Sabine Borrey

(t-)orthogonality in p-adic Banach spaces

<http://www.numdam.org/item?id=AMBP_1995__2_1_61_0>

© Annales mathématiques Blaise Pascal, 1995, tous droits réservés.

Abstract. Let \((E, \| \cdot \|)\) be a Banach space over \(K\). We shall prove that orthogonality in \(E\) can be expressed in terms of distances to convex hulls of points in \(E\) instead of distances to the linear hulls of these same points, which gives in fact a new characterization of orthogonality. Also, for an absolutely convex, weakly \(c'\)-compact subset of a Banach space having the Hahn-Banach extension property, an equivalent condition is given for the compactoidness of the set.

1991 Mathematics subject classification : 46S10

INTRODUCTION
(For unexplained terms, see below). Since 1986, when it was proved in [8] that each weakly \(c'\)-compact set is \(c\)-compact (and hence compactoid) in case \(E\) is a Banach space with a base, the following question kept popping up:
Is every weakly \(c'\)-compact set in a strongly polar \(K\)-Banach space necessarily \(c'\)-compact? Progress came about in 1989 ([1], theorem 5.2.13) when this could be proved for an arbitrary Banach space over a spherically complete \(K\) and even more in 1992, when it was proved that this statement is also true assuming the continuum hypothesis and assuming \(K\) to have the cardinality of the continuum ([5], theorem 2.5). The general question for \(K\) not spherically complete however, remains open. In order to pursue the answer still further, I studied the technique used for the proof in [1]. Kernel of this technique is the relationship between a closed, absolutely convex subset \(A\) of \(E\) and \(A/A^t\) and more particularly, the relationship between \((t-)\)orthogonality in \(E\) and in \(A/A^t\). This led to a new characterization of orthogonality in \(E\) (theorem 2.4) and also sheds some new light on the open problem stated above, in case \(E\) has the Hahn-Banach extension property. (Paragraph 3). As an important result, an equivalent condition for the compactoidness of a set is given.
NOTATIONS AND PRELIMINARIES
Throughout the text, K is a complete non-trivially valued field with valuation $|\cdot|$ and k is its residue class field. We denote by $|K^*|$ the valuegroup of K. We put $B(0,1) = \{\lambda \in K \mid |\lambda| \leq 1\}$ and $B(0,1^-) = \{\lambda \in K \mid |\lambda| < 1\}$. If the valuation on K is discrete, there exists $\rho \in B(0,1^-)$ such that $|K^*| = \{|\rho|^n \mid n \in \mathbb{Z}\}$ and $B(0,1^-) = B(0,|\rho|)$. We denote by $\pi_1 : B(0,1) \to k : \lambda \to \overline{\lambda} = \lambda + B(0,1^-)$ the canonical surjection.

Throughout E is a K-Banach space with norm $\|\cdot\|$. We write $(E, \|\cdot\|)$. For $S \subset E$, we denote by $\overline{co}S$ the absolutely convex (a.c.) hull of S, by $\overline{co}S$ the closure of $\overline{co}S$ and by $[S]$ the linear hull of S.

For an absolutely convex subset A of E, we put $A^i = \{\lambda.a \mid \lambda \in B(0,1^-), a \in A\}$ and by $\partial A = A \setminus \overline{A}^i$. Note that A^i and \overline{A}^i are absolutely convex.

For $A \subset E$ absolutely convex and closed, we denote by $\pi : A \to A/\overline{A}^i : x \to x + \overline{A}^i$ the canonical surjection. The quotient $V_A = A/\overline{A}^i$ is, in a natural way, a k-vector space. The formula $\|\pi(x)\| = \inf \{|\|x - a\| \mid a \in \overline{A}^i\}$ defines a norm on V_A for which renders it a k-Banach space ([3], proposition 3.2). If $A = \overline{co}X$, then $V_A = [\pi(X)]$. ([3], proposition 3.4).

1. THE DISTANCE FUNCTION

1.1.LEMMA : Let $x \in E$ and $\emptyset \neq B \subset E$. Then $\text{dist}(x,B) = \text{dist}(x,\overline{B})$.

1.2.LEMMA : Let $B \subset E$ be a.c. Then $\overline{B}^i = (\overline{B})^i$.
Proof : Straightforward.

1.3.LEMMA : Let $(a_i)_{i \in I}$ be a family in E. Then $z \in co(a_i \mid i \in I)^i$ if and only if there exists $J \subset I$ finite and $(\lambda_j)_{j \in J} \subset B(0,1^-)$ such that $z = \sum_{j \in J} \lambda_j.a_j$.
Proof : Straightforward.

1.4.PROPOSITION : Let $(a_i)_{i \in I}$ be a family in $E \setminus \{o\}$ and put $A = \overline{co}(a_i \mid i \in I)$. Then for each $i \in I$, $\text{dist}(a_i,\overline{A}^i) \geq \text{dist}(a_i,\overline{co}(a_j \mid j \neq i))$.
Proof : According to lemma 1.1, it suffices to prove that for each $i \in I$, $\text{dist}(a_i,\overline{A}^i) \geq \text{dist}(a_i,co(a_j \mid j \neq i))$. Now, as $\overline{co}(a_j \mid j \in I)^i = \overline{A}^i$ (lemma 1.2), it follows by lemma 1.1 that for $x \in E$, $\text{dist}(x,\overline{A}^i) = \text{dist}(x,co(a_j \mid j \in I)^i)$.
Choose $i \in I$ and let $z \in co(a_j \mid j \in I)^i$. We are going to calculate $\|a_i - z\|$. According to lemma 1.3, $z = \sum_{j \in J} \lambda_j.a_j$ where $J \subset I$ is finite and $(\lambda_j)_{j \in J} \subset B(0,1^-)$.

There are two cases to consider:
i) $i \notin J$. Then $\|a_i - z\| \geq \text{dist}(a_i,co(a_j \mid j \neq i))$, since $z \in co(a_j \mid j \neq i)$.

ii) $i \in J$. Then $\|a_i - z\| = \|(1 - \lambda_i) a_i - \sum_{j \in J \setminus \{i\}} \lambda_j a_j\| = \|a_i - \sum_{j \in J \setminus \{i\}} \frac{\lambda_j}{1 - \lambda_i} a_j\|$, since $|1 - \lambda_i| = 1$.

Now, $\sum_{j \in J \setminus \{i\}} \frac{\lambda_j}{1 - \lambda_i} a_j \in \text{co}(a_j \mid j \neq i)$ and thus $\|a_i - z\| \geq \text{dist}(a_i, \text{co}(a_j \mid j \neq i))$.

Hence, for each $z \in \text{co}(a_j \mid j \in I)$, $\|a_i - z\| \geq \text{dist}(a_i, \text{co}(a_j \mid j \neq i))$ and thus $\text{dist}(a_i, A^1) \geq \text{dist}(a_i, \text{co}(a_j \mid j \neq i))$, which completes the proof.

1.5. COROLLARY: Let $t \in (0,1)$, let $(\lambda_i)_{i \in I}$ be a (t)-orthogonal family in $(E, \|\|)$ and put $A = \text{co}(a_i \mid i \in I)$. Then for each $i \in I$, $\|\pi(a_i)\| \geq \text{dist}(a_i, \text{co}(a_j \mid j \neq i)) \geq (t)^{\|a_i\|}$.

Proof: According to proposition 1.4, for each $i \in I$, $\text{dist}(a_i, A^1) \geq \text{dist}(a_i, \text{co}(a_j \mid j \neq i))$. On the other hand, for each $i \in I$, $\text{dist}(a_i, \text{co}(a_j \mid j \neq i)) \geq \text{dist}(a_i, \{a_j \mid j \neq i\}) \geq (t)^{\|a_i\|}$. and the statement follows, since $\|\pi(a_i)\| = \text{dist}(a_i, A^1)$. (See preliminaries).

1.6. LEMMA: Let $(\lambda_i)_{i \in I}$ be a family in E such that for each $i \in I$, $\text{dist}(a_i, \text{co}(a_j \mid j \neq i)) > 0$. Then $(\lambda_i)_{i \in I}$ is a linearly independent family in E.

Proof: Let $J \subset I$ be finite and let $(\lambda_j)_{j \in J} \subset K^*$. It is no restriction to assume that $\max |\lambda_j| = 1$. Choose $j_0 \in J$ such that $|\lambda_{j_0}| = 1$.

Then $\|\sum_{j \in J} \lambda_j a_j\| = \|a_{j_0} + \sum_{j \in J} \frac{\lambda_j}{\lambda_{j_0}} a_j\| \geq \text{dist}(a_{j_0}, \text{co}(a_j \mid j \neq j_0)) > 0$.

Hence, $(\lambda_i)_{i \in I}$ is a linearly independent family in E.

2. THE IMAGE BY π OF A FAMILY IN E

2.1. THEOREM: Let $(a_i)_{i \in I}$ be a family in E and put $A = \text{co}(a_i \mid i \in I)$. Then we have the following:

i) If for each $i \in I$, $\text{dist}(a_i, \text{co}(a_j \mid j \neq i)) > 0$, then $(\pi(a_i))_{i \in I}$ is a linearly independent family in V_A.

ii) If there exists a $t \in (0,1)$ such that for each $i \in I$, $\text{dist}(a_i, \text{co}(a_j \mid j \neq i)) \geq (t)^{\|\pi(a_i)\|}$, then $(\pi(a_i))_{i \in I}$ is a (t)-orthogonal base of $(V_A, \|\|)$.

Proof: First note that for each $i \in I$, $a_i \neq o$. Now, let $J \subset I$ be finite and let $(\lambda_j)_{j \in J} \subset K^*$. For each $j \in J$, we choose $\mu_j \in B(0,1)$ such that $\tau_i(\mu_j) = \lambda_j$. Both for i) as for ii), we have to calculate $\|\sum_{j \in J} \lambda_j \tau(a_j)\| = \text{dist}(\sum_{j \in J} \mu_j a_j, A^1)$ or equivalently,

$\text{dist}(\sum_{j \in J} \mu_j a_j, \text{co}(a_i \mid i \in I)^1)$. (Lemma 1.2). (Note also that by lemma 1.6, $\sum_{j \in J} \mu_j a_j \neq o$).

We proceed with the proof of both statements:

Therefore, we consider $z = \sum_{m \in M} \nu_m a_m \in \text{co}(a_i \mid i \in I)^1$ (by lemma 1.3, this means that
M ⊂ I is finite and that \(\nu_m \in B(0, 1^-) \) for each \(m \in M \) and we calculate \(\| \sum_{j \in J} \mu_j a_j - z \| \).

i) Let \(j_0 \in J \). Since \(|\mu_{j_0}| = 1 \), we have the following:

\[
\| \sum_{j \in J} \mu_j a_j - z \| = \| \sum_{j \in J \setminus \{j_0\}} \mu_j a_j - \sum_{m \in M \setminus \{j_0\}} \frac{\nu_m}{\mu_j - \nu_j} a_m \| \quad \text{if} \quad j_0 \in M.
\]

\[
\| \sum_{j \in J} \mu_j a_j - z \| = \| \sum_{j \in J \setminus \{j_0\}} \mu_j a_j - \sum_{m \in M \setminus \{j_0\}} \frac{\nu_m}{\mu_j} a_m \| \quad \text{if} \quad j_0 \notin M.
\]

It follows that \(\| \sum_{j \in J} \mu_j a_j - z \| \geq \text{dist}(a_{j_0}, \text{co}(a_i | i \neq j_0)) \).

Consequently, \(\text{dist}(\sum_{j \in J} \mu_j a_j, \text{co}(a_i | i \in I)^i) \geq \text{dist}(a_{j_0}, \text{co}(a_i | i \neq j_0)) > 0 \),

and thus \(\| \sum_{j \in J} \lambda_j \pi(a_j) \| > 0 \).

ii) First note that \((\pi(a_i))_{i \in I} \subset V_A \setminus \{0\} \). On the other hand, it suffices to prove that \((\pi(a_i))_{i \in I} \) is a \((t-)\)orthogonal family in \((V_A, \|\cdot\|)\) since \(V_A = \{[\pi(a_i) | i \in I]\} \). (See preliminaries). Put \(\alpha = \max \|\pi(a_j)\| \) and choose \(j_0 \in J \) such that \(\|\pi(a_{j_0})\| = \alpha \). In the same way as above, \(\| \sum_{j \in J} \mu_j a_j - z \| \geq \text{dist}(a_{j_0}, \text{co}(a_i | i \neq j_0)) \) and thus \(\| \sum_{j \in J} \mu_j a_j - z \| \geq (t)\|\pi(a_{j_0})\| = (t)\alpha = (t)\max \|\pi(a_j)\| \).

It follows immediately that \(\| \sum_{j \in J} \lambda_j \pi(a_j) \| \geq (t)\max \|\pi(a_j)\| \).

2.2. **COROLLARY** : Let \(t \in (0, 1) \), let \((a_i)_{i \in I}\) be a \((t-)\)orthogonal family in \((E, \|\cdot\|)\) and put \(A = \overline{\text{co}}(a_i | i \in I) \). Then \((\pi(a_i))_{i \in I}\) is a \((t-)\)orthogonal base of \((V_A, \|\cdot\|)\).

Proof : According to theorem 2.1, it suffices to prove that for each \(i \in I \), \(\text{dist}(a_i, \overline{\text{co}}(a_j | j \neq i)) \geq (t)\|\pi(a_i)\| > 0 \). So, let \(i \in I \). We deduce from corollary 1.5 that \(\|\pi(a_i)\| > 0 \). On the other hand, \(\text{dist}(a_i, \overline{\text{co}}(a_j | j \neq i)) \geq \text{dist}(a_i, \{a_j | j \neq i\}) \geq (t)\|a_i\| \geq (t)\|\pi(a_i)\| \) and we are done.

2.3. **PROPOSITION** : Let \(A \subset E \) be a.c. and closed and let \((s_i)_{i \in I}\) be an orthogonal family in \((V_A, \|\cdot\|)\). If for each \(i \in I \), we can choose \(a_i \in \partial A \) such that \(\pi(a_i) = s_i \) and \(\|a_i\| = \|\pi(a_i)\| \), then \((a_i)_{i \in I}\) is an orthogonal family in \((E, \|\cdot\|)\).

Proof : Let \(J \subset I \) be finite and let \((\lambda_j)_{j \in J} \subset K^\times \). Put \(\alpha = \max \|\lambda_j a_j\| \) and put \(J_1 = \{ j \in J | \|\lambda_j a_j\| = \alpha \} \). Choose \(\lambda \in K \) such that \(|\lambda| = \max \|\lambda_j| \) and put \(J_2 = \{ j \in J | \|\lambda_j| = |\lambda| \} \).

Then \(\| \sum_{j \in J_1} \lambda_j a_j \| = |\lambda| \cdot \| \sum_{j \in J_1} \frac{\lambda_j}{|\lambda|} a_j \| \geq |\lambda| \cdot \max_{j \in J_1} \| \frac{\lambda_j}{|\lambda|} \| \cdot \|\pi(a_j)\| = |\lambda| \cdot \max_{j \in J_2} \|\pi(a_j)\| = |\lambda| \cdot \max_{j \in J_2} \|a_j\| = \max_{j \in J_2} \|\lambda_j a_j\| = \alpha. \)
2.4.THEOREM: Let \((a_i)_{i \in I}\) be a family in \(E \setminus \{0\}\) and put \(A = \overline{\text{co}}(a_i \mid i \in I)\). Then the following are equivalent:

i) \((a_i)_{i \in I}\) is an orthogonal family in \((E, \|\cdot\|)\);

ii) For each \(i \in I\), \(\text{dist}(a_i, \overline{\text{co}}(a_j \mid j \neq i)) = \|a_i\|\).

Proof:

i) \(\Rightarrow\) ii) : Since for each \(i \in I\), \(\text{dist}(a_i, \overline{\text{co}}(a_j \mid j \neq i)) = \|a_i\|\), the statement follows easily.

ii) \(\Rightarrow\) i) : From proposition 1.4, we deduce that \(\|\pi(a_i)\| = \|a_i\|\). According to proposition 2.3, it suffices to prove that \((\pi(a_i))_{i \in I}\) is an orthogonal family in \((V_A, \|\cdot\|)\). This, however follows immediately from the second part of theorem 2.1.

2.5.REMARK: Regarding theorem 2.4, one could ask if the following more general question is true as well:

Let \((a_i)_{i \in I}\) be a family in \(E \setminus \{0\}\) and put \(A = \overline{\text{co}}(a_i \mid i \in I)\). Are the following statements necessarily equivalent?

i) There exists \(t \in (0, 1]\) such that \((a_i)_{i \in I}\) is a \(t\)-orthogonal family in \((E, \|\cdot\|)\);

ii) For each \(i \in I\), \(\text{dist}(a_i, \overline{\text{co}}(a_j \mid j \neq i)) \geq t.\|a_i\|\).

The implication i) \(\Rightarrow\) ii) is stated in corollary 1.5. The other implication is true in case \(t = 1\). For \(t \in (0, 1)\) however, the answer is no in general. To see this, consider the following example, obtained by C. Perez-Garcia through informal communication:

Put \(K = \mathbb{Q}_2\) and \(t = \frac{1}{2} \). Let \(a = (2, 8, \frac{1}{4})\); \(b = (1, 8, \frac{1}{2})\) and \(c = (2, 4, 2)\).

Then \(\text{dist}(a, \text{co}(b, c)) \geq \frac{1}{2}.\|a\|, \text{dist}(b, \text{co}(a, c)) \geq \frac{1}{2}.\|b\|\) and \(\text{dist}(c, \text{co}(a, b)) \geq \frac{1}{2}.\|c\|\).

On the other hand, \(\|2a + b + \frac{1}{2}.c\| < \frac{1}{2}.\max\{|2a\|, \|b\|, \|\frac{1}{2}.c\|\} = 1\).

However, we do have the following:

2.6.PROPOSITION: Let \((a_i)_{i \in I}\) and \(A\) be as in remark 2.5 and suppose there exists \(t \in (0, 1]\) such that for each \(i \in I\), \(\text{dist}(a_i, \overline{\text{co}}(a_j \mid j \neq i)) \geq t.\|a_i\|\).

Then, for each \(i \in I\), \(\text{dist}(a_i, \text{co}(a_j \mid j \in J_i)) \geq t.\|a_i\|\) where \(J_i = \{j \in I \setminus \{i\} \mid \|a_j\| \geq \|a_i\|\}\).

Proof: Let \(i \in I\) and let \(L \subset J_i\) be finite. For \((\lambda_j)_{j \in L} \subset K^*\), we have to calculate \(\|a_i - \sum_{j \in L} \lambda_j a_j\|\). (Lemma 1.1).

Put \(\lambda_i = -1, M = L \cup \{i\}\) and choose \(j_0 \in M\) such that \(|\lambda_{j_0}| = \max_{j \in M} |\lambda_j|\).

Then, \(\|a_i - \sum_{j \in L} \lambda_j a_j\| = \|\sum_{j \in M} \lambda_j a_j\| = |\lambda_{j_0}| \|\sum_{j \in M} \frac{\lambda_j}{\lambda_{j_0}} a_j\| \geq |\lambda_{j_0}| \text{dist}(a_{j_0}, \overline{\text{co}}(a_j \mid j \neq i)) \geq t.|\lambda_{j_0}| \|a_{j_0}\| \geq t.|\lambda_{j_0}| \|a_i\| \geq t.\|a_i\|\).

2.7.REMARK: We can formulate a kind of converse for proposition 2.6. In fact, taking any closed a.c. subset \(A\) of \(E\), we can construct a family in \(A\) satisfying similar properties as stated in proposition 2.6 (see proposition 2.10).
2.8. **CONSTRUCTION**: Let \((\alpha_n)_{n \in \mathbb{Z}}\) be a sequence in \(\mathbb{R}^*_+\) with the following properties:

i) \(\alpha_0 = 1\);
ii) For each \(n \in \mathbb{Z}\), \(\alpha_{n+1} < \alpha_n\);
iii) \(\lim_{n \to +\infty} \alpha_n = 0\) and \(\lim_{n \to -\infty} \alpha_n = +\infty\);
iv) \(\frac{\alpha_{n+1}}{\alpha_n} > 0\) and \(\lim_{n \to -\infty} \frac{\alpha_{n+1}}{\alpha_n} > 0\).

As an example of such a sequence, we can choose \(\alpha_n = t^n\) \((n \in \mathbb{Z})\) where \(t \in (0,1)\) or \(\alpha_n = \frac{1}{n}\) for \(n \in \mathbb{N}_0\) and \(\alpha_n = -n\) for \(n \in \mathbb{Z}\).

2.9. **PROPOSITION**: Let \(A \subseteq E\) be a.c. and closed and let \((\alpha_n)_{n \in \mathbb{Z}}\) be a sequence with the properties stated in 2.8. For \(x \in V_A\), we define \(p(x)\) as follows:

i) If \(x = 0\), we put \(p(x) = 0\);
ii) If \(x \neq 0\), there exists \(n \in \mathbb{Z}\) such that \(\alpha_{n+1} \leq \|x\| < \alpha_n\). We put \(p(x) = \alpha_{n+1}\). Then \(p\) is a norm on \(V_A\) equivalent to \(\|\cdot\|\).

Proof: We leave it to the reader to prove that \(p\) is a norm on \(V_A\). To prove the equivalence of both norms, we proceed as follows:

a) It is clear that \(p(x) \leq \|x\|\), for each \(x \in V_A \setminus \{0\}\).

b) Now, for \(x \in V_A \setminus \{0\}\), there exists \(n \in \mathbb{Z}\) such that \(\alpha_{n+1} \leq \|x\| < \alpha_n\). Obviously, \(p(x) = \alpha_{n+1} \geq \frac{\alpha_{n+1}}{\alpha_n}\). On the other hand, there exists \(\varepsilon > 0\) such that for each \(n \in \mathbb{Z}\), \(\frac{\alpha_{n+1}}{\alpha_n} \geq \varepsilon\). It follows that \(p(x) \geq \varepsilon \|x\|\).

2.10. **PROPOSITION**: Let \(A, (\alpha_n)_{n \in \mathbb{Z}}\) and \(p\) be as in proposition 2.9 and let \((s_i)_{i \in I}\) be an orthogonal base of \((V_A, p)\). ([4], theorem 2.5). For each \(i \in I\), let \(n_i\) be such that \(p(s_i) = \alpha_{n_i+1}\) and for each \(i \in I\), choose \(a_i \in A\) such that \(\pi(a_i) = s_i\) and \(\|s_i\| \leq \|a_i\| < \alpha_{n_i}\). Then we have the following:

i) For each \(i \in I\), \(\text{dist}(a_i, \overline{co}(a_j \mid j \neq i)) \geq \frac{\alpha_{n_i+1}}{\alpha_{n_i}} \|a_i\|\)

ii) For each \(i \in I\), \(\text{dist}(a_i, \{a_j \mid j \in J_i\}) \geq \frac{\alpha_{n_i+1}}{\alpha_{n_i}} \|a_i\|\) where \(J_i = \{j \in I \setminus \{i\} \mid \|a_j\| \geq \|a_i\|\} \)

iii) There exists \(t \in (0,1)\) such that \((\pi(a_i))_{i \in I}\) is a \(t\)-orthogonal base of \((V_A, \|\cdot\|\))

Proof:

i) Let \(i \in I\) and let \(L \subseteq J_i\) be finite. For \((\lambda_j)_{j \in L} \subseteq B(0,1)\), we have to calculate \(\|a_i - \sum_{j \in L} \lambda_j a_j\|\). (Lemma 1.1).

Now, \(\|a_i - \sum_{j \in L} \lambda_j a_j\| \geq p(s_i - \sum_{j \in L} \lambda_j s_j) \geq p(s_i) = \alpha_{n_i+1} \geq \frac{\alpha_{n_i+1}}{\alpha_{n_i}} \|a_i\|\).

ii) Let \(i \in I\) and let \(L \subseteq J_i\) be finite. For \((\lambda_j)_{j \in L} \subseteq K^*\), we have to calculate \(\|a_i - \sum_{j \in L} \lambda_j a_j\|\).

(Lemma 1.1).

Put \(\lambda_i = -1, M = L \cup \{i\}\) and choose \(j_o \in M\) such that \(|\lambda_{j_o}| = \max_{j \in M} |\lambda_j|\).
Then, \(\|a_i - \sum_{j \in J} \lambda_j a_j\| = |\lambda_{j_0}| \sum_{j \in M} \frac{\lambda_j}{\lambda_{j_0}} a_j \geq |\lambda_{j_0}| p(s_{j_0}) = |\lambda_{j_0}| \alpha_{n_{j_0} + 1} \geq |\lambda_{j_0}| \alpha_{n_i + 1} > |\lambda_{j_0}| \frac{\alpha_{n_i + 1}}{\alpha_{n_i}} \|a_i\| \) since obviously, \(|\lambda_{j_0}| > 1 \).

Hence, \(\text{dist}(a_i, \{a_j \mid j \neq j_i\}) \geq \frac{\alpha_{n_i + 1}}{\alpha_{n_i}} \|a_i\| \).

iii) There exists \(\varepsilon > 0 \) such that for each \(x \in V_A \), \(p(x) \geq \varepsilon \|x\| \). Now, for \(J \subset I \) finite and for \((\lambda_j)_{j \in J} \subset k^* \), \(\| \sum_{j \in J} \lambda_j \cdot \pi(a_j) \| \geq p(\sum_{j \in J} \lambda_j \cdot \pi(a_j)) = \max_{j \in J} |\lambda_j| \cdot p(\pi(a_j)) \geq \varepsilon \cdot \max_{j \in J} |\lambda_j| \cdot \|\pi(a_j)\| \) and we are done.

2.11. COROLLARY: Let \(A \subset E \) be an and closed, let \(t \in (0,1) \) and for each \(n \in \mathbb{Z} \), put \(\alpha_n = t^n \). Suppose \((a_i)_{i \in I} \) is a family in \(A \) with the properties stated in proposition 2.10. Then \((a_i)_{i \in I} \) is a \(p \)-adic \(t \)-frame in \(E \).

Proof: According to [7], definition 2.1 we have to prove that for \(n \in \mathbb{N}_0 \) and \(\{i_1, \ldots, i_n\} \subset I \), \(\text{Vol}(a_{i_1}, \ldots, a_{i_n}) \geq t^{n-1} \|a_{i_1}\| \cdots \|a_{i_n}\| \). (Recall that for \(n \in \mathbb{N}_0 \) and \(x_1, \ldots, x_n \in E \), \(\text{Vol}(x_1, \ldots, x_n) = \|x_1\| \cdot \text{dist}(x_2, [x_1]) \cdots \text{dist}(x_n, [x_1, \ldots, x_{n-1}]) \) and that this Volume Function is symmetrical. ([11], theorem 1.3). So, let \(n \in \mathbb{N}_o \) and \(\{i_1, \ldots, i_n\} \subset I \). It is no restriction to assume that \(\|a_{i_1}\| \geq \|a_{i_2}\| \geq \ldots \geq \|a_{i_n}\| \). According to proposition 2.10, for each \(k \in \{2, \ldots, n - 1\} \) we have that \(\text{dist}(a_{i_k}, [a_{i_1}, \ldots, a_{i_{k-1}}]) \geq t \cdot \|a_{i_k}\| \). It follows immediately that \(\text{Vol}(a_{i_1}, \ldots, a_{i_n}) \geq t^{n-1} \|a_{i_1}\| \cdots \|a_{i_n}\| \).

3. BANACH SPACES WITH THE HAHN-BANACH EXTENSION PROPERTY

3.1. REMARK: Throughout the text, \((E, \|\cdot\|) \) is a Banach space with the Hahn-Banach extension property (HBEP). (i.e. for any linear subspace \(D \) of \(E \) and for any \(f \in D' \), there exists \(\bar{f} \in E' \) such that \(\bar{f} = f \) on \(D \)).

3.2. LEMMA: Let \(A \subset E \) be a.c., closed and weakly \(\sigma \)-compact. Let \(T \subset A \) such that \(\overline{[\pi(T)]} = V_A \). Then \(\overline{[A]} = [T] \).

Proof: It is not hard to see that \(A = \overline{A} + coT \). Now, if \(\overline{[A]} \neq [T] \), then there exists \(x \in A \setminus [T] \). Since \((E, \|\cdot\|) \) has the HBEP, \([T] \) is weakly closed and thus there exists \(f \in E' \) such that \(f([T]) = \{0\} \) and \(f(x) \neq 0 \). ([8], corollary 4.8).

Put \(\alpha = \max_{y \in A} |f(y)| \). Note that \(\alpha > 0 \).

Now, for each \(y \in \overline{A} + coT \), \(|f(y)| < \alpha \) since \(f \equiv 0 \) on \(coT \), whereas \(|f| < \alpha \) on \(\overline{A} \). ([2], lemma 1.2. (The proof is also valid for \(|f| \)).

Hence, for each \(y \in A \), \(|f(y)| < \alpha \) since \(A = \overline{A} + coT \). But this is of course a contradiction since \(A \) is weakly \(\sigma \)-compact.

3.3. COROLLARY: Let \(A \subset E \) and \(T \subset A \) be as in lemma 3.2. If \(\overline{[A]} \neq [T] \) then \(A \) cannot
be weakly c'-compact.

Proof: Apply lemma 3.2.

3.4. Proposition

Let $A \subset E$ be a.c., closed and weakly c'-compact. Then the following are equivalent:

i) A is c'-compact;

ii) $(V_A, \|\cdot\|)$ is of countable type.

Proof:

i) \Rightarrow ii): There exists a t-orthogonal sequence $(x_n)_{n \in \mathbb{N}_\circ}$ in $(E, \|\cdot\|)$ such that $A = \overline{co}(x_n \mid n \in \mathbb{N}_o)$. ([10], corollary 2.8). It follows that $V_A = \{x_n \mid n \in \mathbb{N}_o\}$.

ii) \Rightarrow i): Let $(s_n)_{n \in \mathbb{N}_o} \subset V_A$ such that $V_A = \{s_n \mid n \in \mathbb{N}_o\}$. For each $n \in \mathbb{N}_o$, choose $a_n \in A$ such that $\pi(a_n) = s_n$. According to lemma 3.2, $[A] = \{a_n \mid n \in \mathbb{N}_o\}$. Now apply [8], lemma 3.1 and observe that a weakly c'-compact compactoid is c'-compact. (Apply [9], theorem 5.12)

3.5. Lemma

Suppose the valuation on K is dense, let $A \subset E$ be a.c., closed, weakly c'-compact and infinite-dimensional and let $(a_i)_{i \in I}$ be a family in A such that $(\pi(a_i))_{i \in I}$ is a t-orthogonal base of $(V_A, \|\cdot\|) (t \in (0, 1))$. Then $\inf_{i \in I} \|\pi(a_i)\| = 0$.

Proof: First note that since $[A] = \{\{a_i \mid i \in I\}\}$ (lemma 3.2), I is infinite. Now, suppose $\inf_{i \in I} \|\pi(a_i)\| = \alpha > 0$. Put $\beta = \sup_{x \in A} \|x\|$. (According to [9], corollary 7.7, A is bounded, since $(E, \|\cdot\|)$ is a polar space ([6], proposition 5.1)). It follows by [3], lemma 3.11 that $(a_i)_{i \in I}$ is a t'-orthogonal family in $(E, \|\cdot\|)$ where $t' = \frac{t \alpha}{\beta}$.

Let $(i_k)_{k \in \mathbb{N}_o} \subset I$ and choose $(\xi_k)_{k \in \mathbb{N}_o} \subset K$ such that $|\xi_1| < |\xi_2| < \ldots < 1$ and $\lim_{k \to \infty} |\xi_k| = 1$. Put $f: \{\{a_i \mid i \in I\}\} \to K: \sum_{i \in I} \lambda_i \cdot a_i \to \sum_{k \in \mathbb{N}_o} \lambda_{i_k} \cdot \xi_k$. f is well defined and for $x \in \{\{a_i \mid i \in I\}\}$,

$$|f(x)| < \max_{k \in \mathbb{N}_o} |\lambda_{i_k}| \leq \frac{1}{\alpha} \cdot \max_{k \in \mathbb{N}_o} |\lambda_{i_k}| \cdot \|a_{i_k}\| \leq \frac{1}{t' \cdot \alpha} \cdot \|x\|,$$

hence f is continuous.

Now, for $x \in co(a_i \mid i \in I), |f(x)| = |f(\sum_{i \in I} \lambda_i \cdot a_i)| \leq \sup_{k \in \mathbb{N}_o} |\lambda_{i_k}| \cdot |\xi_k| < \sup_{k \in \mathbb{N}_o} |\lambda_{i_k}| \leq 1$. But

$$\sup_{x \in co(a_i \mid i \in I)} |f(x)| = \sup_{k \in \mathbb{N}_o} |f(a_{i_k})| = 1.$$

Hence, there is no $x \in co(a_i \mid i \in I)$ such that $|f(x)| = 1$. But according to [3], proposition 4.3 (the condition that A is polar is not needed in the proof), $co(a_i \mid i \in I)$ is weakly c'-compact and this contradicts the previous.

3.6. Proposition

Suppose the valuation on K is dense and that K is not spherically complete. Let $A \subset E$ be a.c., weakly c'-compact and infinite-dimensional, let $t \in (0, 1)$ and let $(a_i)_{i \in I}$ be a family in $A \setminus \{o\}$ such that $(\pi(a_i))_{i \in I}$ is a t-orthogonal base of $(V_A, \|\cdot\|)$
and such that \((a_i)_{i \in I}\) satisfies the conditions of corollary 2.11. Then the following are equivalent:

i) \(A\) has a base;

ii) \(\lim_{i \in I} \|a_i\| = 0\).

Proof:

ii) \(\Rightarrow\) i): Suppose \(A\) has a base. Then \(A\) is \(c^\prime\)-compact ([8], theorem 2.7, \((\alpha) \Rightarrow (\delta))\) and thus \(A\) is of countable type. Now, as \((a_i)_{i \in I}\) is a \(p\)-adic \(t\)-frame (corollary 2.11), it follows that \(I\) is countable. ([7], theorem 2.5). But then \(\lim_{i \in I} \|\pi(a_i)\| = 0\) (lemma 3.5), and thus, by construction \(\lim_{i \in I} \|a_i\| = 0\).

i) \(\Rightarrow\) ii): Suppose \(\lim_{i \in I} \|a_i\| = 0\). As for each \(i \in I, \|a_i\| \neq 0\), it follows that \(I\) is countable. But then \(V_A\) is of countable type and thus \(A\) is \(c^\prime\)-compact. (Proposition 3.4). It follows that \([A]\) is of countable type ([10], proposition 2.3), hence \(A\) has a base ([12], theorem 3.16).

3.7.**PROPOSITION:** Suppose the valuation on \(K\) is dense and that \(K\) is not spherically complete. Let \(A \subseteq E\) be a.c., polar, weakly \(c^\prime\)-compact and infinite-dimensional, let \(t \in (0, 1)\) and let \((a_i)_{i \in I}\) be a family in \(A\) such that for each \(i \in I, \text{dist}(a_i, \overline{\text{co}}(a_j | j \neq i)) \geq t.\|a_i\| > 0\). (Note that \(A\) is closed ([9], proposition 3.4), hence, according to proposition 2.10, such a family exists). Now, if \(\lim_{i \in I} \|a_i\| \neq 0\), then \((a_i)_{i \in I}\) cannot be an \(\alpha\)-orthogonal family in \((E, \|\cdot\|)\), for each \(\alpha \in (0, 1)\).

Proof: First note that in Banach spaces with the HBEP, \(A\) is weakly \(c^\prime\)-compact in \(E\) if and only if \(A\) is weakly \(c^\prime\)-compact in \([A]\). Note also that the condition \(\text{dist}(a_i, \overline{\text{co}}(a_j | j \neq i)) \geq t.\|a_i\| > 0\) implies that \((a_i)_{i \in I}\) is a \(t\)-orthogonal base of \((V_A, \|\cdot\|)\) (theorem 2.1) and thus \(I\) is infinite. (Same reasoning as in the proof of lemma 3.5).

Suppose there exists \(\alpha \in (0, 1]\) such that \((a_i)_{i \in I}\) is an \(\alpha\)-orthogonal family in \((E, \|\cdot\|)\). According to lemma 3.2, \([A] = \{\{\{a_i | i \in I\}\}\}\). It follows that \((a_i)_{i \in I}\) is an \(\alpha\)-orthogonal base of \([A]\). Let \((i_k)_{k \in N_o} \subseteq I\) such that for each \(k \in N_o, \|a_{i_k}\| \geq \varepsilon > 0\) and let \((\xi_k)_{k \in N_o} \subseteq K\) such that \(|\xi_1| < |\xi_2| < ... < 1\) and \(\lim_{k \to \infty} |\xi_k| = 1\).

Put \(f : [A] \to K : \sum_{i \in I} \lambda_i a_i \to \sum_{k \in N_o} \lambda_{i_k} \cdot \xi_k\). \(f\) is well defined and for \(x \in [A], |f(x)| < \max_{k \in N_o} |\xi_k| = \frac{1}{\varepsilon}.\max_{k \in N_o} \|\lambda_{i_k}\| \leq \frac{1}{\varepsilon.\alpha.}\|x\|,\) hence \(f\) is continuous.

Now, for \(x \in \text{co}(a_i | i \in I), |f(x)| = |f(\sum_{i \in I} \lambda_i a_i)| \leq \sup_{k \in N_o} |\lambda_{i_k}|.|\xi_k| < \sup_{k \in N_o} |\lambda_{i_k}| \leq 1.\)

Since \(A = \overline{\text{co}}(a_i | i \in I)\) ([3], corollary 4.7. (The proof is valid in polar Banach spaces, hence in Banach spaces with HBEP. ([6], proposition 5.1])), it follows that for each \(x \in A, |f(x)| < 1.\) But, \(\sup_{x \in A} |f(x)| = \sup_{k \in N_o} |f(a_{i_k})| = 1,\) which contradicts the fact
that A is weakly c'-compact.

3.8.REMARK : I don’t know whether the following is true :
Suppose the valuation on K is dense and that K is not spherically complete. Let $A \subseteq E$
be a.c., polar, weakly c'-compact and infinite-dimensional, let $t \in (0, 1)$ and let $(a_i)_{i \in I}$ be
a family in $A \setminus \{0\}$ such that $(\pi(a_i))_{i \in I}$ is a t-orthogonal base of $(V_A, \|\cdot\|)$ and such that
$(a_i)_{i \in I}$ satisfies the conditions of corollary 2.11.
Are the following equivalent ?

i) $[A]$ has a base ;
ii) $\lim_{i \in I} \|a_i\| = 0$;
iii) There exists $\alpha \in (0, 1]$ such that $(a_i)_{i \in I}$ is an α-orthogonal family in $(E, \|\cdot\|)$.
As we have seen in proposition 3.6, i) \Leftrightarrow ii), whereas iii) \Rightarrow i) and iii) \Rightarrow ii) (proposition
3.7). The problem is to prove one of the other implications. These implications would be
easily proved if a p-adic t-frame in a Banach space with a base is an α-orthogonal family
for some $\alpha \in (0, 1]$.
I don’t know if the equivalence of i), ii) and iii) above would bring us closer to solving the
 stil?) open problem that in strongly polar Banach spaces (or perhaps in Banach spaces
with HBEP) each weakly c'-compact subset is c'-compact, but it might perhaps help in
answering a weaker version of the problem stated in remark 2.5.

REFERENCES

[3] BORREY, S. : Weak c'-compactness in (strongly) polar Banach spaces over a non-
137, entitled P-adic functional analysis and edited by J.M. Bayod, J. Martinez-Maurica
and N. De grande-De Kimpe, 31-46. (1992)
dean banach spaces. Simon Stevin, a quarterly journal of Pure and applied Mathematics,
of Math., Catholic University, Toernooiveld, 6525 ED Nijmegen, The Netherlands. (1986)

Ministry of the Flemish Community,
Science Policy Programming Administration,
Boudewijnlaan 30,
1210 BRUSSEL,
Belgium