E. BECKENSTEIN
L. NARICI
W. SCHIKHOF

Compactification and compactoidification

<http://www.numdam.org/item?id=AMBP_1995__2_1_43_0>
COMPACTIFICATION AND COMPACTOIDIFICATION

E. Beckenstein, L. Narici, and W. Schikhof

Abstract. After discussing some of the many ways to get the Banaschewski compactification $\beta_0 T$ of an arbitrary ultraregular space T, we develop another construction of $\beta_0 T$ in Th. 2.1. Using those ideas, we develop an analog of $\beta_0 T$—what we call a compactoidification κT of an ultraregular space T in Sec. 3; κT is, in essence, a complete absolutely convex compactoid 'superset' of T to which continuous maps of T with precompact range into any complete absolutely convex compactoid subset may be 'continuously extended.'

1991 Mathematics subject classification: 46S10, 54D35, 54C45

1 The Many Faces

For any topological spaces X and Y, $C(X, Y)$ and $C^*(X, Y)$ denote the spaces of continuous maps of X into Y and the continuous maps of X into Y with relatively compact range, respectively. To say that a topological space X is ultraregular or ultranormal means, respectively, that the clopen sets are a basis or disjoint closed subsets of X may be separated by clopen sets. A synonym for ultraregular is 0-dimensional. We have a slight preference for the former in order to avoid confusion with other notions of dimension. Throughout the discussion, T denotes at least a Hausdorff space. For an ultraregular space E containing at least two points and ultraregular T, B. Banaschewski [2] discovered a compactification $\beta_0 T$ of T in which every $x \in C^*(T, E)$ may be continuously extended to $\beta_0 x \in C(\beta_0 T, E)$. $\beta_0 T$ is nowadays usually called the Banaschewski compactification of T. It functions as the natural analog of the Stone-Čech compactification ($\beta_0 T$ is βT for ultranormal T) in non-Archimedean analysis. Like the Stone-Čech compactification, the Banaschewski compactification is a protean entity, assuming many different guises. We discuss some of them in this section and then develop a new one in Sec. 2.

1.1 As a completion

Let E be an ultraregular space containing at least two points and let T be ultraregular. Let $C^*(T, E)$ denote the weakest uniform structure on T making each $x \in C^*(T, E)$ uniformly continuous into the compact space $\cl x(T)$ equipped with its unique compatible uniform
structure. By [1], pp. 92-93, since \(T \) is ultraregular, \(C^*(T, E) \) is compatible with the topology on \(T \) and \(C^*(T, E) \) is a precompact uniform structure on \(T \). Since \(C^*(T, E) \) is precompact, its completion \(\beta_0T \) is compact and is called the Banaschewski compactification of \(T \). \(\beta_0T \) is ultranormal (\[2\], p. 131, Satz 2 or [1], p. 93, Theorem 1)—hence ultraregular—and, by the usual process of extension by continuity function from a dense subspace to the whole space, each \(x \in C^*(T, E) \) may be continuously extended to a unique continuous function \(\beta_0x \in C^*(\beta_0T, E) \). \(\beta_0T \) is unique in a sense we discuss in the context of \(E \)-compactifications (Th. 1.6). At this point the reader may find the notation \(\beta_0T \) curious. Why \(\beta_0T \) and not \(\beta_ET \)? As long as \(E \) is ultraregular and contains at least two points ([1], p. 93, \[8\], pp. 240-243), the uniformity \(C^*(T, E) \) does not depend on \(E \)!

A fundamental system of entourages for \(C^*(T, E) \), no matter what \(E \) is, is defined by the sets

\[
V_{\mathcal{P}} = \bigcup \{ V \times V : V \in \mathcal{P} \}
\]

where \(\mathcal{P} \) is any finite open (therefore clopen) cover of \(T \) by pairwise disjoint sets. The completion of \(T \) with respect to this uniformity is the way Banaschewski obtained \(\beta_0T \). The definition of \(\beta_0T \) as the completion of \(C^*(T, E) \) where \(E \) is the discrete space of integers was first given in \[7\], though the idea of treating compactifications as completions is due to Nachbin. The connection with the Stone-Čech compactification is the following.

Definition 1.1 Let \(\mathcal{P} \) be a finite clopen cover of a topological space \(S \) by pairwise disjoint sets and let \(\mathcal{V} \) denote the uniformity generated by \(V_{\mathcal{P}} \). We say that \(S \) is strongly ultraregular if \(\mathcal{V} = C^*(T, R) \).

Theorem 1.2 ([8], pp. 251-2) (a) Every ultranormal \(T_1 \)-space \(S \) is strongly ultraregular.

(b) If a topological space \(S \) is strongly ultraregular then \(\beta_0S = \beta S \).

1.2 As an \(E \)-Compactification

Tihonov proved that a completely regular space \(T \) may be characterized as one that is homeomorphic to a subspace of a product \([0, 1]^m\) of unit intervals. Even though his name is not associated with it, he created the first version of the Stone-Čech compactification \(\beta T \) of \(T \) by then taking the closure of \(T \) in \([0, 1]^m\). Engelking and Mrówka [5] developed analogous notions of \(E \)-completely regular space \(T \) and \(E \)-compactification \(\beta ET \). Let \(S \) and \(E \) be two topological spaces. \(S \) is called \(E \)-completely regular if it is homeomorphic to a subspace of the \(m \)-fold topological product \(E^m \) for some cardinal \(m \). If \(E = \mathbb{R} \) or \([0, 1]\), this is the familiar notion of complete regularity. With \(2 \) denoting the discrete space \(\{0, 1\} \), it happens that

Theorem 1.3 ([16], p. 17) A topological space \(S \) is 2-completely regular if and only if it is an ultraregular \(T_0 \)-space.

An \(E \)-compact space is one which is homeomorphic to a closed subspace of a topological product \(E^m \) for some cardinal \(m \). The 2-compact spaces are characterized as follows:

Theorem 1.4 ([5], p.430, Example (iii)) A topological space \(S \) is 2-compact if and only if it is compact and ultraregular.
An E-compactification β_T of an E-completely regular space T is

1. an E-compact space which contains T as a dense subset and
2. ("the E-extension property") each $x \in C(T, E)$ may be extended to $\beta_T x \in C(\beta_T, E)$.

The following analogs of properties of the Stone-Čech compactification obtain for E-compactifications.

Theorem 1.5 ([5], p. 433, Theorem 4, [16], pp. 25-27, 4.3 and 4.4). An E-completely regular
(Hausdorff) space T has a Hausdorff E-compactification β_T with the following properties:

(a) If S is an E-compact space then every continuous function $x : T \to S$ has a continuous
extension $\hat{x} : \beta_T \to S$.

(b) The space β_T is unique in the sense that if S is an E-compact space containing T
as a dense subset and such that every continuous $x : T \to E$ has a continuous extension to S,
then S is homeomorphic to β_T under a homeomorphism that is the identity on T.

(c) T is E-compact if and only if $T = \beta_T$.

How does this apply to β_0T? Ultraregular spaces T are 2-completely regular by Th.
1.3. Since β_0T is compact and ultranormal, it follows that β_0T is 2-compact by Th. 1.4.
Therefore, by Th. 1.5(b) it follows that

Theorem 1.6 **UNIQUENESS OF** β_0T. β_0T is homeomorphic to β_T under a homeomor-
phism that is the identity on T, as would be any ultraregular compactification of an ultrareg-
ular T with the E-extension property.

1.3 As a Space of Characters

Let F be an ultraregular Hausdorff topological field so that $X = C^* (T, F)$ may be considered
as an F-algebra. A character of X is a nonzero algebra homomorphism from X into F. Let
the set H of characters of X be equipped with the weakest topology for which the maps
$H \to F$, $h \mapsto h(x)$, are continuous for each $x \in C^* (T, F)$. For each $p \in \beta_0 T$, let p^* denote
the evaluation map at p, the map $C^* (T, F) \to F$, $x \mapsto \beta_0 x (p)$. It is trivial to verify that
each p^* is a character of $C^* (T, F)$. But more is true: You get all the characters of $C^* (T, F)$
this way. In fact, the map

$$A : \beta_0 T \to H$$

$$p \mapsto p^*$$

establishes a homeomorphism between $\beta_0 T$ and H. The details may be found in [1], Theorem
3 and [8], Theorem 8.15.
1.4 Characters Again

Once again β_0T is realized as a space of nonzero homomorphisms—ring homomorphisms this time—into the very simple (discrete) field 2 with 2 elements.

A commutative ring X with identity in which each element is idempotent is called a Boolean ring. A subcollection X of the set of subsets of a given set T which is closed under union, intersection and set difference of any two of its members is called a ring of sets. Such a collection forms a ring in the usual algebraic sense if addition and multiplication are taken to be symmetric difference and intersection, respectively. If the sets in X cover T then X is called a covering ring. Since X must have a multiplicative identity (i.e., with respect to intersection) any covering ring must contain T as an element. Any covering ring X generates (in the sense that it is a subbase for) a (ultra)regular topology on T; the topology is (ultra)regular since the complement $T - A$ of any open set (member of X) must belong to X. In the converse direction, the class $\text{Cl}(T)$ of clopen subsets obviously constitutes a covering ring of any topological space T.

Let X be a Boolean ring and endow 2^X with the product topology. The Stone space $S(X)$ of the Boolean ring X is the subspace of 2^X of all nonzero ring homomorphisms of X into 2. $S(X)$ is called the Stone space because of Stone’s use of it in his remarkable characterization of compact (ultra)regular spaces.

The Stone representation theorem ([12], Theorem 4, [12], [4] p.227 or [6], pp. 77-80) If T is a compact (ultra)regular space, then T is homeomorphic to the Stone space of the Boolean ring $\text{Cl}(T)$ of clopen subsets of T. Conversely, the Stone space $S(X)$ of any Boolean ring X is a compact (ultra)regular Hausdorff space and X is ring-isomorphic to the Boolean ring $\text{Cl}(T)$ of clopen subsets of $S(X)$.

If T is (ultra)regular then β_0T is the Stone space of $\text{Cl}(T)$. Indeed, the map $\beta : T \to S(\text{Cl}(T))$, $t \mapsto \beta t$, defined for $t \in T$ and $K \in \text{Cl}(T)$ by

\[
(\beta t)(K) = \begin{cases}
1 & t \in K \\
2 & t \not\in K
\end{cases}
\]

is a homeomorphism of T onto a dense subset of the compact (ultra)regular Hausdorff space $S(\text{Cl}(T))$.

1.5 As a Space of Measures

Let T be (ultra)regular and let $\text{Cl}(T)$ be the ring (algebra, actually, since $T \in \text{Cl}(T)$) of clopen subsets of T, and let F be an (ultra)regular Hausdorff topological field. A 0-1 measure on T is a finitely additive set function $m : \text{Cl}(T) \to \{0, 1\} \subset F$ satisfying the condition:

\[
m(U) = 0 \quad \text{and} \quad U \supset V \in \text{Cl}(T) \implies m(V) = 0
\]

in other words, that clopen subsets of sets of measure 0 also have measure 0. Measures m_t ‘concentrated at points $t \in T$’ (also called ‘purely atomic’ or ‘the point mass at t’) which
are 1 on a clopen set U if $t \in U$ and 0 otherwise are 0-1 measures on T. The weak clopen topology for the collection \mathcal{M} of all 0-1 measures on T has as a neighborhood base $m_0 \in \mathcal{M}$ sets of the form

$$V(m_0; S_1, \ldots, S_n) = \{m \in \mathcal{M} : m(S_j) = m_0(S_j), j = 1, \ldots, n\}$$

where the S_j are clopen sets and $n \in \mathbb{N}$. It is trivial to verify that the map $t \rightarrow m_t$ is a homeomorphism of T into \mathcal{M}. Using the techniques of [1] one can demonstrate that \mathcal{M} is a compact ultranormal Hausdorff space to which any $x \in C^*(T, F)$ may be continuously extended. It follows that $\beta_0 T = M$ in the sense of Th. 1.6.

Last, let us mention that $\beta_0 T$ may also be realized as a Wallman compactification utilizing the lattice of clopen subsets of T.

2 A New Approach

A construction of $\beta_0 T$ using the methods of non-Archimedean functional analysis is presented in Theorem 2.1. The proof hinges on the fact that, for a local field F, if U is a neighborhood of 0 in a locally F-convex space X then its polar U° is $\sigma(X', X)$-compact ([15], Th. 4.11). Note that $\sigma(X', X)$ is ultraregular since the seminorms $p_x(f) = |f(x)|, x \in X, f \in X'$, are non-Archimedean.

Theorem 2.1 Let F be a local field, let T be ultraregular and let $C^*(T, F)$ denote the sup-normed space of all continuous F-valued functions on T with relatively compact range. There is an ultranormal compactification $\beta_0 T$ of T such that any $x \in C^*(T, F)$ may be continuously extended to a function $\beta_0 x \in C(\beta_0 T, F)$.

Proof. For $t \in T$, let t^\ast denote the evaluation map $x \mapsto x(t)$ for any $x \in C^*(T, F)$. We note that each such t^\ast is a continuous linear form (algebra homomorphism, actually) and is of norm one. Thus $T^* = \{t^\ast : t \in T\} \subset U$ where U denotes the unit ball of the norm-dual $C^*(T, F)'$ of $C^*(T, F)$. Furthermore, the map $i : T \rightarrow C^*(T, F)', t \mapsto t^\ast$, embeds T homeomorphically in $C^*(T, F)'$ endowed with its weak-* topology by the following argument. The map i is obviously injective. If a net $t_\alpha \rightarrow t \in T$ then $x(t_\alpha) \rightarrow x(t)$ for any $x \in C^*(T, F)$; hence $t_\alpha^\ast \rightarrow t^\ast$ and therefore i is continuous. To see that i is a homeomorphism onto $i(K)$, let K be a closed subset of T. Since T is ultraregular, if $t \notin K$ then there exists $x \in C^*(T, F)$ such that $x(t) = 0$ and $|x(K)| = r > 1$. Hence the polar $\{x\}^\circ$ of $\{x\}$ is a neighborhood of t^\ast disjoint from K^\ast and K^\ast is a closed subset of $i(K)$. As U is the polar of the unit ball of $C^*(T, F)$, it follows that U is weak-*compact ([15], Th. 4.11). Therefore the closure cT in U of (the homeomorphic image of) T^{*} is compact in $C^*(T, F)'$ endowed with the weak-* topology. As to the continuous extendibility of $x \in C^*(T, F)$, consider the canonical image Jx of x in the second algebraic dual of $C^*(T, F)$, i.e., for any $f \in C^*(T, F)'$, $Jx(f) = f(x)$. Clearly Jx is weak-*continuous on $C^*(T, F)'$; so, therefore, is its restriction $\beta_0 x = Jx|_{cT}$. Should this be called cT rather than $\beta_0 T$? No topologically significant changes occur for different F's: the compactness of the ultraregular space cT and the fact that T is C^*-embedded in cT imply that $cT = \beta_0 T$ by Th. 1.6.
3 Compactoidification

In this section we construct a compactoidification κT of an ultraregular space T. $(F, |.|)$ denotes a complete nontrivially ultravalued field throughout. As usual, we abbreviate ‘F-convex’ to ‘convex.’ A map f defined on an absolutely convex subset A of a vector space over F with values in some absolutely convex set in a vector space over F is called affine if $f(ax + by) = af(x) + bf(y)$ for all $x, y \in A$ and all $a, b \in F$ with $|a| \leq 1$ and $|b| \leq 1$.

Definition 3.1 A compactoidification of an ultraregular space T is a pair $(i, \kappa T)$ where κT is a complete absolutely convex compactoid subset of some Hausdorff locally convex space E over F and $i : T \to \kappa T$ is a continuous map with precompact range for which following extendibility property holds: For any complete absolutely convex compactoid subset A of some Hausdorff locally convex space E over F and any continuous map $j : T \to A$ with precompact range, there exists a unique continuous affine map $J : \kappa T \to A$ such that $J \circ i = j$.

Theorem 3.2 A compactoidification is unique in the following natural sense: if $(i_1, \kappa_1 T)$ and $(i_2, \kappa_2 T)$ are compactoidifications of T then there exists a unique affine homeomorphism $J_1 : \kappa_1 T \to \kappa_2 T$ such that $J_1 \circ i_1 = i_2$. Moreover, the map i must be injective.

Proof. By definition, there exist unique continuous affine maps J_1 and J_2 such that $J_2 \circ i_1 = i_2$ and $J_1 \circ i_2 = i_1$. Thus, $J_1 \circ (J_2 \circ i_1) = J_1 \circ i_2 = i_1$.

Since the identity map $I_1 : t \mapsto t$ of $\kappa_1 T$ onto $\kappa_1 T$ also satisfies $I_1 \circ i_1 = i_1$, it follows from the uniqueness that $I_1 = J_1 \circ J_2$. Similarly, $I_2 = J_2 \circ J_1$ where I_2 is the identity map of $\kappa_2 T$ onto $\kappa_2 T$. It follows that J_1 is a homeomorphism of $\kappa_1 T$ onto $\kappa_2 T$ and J_2 is its inverse. If $i_1(t_1) = i_1(t_2)$ then $i_2(t_1) = J_1 \circ i_1(t_1) = J_1 \circ i_1(t_2) = i_2(t_2)$ so if one of the maps i is 1-1, all such i must be. As shown in Theorem 3.3, there is an i that is 1-1.

In the notation of Sec. 2:

Theorem 3.3 Let T be ultraregular and let the continuous dual $C^*(T, F)'$ of $C^*(T, F)$ carry the weak-* topology. Then

(a) the closed absolutely convex hull κT of T^* is the unit ball U of $C^*(T, F)'$ and
(b) the pair $(i, \kappa T)$ is a compactoidification of T.

Proof. Clearly the absolute convex hull B of T^* is contained in the unit ball U of $C^*(T, F)'$. Since U is a complete compactoid by the p-adic Alaoglu theorem ([9], Prop.
3.1), so, therefore, is the closed absolutely convex hull κT of the compact set $cl\ T^*$. It follows from [10], Prop. 1.3 that B is edged (i.e., if the valuation of F is dense then $cl\ B = \cap \{a(\ clB) : a \in F, |a| > 1\}$) and therefore ([9], Th. 4.7) a polar set in $C^*(T,F)'$.

If $cl\ B \neq U$ there must exist $g \in C^*(T,F)'$ such that $|g| \leq 1$ on B and $|g(f)| > 1$ for some $f \in U - cl\ B$. Since g must be an evaluation map determined by some point $x \in C^*(T,F)$ by [9], Lemma 7.1, we have found an z such that $|z(t)| = |t^*(x)| \leq 1$ for all $t \in T$ but $|f(z)| > 1$. As this contradicts $\|f\| \leq 1$, the proof of (a) is complete.

(b) As in the proof of Th. 2.1, i is a homeomorphism onto the precompact set T^*. To verify the extendibility requirement, let A be a complete absolutely convex compactoid and let $j : T \to A$ be continuous with precompact range. We define the affine extension J of j on the absolutely convex hull B of T^* by taking $J(\sum_{i=1}^n a_i t_i^*) = \sum_{i=1}^n a_i j(t_i)$ for $a_i \in F, |a_i| \leq 1, i = 1, \ldots, n$. The definition makes sense because the t_i^* are linearly independent for distinct t_i. Evidently $j = J \circ i$. To prove the continuity of J, let $s = s = \sum_{i=1}^n a_i^* s_i^*$ be a net in B convergent to 0 in the weak-* topology. Let $[A]$ denote the linear span of A and note that for any $f \in [A]'$, the map $f \circ j \in C^*(T,F)$, since $j(T)$ is precompact. Thus,

$$f(J(\mu_s)) = f\left(\sum_{i=1}^n a_i^* j(t_i^*)\right) = \sum_{i=1}^n a_i^* f(j(t_i^*)) = \mu_s(\ f \circ j) \to 0$$

and we conclude that $J(\mu_s) \to 0$ in the weak topology of $[A]$. As A is of countable type, hence a polar space, the weak topology coincides with the initial one on the compactoid A ([9], Th. 5.12) so $J(\mu_s) \to 0$ in A. By continuity and ‘affinity,’ J extends uniquely to a continuous affine map of $cl\ B = \kappa T$ into A, since A is complete.

References

St. John's University
Staten Island, NY 10301 USA
e-mail: beckenst at sjuvm.stjohns.edu

St. John's University
Jamaica, NY 11439 USA
e-mail: naricil at sjuvm.stjohns.edu
fax: 718-380-0353

Matematisch Instituut
K. U. Nijmegen
Toernooiveld
6525 ED Nijmegen, The Netherlands
e-mail: schikhof at sci.kun.nl