BERNARD BRUNET
On the thickness of topological spaces

<http://www.numdam.org/item?id=AMBP_1995__2_2_25_0>
ON THE THICKNESS OF TOPOLOGICAL SPACES

by Bernard BRUNET

We recall there are three classical definitions of the topological dimension: the small inductive dimension, denoted by ind, the large inductive dimension, denoted by Ind and the covering dimension, denoted by dim. (For the definitions, one can see (2).)

In this paper, coming back on an idea of J.P. REVEILLES (7), we give a nonstandard definition of the topological dimension - the thickness, denoted by ep (for épaisseur), and we prove this definition coincides with the classical definitions in the class of separable metric spaces.

A.M.S. Mathematic Subject Classification (1991) : Primary 54 J 05
Secondary 54 F 45.
1: Preliminary.

In the sequel, we consider a topological space X and an enlargement E (see, for example, (4)) containing X.

1) Definition 1.1:

Let us consider a base B of X, a point a of $\ast X$ and put $B_a = \{B \in B : a \in \ast B \}$. (In the special case where $a = \ast x$, $B_a = \{B \in B : x \in B \}$.)

Then, we call halo in base B of a, the set $h_B(a) = \bigcap_{B \in B_a} \ast B$.

Remark:

If B' is the base consisting of finite intersections of elements of B, we have, for every point a of $\ast X$, $h_{B'}(a) = h_B(a)$, whence the convention: we will call base of X only these bases of X saturated by finite intersections.

Proposition 1.2:

For every base B of X and for every point a of $\ast X$, there exists an element Ω of $\ast B_a$ such that $\Omega \subseteq h_B(a)$.

Indeed, the relation $\mathcal{R} \subset B_a \times B_a$ defined by $\langle A \mathcal{R} B \rangle \iff A \subseteq B$ is concurrent on B_a.

Corollary 1.3:

For every base B of X, every subset A of X and every $a \in \ast X$, if $a \in \ast \overline{A}$ (with \overline{A} the closure of A in the space X), then $h_B(a) \cap \ast A \neq \emptyset$.

Note that, in the special case where $a = \ast x$, $x \in \overline{A}$ if and only if $h_B(\ast x) \cap \ast A \neq \emptyset$.

2) Definition 1.4:

Let us consider a base B of X and a and b two elements of $\ast X$.

Since a belongs to $h_B(b)$ if and only if $h_B(a)$ is contained in $h_B(b)$, the relation \leq defined by $\langle a \leq b \iff a \in h_B(b) \rangle$ is a preorder on $\ast X$, called the preorder associated to B.

Note this relation is not necessarily symmetric.

If we have $a \leq b$ and $b \leq a$, we will say that a and b are equivalent modulo B and we will write $a \equiv b$.

Moreover, we will write $a < b$ if and only if $a \leq b$ but not $b \leq a$.
Proposition 1.5:

For every base B of X and for every element a of *X, there exists an element b of *X such that $b \leq a$ and b be minimal for the preorder associated to B.

Indeed, the set $I = \{b \in ^*X : b \leq a\}$ is inductive.

Proposition 1.6:

Let B be a base of X and a an element of *X. If there exists $B \in B$ such that $a \in ^*FrB$ (with FrB the boundary of B in the space X), then a is not minimal for the preorder associated to B.

Since $a \in ^*FrB$, it follows from 1.3 that $h_B(a) \cap ^*B \neq \emptyset$ and $h_B(a) \cap ^*(X \setminus B) \neq \emptyset$.

There exists then an element b of *B such that $b \leq a$. If $a \equiv b$, we would have $h_B(a) = h_B(b) \subset ^*B$ and consequently, $^*B \cap ^*(X \setminus B) \neq \emptyset$ which is impossible. It follows that we have $b < a$, so that a is not minimal.

2: Thickness of a topological space X.

1) Definition 2.1:

Let $x \in X$ and B be a base of X. We will call chain of length p ($p \in \mathbb{N}$) of $h_B(x)$ every finite subset $\{a_p, \ldots, a_i\}$ of $h_B(x)$ such that $a_p \leq \ldots \leq a_i < x$ and we will say that:

i) the thickness in x of B is less than n (and we will write $ep(x, B) \leq n$) if and only if, for every chain $\{a_p, \ldots, a_i\}$ of $h_B(x)$, we have $p \leq n$.

ii) the thickness in x of B is equal to n if and only if $ep(x, B) \leq n$ and $ep(x, B) > n-1$.

Note our definition of thickness is the same as the « intended » definition in (7), provided the notion of « consecutive halos » is corrected therein p. 707.

2) Definition 2.2:

Let B be a base of X. We will call thickness of B, the element of $D = \{n \in \mathbb{Z} : n \geq -1\} \cup \{+\infty\}$, denoted by epB, defined by $epB = \sup\{ep(x, B) : x \in X\}$.

Remark:

Note that one can give another definition of the thickness of a base B, using the thickness of B in all the points of *X, standard or not. This thickness, denoted EpB ($= \sup\{ep(a, B) : a \in ^*X\}$), is such of course that $epB \leq EpB$ and it might happen that $epB < EpB$. However, one can prove that for the « complemented » bases B, one has $epB = EpB$ and that, for every base B, there exists a « complemented » base C such that $epC \leq epB$, so that, if necessary, one only
considers « complemented » bases of X. All these results will be proved in another paper of the author.

We now discuss some examples.

Proposition 2.3 :

Let us suppose X non empty and let B be a base of X. Then $ep \ B = 0$ if and only if B consists of open-closed subsets of X.

i) Suppose $ep \ B = 0$. Let us consider an element B of B and x an element of \overline{B}. Then, we have $h_B(x) \cap B \neq \emptyset$. Let $a \in B$ such that $a \leq x$. Since $ep \ B = 0$, we have $a \equiv x$ and therefore $x \in B$, so that B is closed.

ii) Suppose all the elements of B are open-closed. Let $x \in X$ and $a \leq x$. Let us prove that we have $B \leq a$. Let $B \in B$ such that $a \in B$. Then, we have $h_B(a) \cap B \neq \emptyset$ and therefore $h_B(x) \cap B \neq \emptyset$, so that $x \in B \overline{B}$. Since B is closed, we have $x \in B$ and therefore $B \leq a$.

Proposition 2.4 :

i) For every totally ordered space X (totally ordered set X with its order topology), if we denote by B_0 the base of X consisting of all open intervals, we have $ep \ B_0 \leq 1$.

ii) In the special case where $X = \mathbb{R}$, we have $ep \ B_0 = 1$.

Proof :

i) For every $x \in X$ and every $a \in h_B(x)$, we have $h_{B_0}(a) = h_{B_0}(x)$ or $h_{B_0}(a) = h_{B_0}(x) \cap \leftarrow x$, \rightarrow, or $h_{B_0}(a) = h_{B_0}(x) \cap \leftarrow x$.

ii) If $X = \mathbb{R}$, since B_0 is not a base consisting of open-closed subsets of \mathbb{R}, we have $ep \ B_0 \geq 0$ and therefore $ep \ B_0 = 1$.

Proposition 2.5 :

Let X a topological space, B a base of X and A a subset of X. If we denote by C the trace of A on X, we have $ep \ C \leq ep \ B$.

Indeed, for every couple $(a, b) \in A \times A$, the relations « $a < b \ modulo \ C$ » and « $a < b \ modulo \ B \» $ are equivalent.

Proposition 2.6 :

Let X and Y be two topological spaces. For every base B of X and every base C of Y, we have $ep \ (B \times C) \leq ep \ B + ep \ C$.

Indeed, for every $(a, b) \in A \times B$, we have $h_{B \times C}(a, b) = h_B(a) \times h_B(b)$.
3) Definition 2.7:
Let X a topological space. We will call thickness of X the element of D, denoted by $ep\ X$, defined by $ep\ X = \inf \{ep\ B : B \in B(X)\}$, where $B(X)$ is the set of all bases of X.

It follows from this definition and the previous results that:

2.8: 1) If X is nonempty, $ep\ X = 0$ if and only if X has a base consisting of open-closed subsets.
2) For every totally ordered space X, we have $ep\ X \leq 1$.
 In particular, since \mathbb{R} is connected, we have $ep\ \mathbb{R} = 1$.
3) For every topological space X and every subset A of X, we have $ep\ A \leq ep\ X$.
4) For every topological spaces X and Y, we have $ep\ (X \times Y) \leq ep\ X + ep\ Y$.

2.9: Remarks.
1) It follows from 2.8.2) and 2.8.4) that, for every $n \geq 1$, $ep\ \mathbb{R}^n \leq n$. (In the sequel, we will prove that $ep\ \mathbb{R}^n = n$).
2) In contrast to the classical definitions, there is no need for any special hypothesis for 2.8.3) and 2.8.4) to be true: recall, for example, there exist (3) two compact spaces X and Y such that $ind(X \times Y) > indX + indY$.

3: Comparison between thickness and classical dimensions.
1) Theorem 3.1:
For every topological space X, we have:

 a) $epX = 0$ if and only if $indX = 0$,
 b) $indX \leq epX$.

Proof:
 a) is immediate since these two assertions are equivalent to « there exists a base of X consisting of open-closed subsets ».
 b) The theorem is obvious if $ep\ X = +\infty$, so that we can suppose $ep\ X < +\infty$.

Let us prove the theorem by induction on $n = ep\ X$.

It follows from a) that the statement holds for $n = 0$.

Suppose it holds for every space Y such that $ep\ Y \leq n - 1$ and let us prove then that $indX \leq n$, i.e., that, for every point x of X and every neighbourhood V of x, there exists an open subset 0 such that $x \in 0 \subset V$ and $ind(Fr\ 0) \leq n - 1$.

Since $ep\ X = n$, there exists a base B of X such that $ep\ B = n$. Let us prove then that, for every $B \in B$, we have $ep\ (Fr\ B) \leq n - 1$, which by the induction
hypothesis, implies \(\text{ind} X \leq n \).
Let \(B \in B \). Put \(F = FrB \) and call \(C \) the trace of \(B \) on \(F \).
Let us prove that \(ep C \leq n - 1 \). Let \(x \in F \) and \(\{a_p, \ldots, a_i\} \) be a chain of \(h_C(x) \).
Since \(h_C(x) = h_B(x) \cap F \), it follows from 1.6 that \(a_p \) is not minimal for the preorder associated to \(B \). Consequently, there exists an element \(a_{p+1} \) of \(X \) such that \(\{a_{p+1}, a_p, \ldots, a_i\} \) is a chain of \(h_B(x) \). Since \(ep B = n \), we have necessarily \(p \leq n - 1 \), which implies \(ep (x, C) \leq n - 1 \) and therefore \(ep C \leq n - 1 \). Since \(ep F \leq ep C \), we conclude \(ep F \leq n - 1 \).

Corollary 3.2 :

For every \(n \geq 1 \), we have \(ep \ \mathbb{R}^n = n \).
Indeed, we know that \(\text{ind} \ \mathbb{R}^n = n \) (see for example (2)) and \(ep \ \mathbb{R}^n \leq n \).

Corollary 3.3 :

For every totally ordered space \(X \), we have \(\text{ind} X = ep X \leq 1 \)
This assertion follows from 3.1 and 2.8.2).

Remark :

In another paper (1), we have proved that, for every totally ordered space \(X \), \(\text{ind} X = Ind X = dim X \leq 1 \).

2) An example of a space \(X \) such that \(\text{ind} X = Ind X < ep X \).

In (3), V.V. FILIPPOV has proved there exists two compact (non metric) spaces \(X_1 \) and \(X_2 \) such that \(\text{ind} X_1 = Ind X_1 = 1, \text{ind} X_2 = Ind X_2 = 2 \) and \(\text{ind}(X_1 \times X_2) = Ind(X_1 \times X_2) \geq 4 \). It follows from this example that \(X_1 \) or \(X_2 \) is such that \(\text{ind} X_i = Ind X_i < ep X_i \). Indeed, if \(\text{ind} X_1 = Ind X_1 = ep X_1 \) and \(\text{ind} X_2 = Ind X_2 = ep X_2 \), we would have, from 2.8.4), \(ep (X_1 \times X_2) \leq 3 \), which is impossible since \(ep (X_1 \times X_2) \geq \text{ind}(X_1 \times X_2) \) and \(\text{ind}(X_1 \times X_2) \geq 4 \).

Note the space we are looking for is the space \(X_2 \). Indeed, it is not the space \(X_1 \) because \(X_1 \) is by definition the quotient of a product of a compact totally disconnected space \(Z^* \) by a long line \(L \). Since \(ep Z^* = \text{ind} Z^* = 0 \) and \(ep L = \text{ind} L = 1 \) (use 3.3), we have \(ep (Z^* \times L) = 1 \) and therefore \(ep X_1 = ind X_1 = 1 \).

Note the description of the space \(X_2 \) is quite complicated so that it will not be reproduced here.
3) An example of space X such that $ep\ X = indX < IndX = dimX$.

In (8), P. ROY has proved there exists a completely metric space X such that $indX = 0$ and $IndX = dimX = 1$. It follows from 3.1 a) that, for this space, $ep\ X = indX = 0$ and $ep\ X < IndX = dimX$.

4) An example of space X such that $dimX < ep\ X$.

In (5), O.V. LOKUCIEVSKII has proved there exists a compact (non metric) space such that $dimX = 1 < 2 = indX = IndX$. For this space, we have $dimX < indX \leq ep\ X$.

4 : The case of metric spaces.

Theorem 4.1 :

For every metric space X, we have $indX \leq ep\ X \leq dimX = IndX$.

Since, for every topological space Y, we have $indY \leq ep\ Y$ and, for every metric space Z, we have $dimZ = IndZ$ (see for example (2)), it suffices to prove that, for every metric space X, we have $ep\ X \leq dimX$.

Notations : Let $\mathcal{F} = (F_i)_{i \in I}$ be an indexed family of subsets of X. Let us put, for every element x of X, $ord\ (x, \mathcal{F}) = \{i \in I : x \in F_i\} - 1$ (where $|A|$ denotes the cardinal of A) and $ord\ \mathcal{F} = sup\{ord\ (x, \mathcal{F}) : x \in X\}$ ($ord\ \mathcal{F}$ is called the order of \mathcal{F}).

Lemma 4.1.1 :

For every base B of X, let $\mathcal{F} = (FrB)_{B \in B}$, then $ep\ B \leq ord\ \mathcal{F} + 1$.

Let x be an element of X and $\{a_1, ..., a_p\}$ be a chain of $h_B(*x)$. There exists then p distinct elements of B, $B_1, ..., B_p$ such that, for every $i \in \{1, ..., p\}$, $a_j \in *B_i$ if and only if $j \geq i$ and such that $x \in FrB_i$. Consequently, by the definition of $ord\ (x, \mathcal{F})$, we have $p \leq ord\ (x, \mathcal{F}) + 1$, which implies $ep\ (x, B) \leq ord\ (x, \mathcal{F}) + 1$. It follows then, from the definitions of $ep\ B$ and $ord\ \mathcal{F}$, that we have $ep\ B \leq ord\ \mathcal{F} + 1$.

4.1.2. : Proof of 4.1 :

This assertion is obvious if $dimX = +\infty$.

If $dimX = n$, there exists (see, for example, (2), 4.2.2.) a σ-locally finite base B of X such that, if we put $\mathcal{F} = (FrB)_{B \in B}$, we have $ord\ \mathcal{F} \leq n - 1$. It follows then, from 4.1.1., that, for this base B, we have $ep\ B \leq n$, which implies that $ep\ X \leq n$.

4.2 : Let us note that ROY's space is a metric space such that $indX = ep\ X = 0 < dimX = IndX = 1$.

4.3 : Coincidence theorem for separable metric spaces.

For every separable metric space X, we have $ep X = indX = IndX = dimX$.

This assertion is an immediate consequence of 4.1 and the well-known theorem:
« For every separable metric space X, we have $indX = IndX = dimX$. »

4.4. : One can give a direct proof of 4.3. Indeed, let X be a separable metric space such that $indX = n$. Let us denote by N_{2n+1}^{2n+1} NOBELING's space (6), viz, the subspace of \mathbb{R}^{2n+1} consisting of all points which have at most n rational coordinates, and, by C_{2n+1}^{2n+1} the trace on N_{n}^{2n+1} of the base B_{2n+1}^{2n+1} of \mathbb{R}^{2n+1} consisting of all parallelepipeds with rational coordinates. One can prove that $ep C_{n}^{2n+1} \leq n$ which implies, since $ind N_{2n+1}^{2n+1} = n$ (see, for example, (2) 1.8.5), that $ep N_{n}^{2n+1} = n$.

Since $indX = n$ and N_{n}^{2n+1} is universal for the class of separable metric spaces whose dimension is not larger than n (see also (2), 1.11.5), X is homeomorphic to a subspace of N_{n}^{2n+1}, which implies, from 2.8.3), that $ep X \leq ep N_{n}^{2n+1}$ and therefore that $ep X = n$.

4.5 : An example of a non separable metric space X such that $ep X = indX = IndX = dimX$.

In (9), E.K. VAN DOUWEN proved there exists a non separable metric space X such that $indX = IndX = dimX = 1$.

This space is therefore such that $ep X = indX = IndX = dimX$.

4.6 : Question : Does there exist a metric space X such that $indX < ep X$?

Acknowledgments : I express my deep gratitude to Professor Labib HADDAD for many valuable suggestions.

REFERENCES

(2) R. ENGELKING : Dimension theory,
(North-Holland, Amsterdam, 1978).

(3) V.V. FILIPPOV : On the inductive dimension of the product of bicompacta,

(4) L. HADDAD : Introduction à l’analyse non-standard,

(5) O.V. LOKUCIEVSKII : On the dimension of bicompacta, (en russe),

(6) G. NOBELING : Über eine n-dimensionale Universalmenge im \(\mathbb{R}^{2n+1} \),

(7) J.P. REVEILLES : Une définition externe de la dimension topologique,
Note aux Comptes Rendus à l’Académie des Sciences, 299, Série 1, 14 (1984),
707-710.

(8) P. ROY : Nonequality of dimension for metric spaces,

(9) E.K. VAN DOUWEN : The small inductive dimension can be raised by the adjunction of a single point, Indagationes Mathematicae, 35 (1973), Fasc. 5, 434-442.

Bernard BRUNET
Laboratoire de Mathématiques Pures
de l’Université BLAISE PASCAL
63177 AUBIERE CEDEX - FRANCE.