{j+1} = \lfloor a_0, a_1, ..., a_{2j+1-1} \rfloor = \sum_{i=0}^{j+1} b_i T^{3i}$$ \hspace{1cm} (by the induction hypothesis)

We still have to prove $q_{2j+1-1} = b_j^{-1} T^{3j+1}$. Let k be at least one.

Then p_k and q_k are polynomials in $U = T^{-1}$. deg $q_k > deg q_{k-1}$, and the term with the highest degree in q_k is given by $a_k \cdot a_{k-1} \cdot ... \cdot a_1$. This follows from i).

If r is a polynomial in U that divides p_k and q_k, then r must be a constant in U. This immediately follows from iii). If r divides p_k and q_k, then r divides $(-1)^{k-1}$. So r must be a constant.

Since $\sum_{i=0}^{j+1} b_i T^{3i} = \lfloor a_0, a_1, ..., a_{2j+1-1} \rfloor = \frac{p_{2j+1-1}}{q_{2j+1-1}}$, we have

$$\frac{p_{2j+1-1}}{q_{2j+1-1}} = \sum_{i=0}^{j+1} b_i T^{3i} = \sum_{i=0}^{j+1} b_i \frac{T^{3i} U^{3i+1-3i}}{U^{3i+1}} = \frac{b_{j+1} + \sum_{i=0}^{j} b_i U^{3j+1-3i}}{U^{3j+1}}$$

and we conclude that $q_{2j+1-1} = C U^{3j+1} = C T^{3j+1}$ where C is a constant.

By the previous remark, we have that

$q_{2j+1-1} = C T^{3j+1} = C U^{3j+1} = a_1 \cdot a_2 \cdot ... \cdot a_{2j+1-1}$

$$= (-1)^{2j-1} (a_1 \cdot a_2 \cdot ... \cdot a_{2j-1})^2 \cdot a_{2j} = - (q_{2j-1})^2 \cdot a_{2j}$$ \hspace{1cm} (by the induction hypothesis, since $q_{2j-1} = b_j^{-1} T^{3j} = a_1 \cdot a_2 \cdot ... \cdot a_{2j-1}$)
Continued fractions for finite sums

\[\frac{\frac{b_1^2}{b_{j+1}}}{-\left(b^{-1} T^{-3} + \frac{b_1^2}{b_{j+1}}\right)} = \frac{T^{-3j+1}}{b_{j+1}} \]

which we wanted to prove.

We immediately have the following

Proposition

Let \(x_0 = [a_0] \), \(x_1 = [a_0, a_1] \) and if \(x_n = [a_0, a_1, \ldots, a_{2n-1}] \), then
\[
\begin{align*}
x_{n+1} &= \left[a_0, a_1, \ldots, a_{2n-1}, a_{2n}, -a_{2n-1}, \ldots, -a_1 \right].
\end{align*}
\]

If \(n \) is at least two, then the continued fraction of \(x_n \) consists only of the partial quotients
\(a_{2n-1}, a_{2n-2}, -a_{2n-2}, \ldots, a_1, -a_1 \) and \(a_0 \).

Then the distribution of the partial quotients for \(x_n \) is as follows (\(n \geq 2 \)):

<table>
<thead>
<tr>
<th>Partial Quotient</th>
<th>Number of Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{2n-1})</td>
<td>1</td>
</tr>
<tr>
<td>(a_{2n-2})</td>
<td>1</td>
</tr>
<tr>
<td>(-a_{2n-2})</td>
<td>1</td>
</tr>
<tr>
<td>(a_{2n-3})</td>
<td>2</td>
</tr>
<tr>
<td>(-a_{2n-3})</td>
<td>2</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(2^{n-i-2})</td>
</tr>
<tr>
<td>(a_i)</td>
<td>(2^{n-2})</td>
</tr>
<tr>
<td>(-a_i)</td>
<td>(2^{n-2})</td>
</tr>
<tr>
<td>(a_0)</td>
<td>1</td>
</tr>
</tbody>
</table>

Proof

We give a proof by induction on \(n \).

\(x_2 = [a_0, a_1, a_2, a_3] = [a_0, a_1, a_2, -a_1] \), so the quotients \(a_0, a_1, -a_1, a_2 \), occur once.

So for \(n \) equal to 2 the assertion holds. Suppose it holds for \(2 \leq n \leq j \). Then we prove it holds for \(n = j+1 \). Since \(x_{j+1} = [a_0, a_1, \ldots, a_{2j+1}] = [a_0, a_1, \ldots, a_{2j-1}, a_{2j}, -a_{2j-1}, \ldots, -a_1] \), it is clear that the partial quotients \(a_{2j} \) and \(a_0 \) occur only once.

In the partial quotients \(a_1, \ldots, a_{2j-1} \) we have

<table>
<thead>
<tr>
<th>Partial Quotient</th>
<th>Number of Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{2j-1})</td>
<td>1</td>
</tr>
<tr>
<td>(a_{2j-2})</td>
<td>1</td>
</tr>
<tr>
<td>(-a_{2j-2})</td>
<td>1</td>
</tr>
<tr>
<td>(a_{2j-3})</td>
<td>2</td>
</tr>
<tr>
<td>(-a_{2j-3})</td>
<td>2</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(2^{j-i-2})</td>
</tr>
<tr>
<td>(a_{j})</td>
<td>(2^{j-2})</td>
</tr>
<tr>
<td>(-a_{j})</td>
<td>(2^{j-2})</td>
</tr>
<tr>
<td>(a_{0})</td>
<td>1</td>
</tr>
</tbody>
</table>

so in the partial quotients \(-a_1, \ldots, -a_{2j-1}\) we have

<table>
<thead>
<tr>
<th>Partial Quotient</th>
<th>Number of Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-a_{2j-1})</td>
<td>1</td>
</tr>
<tr>
<td>(-a_{2j-2})</td>
<td>1</td>
</tr>
<tr>
<td>(-a_{2j-2})</td>
<td>1</td>
</tr>
<tr>
<td>(-a_{2j-3})</td>
<td>2</td>
</tr>
<tr>
<td>(-a_{2j-3})</td>
<td>2</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(2^{j-i-2})</td>
</tr>
<tr>
<td>(-a_{j})</td>
<td>(2^{j-2})</td>
</tr>
<tr>
<td>(-a_{j})</td>
<td>(2^{j-2})</td>
</tr>
<tr>
<td>(-a_{0})</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Partial Quotient</th>
<th>Number of Occurrences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-a_{2j-1})</td>
<td>1</td>
</tr>
<tr>
<td>(-a_{2j-2})</td>
<td>1</td>
</tr>
<tr>
<td>(-a_{2j-2})</td>
<td>1</td>
</tr>
<tr>
<td>(-a_{2j-3})</td>
<td>2</td>
</tr>
<tr>
<td>(-a_{2j-3})</td>
<td>2</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(2^{j-i-2})</td>
</tr>
<tr>
<td>(-a_{j})</td>
<td>(2^{j-2})</td>
</tr>
<tr>
<td>(-a_{j})</td>
<td>(2^{j-2})</td>
</tr>
<tr>
<td>(-a_{0})</td>
<td>1</td>
</tr>
</tbody>
</table>

This proves the proposition.

Using theorem 1, we immediately have the following:

Theorem 2

Let \((b_n)\) be a sequence such that \(b_n\) is different from zero for all \(n\) different from zero.

Define a sequence \((x_n)\) by putting \(x_0 = [b_0]\), \(x_1 = [b_0, b_{-1}]\) and if \(x_n = [a_0, a_1, ..., a_{2n-1}]\)

then setting \(x_{n+1} = [a_0, a_1, ..., a_{2n-1}, -b_{2n}/b_{n+1}z^{n-1}, -a_{2n-1}, ..., -a_1]\),

then \(x_n = \sum_{i=0}^{n} b_i z^i\) for all \(n \in \mathbb{N}\).

Proof

Replace \(b_i\) by \(b_i z^i\) in theorem 1, and put \(T\) equal to one.

Some examples

1) Let \(x_n = \sum_{i=0}^{n} x^i\) (i.e. \(b_i = 1\) for all \(i\)). Then \(a_0 = 1\), \(a_1 = x\) and \(a_{2n} = -x^{n-1}\) (\(n \geq 1\))

2) Let \(x_n = \sum_{i=0}^{n} \frac{x^i}{i!}\) (i.e. \(\lim_{n \to \infty} x_n = e^x\)).

Then \(a_0 = 1\), \(a_1 = x\) and \(a_{2n} = -\frac{n+1}{n!} x^{n-1}\) (\(n \geq 1\))

3) Let \(x_n = \sum_{i=0}^{n} \frac{(-1)^i x^{2i}}{(2i)!}\) (i.e. \(\lim_{n \to \infty} x_n = \cos x\)).

Then \(a_0 = 1\), \(a_1 = -2x^2\) and \(a_{2n} = (-1)^n \frac{(2n+2)(2n+1)}{(2n)!} x^{2n-2}\) (\(n \geq 1\))

4) Let \(x_n = \sum_{i=0}^{n} \frac{(-1)^i x^{2i+1}}{(2i+1)!}\) (i.e. \(\lim_{n \to \infty} x_n = \sin x\)).

Then \(a_0 = x\), \(a_1 = -6x^3\) and \(a_{2n} = (-1)^n \frac{(2n+3)(2n+2)}{(2n+1)!} x^{2n-1}\) (\(n \geq 1\))

In an analogous way as in the previous theorem, we have
Theorem 3

Let \((b_n)\) be a sequence such that \(b_n\) is different from zero for all \(n\) different from zero, and let \(q\) be a natural number different from zero and one.

Define a sequence \((x_n)\) by putting \(x_0 = [b_0 z]\), \(x_1 = [b_0 z, b_1^{-1} z^q]\) and if \(x_n = [a_0, a_1, \ldots, a_{2n-1}]\) then setting \(x_{n+1} = [a_0, a_1, \ldots, -a_{2n-1}, \ldots, -a_1]\).

Then \(x_n = \sum_{i=0}^{n} b_i z^i\) for all \(n \in \mathbb{N}\).

Proof

Replace \(b_i\) by \(b_i z^i\) in theorem 1, and put \(T\) equal to one.

An Example

In [4] we find the following:

Let \(F_q\) be the finite field of cardinality \(q\). Let \(A = F_q[X]\), \(K = F_q((X))\), \(K_\infty = F_q((1/X))\) and let \(\Omega\) be the completion of an algebraic closure of \(K_\infty\). Then \(A, K, K_\infty, \Omega\) are well-known analogous of \(Z, Q, R, C\) respectively.

Let \([i] = X^i - X\) (the symbol \([i]\) does not have the same meaning as in \(x_0 = [a_0]\)). This is just the product of monic irreducible elements of \(A\) of degree dividing \(i\).

Let \(D_0 = 1, D_i = [i] D_{i-1}\) if \(i > 0\). This is the product of monic elements of \(A\) of degree \(i\).

Let us introduce the following function: \(e(Y) = \sum_{i=0}^{\infty} \frac{Y^q^i}{D_i}\) \((Y \in \Omega)\).

Then Thakur gives the following theorem:

Define a sequence \(x_n\) by setting \(x_1 = [0, Y^q D_1]\) and if \(x_n = [a_0, a_1, \ldots, a_{2n-1}]\) then setting

\[x_{n+1} = [a_0, a_1, \ldots, a_{2n-1}, -Y^q^{n(q-2)}D_{n+1}/D_n^2, -a_{2n-1}, \ldots, -a_1],\]

then \(x_n = \sum_{i=1}^{n} \frac{Y^q^i}{D_i}\) for all \(n \in \mathbb{N}\).

In particular, \(e(Y) = Y + \lim_{n \to \infty} x_n\).

If we put \(b_i = D_i^{-1}\) if \(i > 0\), and \(b_0 = 0\) in theorem 3, then we find the result of Thakur.
3. Continued fractions for sums of the type $\sum_{i=0}^{n} \frac{b_i}{z^{c(i)}}$

In this section, b_i is a constant in z, and $c(i)$ is a natural number. Our first theorem in this section gives the continued fraction for the sum $\sum_{i=0}^{n} \frac{b_i}{z^{2i}}$ (i.e. $c(i) = 2i$ for all i):

Theorem 4

Let (b_n) be a sequence such that b_n is different from zero for all n. A continued fraction for the sum $\sum_{i=0}^{n} \frac{b_i}{z^{2i}}$ can be given as follows:

Put $x_0 = [0, z/b_0]$, $x_1 = [0, z b_0 - b_1 b_2 b_0 , b_2 b_0 + b_1 b_0]$ and if $x_k = [a_0, a_1, ..., a_{2k}]$ then setting

$x_{k+1} = [a_0, a_1, ..., a_{2k} + \gamma_{k+1} , \gamma_{k+1}^{-2} a_{2k} + \gamma_{k+1}^{-1} , a_{2k+1}, a_{2k+2}, ..., a_{2k+1}]$ where $\gamma_{k+1} = b_{k+1} (b_0)^{2k+1} (b_1)^{2k+1}$,

$a_{2k+i} = \gamma_{k+1}^{-2} a_{2k+i+1}$ if i is even, and $a_{2k+i} = \gamma_{k+1}^{-1} a_{2k+i+1}$ if i is odd $(2 \leq i \leq 2k)$,

then $x_k = \sum_{i=0}^{k} \frac{b_i}{z^{2i}}$ for all $k \in \mathbb{N}$.

Proof

If we have $x_n = [a_0, a_1, ..., a_{2n}] = \frac{p_{2n}}{q_{2n}}$, we show by induction that x_n equals $\sum_{i=0}^{n} \frac{b_i}{z^{2i}}$, and that q_{2n} equals $z^{2n} \frac{b_{2n}}{b_1}$. For $n = 0, 1$ this follows by an easy calculation.

Suppose the assertion holds for $0 \leq n \leq k$. Then we show it holds for $n = k+1$.

The first part of the proof, i.e. showing that $x_{k+1} = \sum_{i=0}^{k+1} \frac{b_i}{z^{2i}}$ is analogous to the first part of the proof of [2], theorem 1.

$x_{k+1} = [a_0, a_1, ..., a_{2k+1} , a_{2k} + \gamma_{k+1} , \gamma_{k+1}^{-2} a_{2k} + \gamma_{k+1}^{-1} , a_{2k+2}, ..., a_{2k+1}]$

$= [a_0, a_1, ..., a_{2k+1} , a_{2k} + \gamma_{k+1} , \gamma_{k+1}^{-2} a_{2k+1} + \gamma_{k+1}^{-1} [a_{2k+1}, a_{2k+2}, a_{2k+3}, ..., a_{2k+1}]]$

(using the definition of a continued fraction)

Now if $[a_0, a_1, ..., a_{2k}] = \frac{p_{2k}}{q_{2k}}$, then $[a_0, a_1, ..., a_{2k-1}] = \frac{p_{2k-1}}{q_{2k-1}}$ and so
Continued fractions for finite sums

\[[a_0, a_1, ..., a_{2k-1}, a_{2k} + \gamma_{k+1}] = \frac{(a_{2k} + \gamma_{k+1})p_{2k-1} + p_{2k-2}}{(a_{2k} + \gamma_{k+1})q_{2k-1} + q_{2k-2}} = \frac{p_{2k} + \gamma_{k+1}p_{2k-1}}{q_{2k} + \gamma_{k+1}q_{2k-1}} \]

(by i) and (ii) of the lemma

Then \[[a_0, a_1, ..., a_{2k-1}, a_{2k} + \gamma_{k+1}, \gamma_{k+1}^{-2} a_{2k} - \gamma_{k+1}^{-1}] = \frac{(\gamma_{k+1}^{-2} a_{2k} - \gamma_{k+1}^{-1})(p_{2k} + \gamma_{k+1}p_{2k-1}) + p_{2k-1}}{(\gamma_{k+1}^{-2} a_{2k} - \gamma_{k+1}^{-1})(q_{2k} + \gamma_{k+1}q_{2k-1}) + q_{2k-1}} \]

(by i) and (ii) of the lemma

And so

\[[a_0, a_1, ..., a_{2k-1}, a_{2k} + \gamma_{k+1}, \gamma_{k+1}^{-2} a_{2k} - \gamma_{k+1}^{-1}] [a_2, a_3, ..., a_{2k-1}, a_{2k-2}, a_{2k-3}, ..., a_2, a_1] \]

\[= a_{2k} q_{2k-1} p_{2k} + \gamma_{k+1} a_{2k} q_{2k-1} p_{2k-1} - \gamma_{k+1} a_{2k-1} q_{2k} - \gamma_{k+1} q_{2k-1} p_{2k} + \gamma_{k+1} q_{2k-2} p_{2k-1} \]

(by iv) of the lemma

If we use the following equalities

\[(p_n - p_{n-2})q_{n-1} = a_n p_{n-1} q_{n-1} \]
\[(q_n - q_{n-2})p_n = a_n q_{n-1} \]
\[(q_n - q_{n-2})q_n = a_n q_{n-1} \] (by i) of the lemma

then we find that the numerator equals \(q_{2k} p_{2k} + \gamma_{k+1} \) (by iii) of the lemma and the denominator equals \((q_{2k})^2 \).

So we conclude

\[x_{k+1} = \frac{p_{2k}}{q_{2k}} + \frac{\gamma_{k+1}}{(q_{2k})^2} = \sum_{i=0}^{k} \frac{b_i}{z^i} + \frac{(b_1)^{2k+1}}{Z^{2k+1}(b_0)^{2k+1}} b_{k+1} (b_0)^{2k+1} (b_1)^{2k+1} = \sum_{i=0}^{k+1} \frac{b_i}{Z^{2i}} \]

We still have to show \(q_{2k+1} = z^{2k+1} \frac{(b_0)^{2k+1}}{(b_1)^{2k+1}} \).

In the same way as in the proof of theorem 1, we find that \(q_{2k+1} = C z^{2k+1} \) where \(C \) is a constant.

Let \(\alpha \) be the coefficient of \(z \) in \(a_i \).

Then for \(C \), the coefficient of \(z^{2k+1} \) in \(q_{2k+1} \), we have

\[C = \alpha_1 \alpha_2 ... \alpha_{2k-1} \alpha_{2k} (\gamma_{k+1}^{-2} \alpha_{2k})(\gamma_{k+1}^{-2} \alpha_{2k-1})(\gamma_{k+1}^{-2} \alpha_{2k-2})(\gamma_{k+1}^{-2} \alpha_{2k-3}) ... (\gamma_{k+1}^{-2} \alpha_{1}) \]

\[= (\alpha_1 \alpha_2 ... \alpha_{2k-1} \alpha_{2k})^2 = (\text{coefficient of } z^k \text{ in } q_k)^2 = \left(\frac{(b_0)^{2k}}{(b_1)^{2k}} \right)^2 = \frac{(b_0)^{2k+1}}{(b_1)^{2k+1}} \]

and we conclude \(q_{2k+1} = z^{2k+1} \frac{(b_0)^{2k+1}}{(b_1)^{2k+1}} \). This finishes the proof.
Some examples

1) If we put \(b_i \) equal to one for all \(i \), and \(z \) is an integer at least 3, then we find theorem 1 of [2]:

Let \(B(u,v) = \sum_{i=0}^{v} \frac{1}{u^i} = \frac{1}{u} + \frac{1}{u^2} + \frac{1}{u^3} + \ldots + \frac{1}{u^v} \quad (u \geq 3, u \text{ an integer}) \).

Then \(B(u,0) = [0, u] \), \(B(u,1) = [0, u-1, u+1] \), and if \(B(u,v) = [a_0, a_1, \ldots, a_n] = \frac{p_n}{q_n} \),

then \(B(u,v+1) = [a_0, a_1, \ldots, a_n-1, a_n+1, a_{n-1}, a_{n-1}, a_{n-2}, \ldots, a_2, a_1] \).

2) Put \(b_i = \lambda^i \). Then we have \(x_0 = [0, u] \), \(x_1 = [0, u - \frac{u}{\lambda^2} + \frac{1}{\lambda}] \) and if \(x_k = [a_0, a_1, \ldots, a_{2k}] \),

then \(x_{k+1} = [a_0, a_1, \ldots, a_{2k-1}, a_{2k} + \gamma_{k+1}, \gamma_{k+1}^{-1} a_{2k-1}, a_{2k-2}, \ldots, a_{2k+1}] \), where \(\gamma_{k+1} = \lambda^{k+1-2k+1} \),

\(a_{2k+i} = \gamma_{k+1}^2 a_{2k-i+1} \) if \(i \) is even, and \(a_{2k+i} = \gamma_{k+1}^2 a_{2k-i+1} \) if \(i \) is odd (\(2 \leq i \leq 2k \)),

then \(x_k = \sum_{i=0}^{k} \frac{\lambda^i}{u^{2i}} \) for all \(k \in \mathbb{N} \).

For some some sequences \((b_n)\) and \((c(n))\), we can give a continued fraction for the sum

\[\sum_{i=0}^{v} \frac{b_i}{z^{c(i)}} \] as follows:

Theorem 5

Let \((b_n)\) be a sequence such that \(b_n \neq 0 \) for all \(n \), and \(b_0 \neq 0, 1, -1, \) and \(1/2 \), and let \((c(n))\) be a sequence such that \(c(0) = 0 \), and \(c(n+1) - 2c(n) \geq 0 \).

Put \(x_0 = [-b_0, \frac{1}{b_0} - 1, \frac{1}{b_0} + 1] = [a_0, a_1, a_2] = \frac{p_2}{q_2} = \frac{p(n)}{q(n)} \),

and if \(x_v = [a_0, a_1, \ldots, a_n] = \frac{p_n}{q_n} = \frac{p(v)}{q(v)} \),

then setting \(x_{v+1} = [a_0, a_1, \ldots, a_n, \alpha_v z^{d(v)} - 1, 1, a_{n-1}, a_{n-1}, \ldots, a_2, a_1] \),

where \(d(v) = c(v+1) - 2c(v) \), \(\alpha_v = \frac{b_v^2}{b_{v+1}} \) if \(v \geq 1 \) and \(\alpha_0 = \frac{b_0^4}{b_1} \),

then \(x_v = \sum_{i=0}^{v} \frac{b_i}{z^{c(i)}} \) for all \(v \) in \(\mathbb{N} \), and \(q_v = \frac{z^{c(v)}}{b_v} \) if \(v \geq 1 \), \(q(0) = \frac{1}{(b_0)^2} \).
Remarks

1) The special form of \(b_0, x_0 = b_0 = [-b_0^2, \frac{1}{b_0} - 1, \frac{1}{b_0} + 1] = [a_0, a_1, a_2] \) is needed since in the expression \([a_0, a_1, ..., a_n] = \frac{p_n}{q_n} \) the integer \(n \) must be even.

2) The value of \(n \) is \(n = 2^{v+1} + 2^v + 2 \) (this can be easily seen by induction).

3) The only partial quotients that appear are \(-b_0^2, \frac{1}{b_0} - 1, \frac{1}{b_0} + 1, \frac{1}{b_0} - 2, \alpha_v z^{d(v)} - 1, 1 \), so \(b_0 \) must be different from \(0, 1, -1, \) and \(1/2 \).

Proof

For \(v \) equal to \(0, 1 \) or \(2 \) we find this result by an easy computation.

We prove the theorem by induction on \(v \).

Suppose we have \(x_v = \sum_{i=0}^{v} b_i z^{c(i)} = [a_0, a_1, ..., a_n] = \frac{p_n}{q_n} = \frac{p(v)}{q(v)} \) with \(q(v) = \frac{z^{c(v)}}{b_v} \).

Then we show that \(x_{v+1} = [a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1, a_n - 1, a_{n-1}, ..., a_2, a_1] = \sum_{i=0}^{v+1} \frac{b_i}{z^{c(i)}} \)

with \(q(v+1) = \frac{z^{c(v+1)}}{b_{v+1}} \).

The first part of the proof, i.e. showing that \(x_{v+1} = \sum_{i=0}^{v+1} \frac{b_i}{z^{c(i)}} \), is analogous to the first part of the proof of the theorem in [3].

Now, by repeated use of i) and ii) of the lemma, we have

\[
[a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1] = \frac{(\alpha_v z^{d(v)} - 1)p_n + p_{n-1}}{(\alpha_v z^{d(v)} - 1)q_n + q_{n-1}};
\]

\[
[a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1] = \frac{\alpha_v z^{d(v)} p_n + p_{n-1}}{\alpha_v z^{d(v)} q_n + q_{n-1}};
\]

\[
[a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1, a_n - 1] = \frac{a_n \alpha_v z^{d(v)} p_n + a_n p_{n-1} - p_n}{a_n \alpha_v z^{d(v)} q_n + a_n q_{n-1} - q_n}
\]

\(x_{v+1} = [a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1, a_n - 1, a_{n-1}, ..., a_1] \)

\(= [a_0, a_1, ..., a_n, \alpha_v z^{d(v)} - 1, 1, a_n - 1, [a_{n-1}, ..., a_1]] \)

(using the definition of a continued fraction)
\[
\begin{align*}
\frac{a_n q_{n-1} \alpha_v z^{d(v)} p_n + q_{n-2} \alpha_v z^{d(v)} p_n + a_n q_{n-1} p_n - q_{n-1} p_n + q_{n-2} p_{n-1}}{a_n q_{n-1} \alpha_v z^{d(v)} q_n + q_{n-2} \alpha_v z^{d(v)} q_n + a_n(q_{n-1})^2 - q_{n-1} q_n + q_{n-2} q_{n-1}} = & \ \\
\text{(by i), ii) and iv) of the lemma)}
\end{align*}
\]
\[
\frac{p_n}{q_n} + \frac{1}{(q_n)^2 \alpha_v z^{d(v)}} = & \ \\
\text{(by i) and iii) of the lemma since } n \text{ is even)}
\]
\[
\text{So } x_{v+1} = \frac{p_n}{q_n} + \frac{1}{(q_n)^2 \alpha_v z^{d(v)}} = \sum_{i=0}^{v} b_i z^{c(i)} + \frac{(b_v)^2 b_{v+1}}{z^{c(v)}(b_v)^2 z^{d(v)}} \text{ since } q_n = q(v) = z^{c(v)} b_v, \alpha_v = (by)^2 b_{v+1}i=0
\]
\[
\sum_{i=0}^{v+1} b_i z^{c(i)}
\]

We still have to prove \(q_{(v+1)} = q_{2n+2} = \left(\alpha_v z^{d(v)} - 1\right) q_n + q_{n-1} = \alpha_v z^{d(v)} q_n + q_{n-1} \)

Repeated use of i) of the lemma gives
\[
\begin{align*}
q_{n+3} & = q_{(n+2)+1} = a_n \alpha_v z^{d(v)} q_n + a_n q_{n-1} - q_n = r_1 \alpha_v z^{d(v)} q_n - q_{n-2} & \text{(where we put } a_n = r_1) \\
q_{n+4} & = q_{(n+2)+2} = (a_n, a_{n+1})\alpha_v z^{d(v)} q_n - a_n q_{n-2} + q_{n-1} = r_2 \alpha_v z^{d(v)} q_n + q_{n-3} \\
q_{n+5} & = q_{(n+2)+3} = (a_n, a_{n+1})\alpha_v z^{d(v)} q_n + a_n q_{n-3} - q_{n-2} \\
& = r_3 \alpha_v z^{d(v)} q_n - q_{n-4} & \text{(where we put } a_n, a_{n+1} = r_2) \\
& \text{etc...}
\end{align*}
\]

Continuing this way, we find
\[
q_{(n+2)+k} = r_k \alpha_v z^{d(v)} q_n + (-1)^k q_{n-(k+1)} \text{, } q_{(n+2)+k+1} = r_{k+1} \alpha_v z^{d(v)} q_n + (-1)^{k+1} q_{n-(k+2)}
\]

Then \(q_{(n+2)+k+2} = (a_n, a_{n+1}) r_{k+1} \alpha_v z^{d(v)} q_n + (-1)^{k+1} a_n(q_{n+1})q_{n-k-2} + (-1)^k q_{n-k-1} \)
\[
= r_{k+2} \alpha_v z^{d(v)} q_n + (-1)^{k+2} q_{n-(k+3)}
\]

and finally we have \(q_{2n} = q_{(n+2)+n-2} = r_{n+2} \alpha_v z^{d(v)} q_n + q_{n-(n-1)} \)
Continued fractions for finite sums

\[q_{2n+1} = q_{(n+2)+n-1} = r_{n-1} \alpha v z^{d(v)} q_n - q_{n-n} \] (we remark that \(n \) is even)

and so

\[q_{2n+2} = q_{(n+2)+n} = r_n \alpha v z^{d(v)} q_n - a_1 q_0 + q_1 = r_n \alpha v z^{d(v)} q_n \]

So if we want to show that \(q_{2n+2} = (q_n)^2 \alpha v z^{d(v)} \), we must show that \(r_n \) equals \(q_n \).

For the sequence \((r_n) \) we have \(r_0 = 1, r_1 = a_n, r_2 = a_n a_n + 1 = a_n r_1 + r_0 \),

\[r_3 = a_n a_n a_n + 1 + a_n = a_n r_2 + r_1 \], and continuing this way we find \(r_{k+2} = a_n r_k + r_{k+1} \).

From this it follows that \([1, a_n, ..., a_1] = [1, c_1, ..., c_n] = \frac{t_n}{r_n} \) (we put \(a_i = c_{n-i} \))

with \(t_0 = c_0, r_0 = 1, t_1 = c_1 c_0 + 1, r_1 = c_1, t_n = c_n t_{n-1} + t_{n-2}, r_n = c_n r_{n-1} + r_{n-2} \) \((n \geq 2) \).

Now \(n \) can be written as \(n = 2k+2 \) (see remark 2 following theorem 5) and so

\[[a_0, a_1, ..., a_n] = [a_0, a_1, ..., a_k, \alpha v z^{d(v)-1} - 1, 1, a_k - 1, a_{k-1}, ..., a_1] = \frac{p_n}{q_n} \]

and then \([1, a_1, ..., a_k, \alpha v z^{d(v)-1} - 1, 1, a_k - 1, a_{k-1}, ..., a_1] = [1, a_1, ..., a_n] = \frac{p_n}{q_n} \)

where the \(q_i \) \((0 \leq i \leq n) \) stay the same since \(q_i \) does not depend on \(a_0 \).

So \([1, a_1, ..., a_k-1, a_{k-1}, a_{k-2}, a_{k-1}, ..., a_1] = [1, a_n, ..., a_1] = \frac{t_n}{r_n} \)

and we conclude \(q_i = r_i \) for \(0 \leq i \leq k-1 \).

We have to show \(q_n = r_n \). Now (by repeated use of i) of the lemma)

\[q_k = a_k q_{k-1} + q_{k-2}, r_k = q_k - q_{k-1} \]

\[q_{k+1} = \alpha v z^{d(v-1)} q_k - q_k + q_{k-1}, r_{k+1} = q_k \]

\[q_{k+2} = \alpha v z^{d(v-1)} q_k + q_{k-1}, r_{k+2} = \alpha v z^{d(v-1)} q_k - q_{k-1} \]

\[q_{k+3} = q_{(k+2)+1} = \alpha v z^{d(v-1)} a_k q_k + a_k q_{k-1} - q_k = a_k \alpha v z^{d(v-1)} q_k - q_{k-2} \]

\[= R_1 \alpha v z^{d(v-1)} q_k - q_{k-2}, \text{where we put } a_k = R_1, \]

\[r_{k+3} = r_{(k+2)+1} = a_k \alpha v z^{d(v-1)} q_k + q_{k-2} = R_1 \alpha v z^{d(v-1)} q_k + q_{k-2} \]

\[q_{k+4} = q_{(k+2)+2} = (a_{k-1} a_{k+1}) \alpha v z^{d(v-1)} q_k - a_{k-1} q_{k-2} + q_{k-1} \]

\[= (a_{k-1} a_{k+1}) \alpha v z^{d(v-1)} q_k + q_{k-3} \]

where we put \((a_{k-1} a_{k+1}) = R_2 \).
\[r_{k+4} = r_{(k+2)+2} = (a_k 1 a_k + 1) \alpha_{v-1} Z^{d(v-1)} q_k + a_k 1 q_{k-2} - q_{k-1} \]

\[= (a_k 1 a_k + 1) \alpha_{v-1} Z^{d(v-1)} q_k - q_{k-3} = R_2 \alpha_{v-1} Z^{d(v-1)} q_k - q_{k-3} \]

.....

If we continue this way, we find \(q_i = R_i \alpha_{v-1} Z^{d(v-1)} q_k + (-1)^i q_{k-i} \), and

\[r_{(k+2)+i} = R_i \alpha_{v-1} Z^{d(v-1)} q_k - (-1)^i q_{k-i+1} \] \((0 \leq i \leq k, R_0 = 1) \), and so we have

\[q_{2k} = q_{(k+2)+2} = R_k 2 \alpha_{v-1} Z^{d(v-1)} q_k + q_{k-k} \]

\[q_{2k+1} = q_{(k+2)+k} = R_k 1 \alpha_{v-1} Z^{d(v-1)} q_k - q_{k-k} \] (we remark that \(k \) is even) and thus \(q_{2k+2} = q_{(k+2)+k} = R_k 2 \alpha_{v-1} Z^{d(v-1)} q_k - a_1 q_{k-0} + q_k = R_k 2 \alpha_{v-1} Z^{d(v-1)} q_k \),

and \[r_{2k} = r_{(k+2)+k} = R_k 2 \alpha_{v-1} Z^{d(v-1)} q_k - q_{k-k} \] , \(r_{2k+1} = r_{(k+2)+k} = R_k 1 \alpha_{v-1} Z^{d(v-1)} q_k + q_{k-k} \) and thus \(r_{2k+2} = r_{(k+2)+k} = R_k 2 \alpha_{v-1} Z^{d(v-1)} q_k + a_1 q_{k-0} - q_k = R_k 2 \alpha_{v-1} Z^{d(v-1)} q_k \),

So we conclude that \(q_{2k+2} = q_n \) equals \(r_{2k+2} = r_n \). This finishes the proof.

The case \(b_i \) equal to one, where \(z \) is an integer at least two, is studied by Shallit ([3]):

Let \((c(k)) \) be a sequence of positive integers such that \(c(v+1) \geq 2c(v) \) for all \(v \geq v' \), where \(v' \)

is a non-negative integer. Let \(d(v) = c(v+1) - 2c(v) \). Define \(S(u,v) \) as follows:

\[S(u,v) = \sum_{i=0}^{v} u^{-c(i)} \], where \(u \) is an integer , \(u \geq 2 \). Then Shallit proved the following theorem:

Suppose \(v \geq v' \). If \(S(u,v) = \{ a_0, a_1, ..., a_n \} \) and \(n \) is even , then

\[S(u,v+1) = \{ a_0, a_1, ..., a_n, u^{d(v)-1}, 1, a_{n-1}, a_{n-1}, a_{n-2}, ..., a_2, a_1 \} \].

References

Ann VBRDOODT
Vrije Universiteit Brussel,
Faculty of Applied Sciences
Pleinlaan 2, B - 1050 Brussels
Belgium