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The Laguerre inequality and the distribution
of zeros of entire functions

George Csordas
Alain Escassut

Abstract

The Laguerre inequality and the distribution of zeros of real en-
tire functions are investigated with the aid of certain infinite-order
differential operators. The paper includes new proofs, problems, con-
jectures and many illustrative examples and counterexamples.

1 Introduction
Let S(A) denote the closed strip of width 2A in the complex plane lC sym-
metric about the real axis:

S(A) = {z ∈ lC | |=(z)| ≤ A},

where A ≥ 0.

Definition 1.1: Let A be such that 0 ≤ A < ∞. We say that a real entire
function f belongs to the class S if f is of the form

(1.1) f(z) = Ce−az2+bzzm

∞∏
k=1

(1− z/zk)e
z/zk ,

where a ≥ 0, zk ∈ S(A) \ {0}, b ∈ IR and
∑∞

k=1 1/|zk|2 < ∞.

We allow functions in S(A) to have only finitely many zeros by letting,
as usual, zk = ∞ and 0 = 1/zk, k ≥ k0, so that the canonical product in
(1.1) is a finite product.

Definition 1.2: If a function f ∈ S(A), for some A ≥ 0, and if f has only
real zeros (i.e., if A = 0), then f is said to belong to the Laguerre-Pólya class,
and we write f ∈ L-P . We write f ∈ L-P∗ if f = pg, where g ∈ L-P and
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p is a real polynomial. Thus, f ∈ L-P∗ if and only if f ∈ S(A), for some
A ≥ 0, and f has at most finitely many non-real zeros.

In the sequel, the Laguerre expression, (f ′)2 − ff ′′, associated with an
entire function f , will be denoted by L[f ]; that is,

L[f ] := (f ′)2 − ff ′′.

Observe that if

p(z) = C
n∏

k=1

(z − ak)

is a non-constant real polynomial with only real zeros, then

(1.2) L[p](x) = −p2(x)

(
p′

p

)′

(x) = p2(x)
n∑

k=1

1

(x− ak)2
≥ 0,

for all x ∈ IR and equality holds in (1.2) if and only if x is a multiple zero
of p.

A function f is in L-P if and only if f is the uniform limit on compact
subsets of lC of real polynomials having only real zeros (see [9, Chapter
VIII], [10, p. 31], or [12, p. 105, Satz I]. Thus, it follows that if f ∈ L-P ,
then L[f ](x) ≥ 0 for all x ∈ IR. Moreover, a calculation, similar to the one
carried out for p in (1.2) (cf. Theorem 2.1 below), shows that if f ∈ L-P is
not of the form Cebx, where C, b ∈ IR, (a convention we adopt henceforth),
then L[f ](x0) = 0 if and only if x0 is a multiple zero of f . The main goal of
a recent paper [6] was to investigate possible converses to this observation.
The fundamental problem is to find conditions on the Laguerre expression of
a function in S(A) that imply that the function has only real zeros. A short
computation shows that for f(z) = z(z2 + 1) ∈ S(1), L[f ](x) = 3x4 + 1, and
so some hypotheses beyond L[f ](x) > 0, for all x ∈ IR, are required if one
hopes to conclude that f has only real zeros.

This paper is organized as follows. In Section 2 we recall several (real
and complex) forms of the Laguerre inequality and we review some known
necessary and sufficient conditions for an entire function in S(A) to possess
only real zeros. These results (see, for example, Theorem 2.2) point to (nay,
underscore) the need for other versions of Laguerre inequality, which are more
readily applicable in concrete settings. To this end, we prove an extended
version of a strict Laguerre inequality (Theorem 3.2) with the aid of a family
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(depending on a real parameter) of infinite-order differential operators. These
considerations lead to several open problems and conjectures (Section 3). In
Section 4, we appeal to the Hermite-Biehler theory to give a new proof of a
known result (Theorem 4.5). In this section (indeed throughout the paper)
we provide a generous array of illustrative examples and counterexamples.
Although we are striving for simplicity, some of these examples are rather
involved and are best handled with the aid of a computer. While we are
unable to prove Conjecture 3.5, in Section 5, we establish a few partial results
(Theorem 5.1, Lemma 5.3 and Proposition 5.4) which provide additional, new
evidence for the validity of Conjecture 3.5.

2 Real and complex versions of the Laguerre
inequality

For ease of reference, we summarize here some necessary and sufficient con-
ditions that a real entire function must satisfy in order that it belong to the
Laguerre-Pólya class, L-P . While the fundamental results reviewed here are
of great theoretical importance, they are not readily applicable in concrete
settings (see Theorem 2.2 and the subsequent comments and examples). We
begin with one of the simplest necessary conditions for membership in L-P .
Theorem 2.1: (Laguerre inequality: Real version I, [4], [3], [2])

If ϕ(x) ∈ L-P, then

(2.1) L[ϕ](x) := (ϕ′(x))2 − ϕ(x)ϕ′′(x) ≥ 0 ∀ x ∈ IR.

Moreover, equality holds if and only if ϕ(x) is of the form Cebx or x is a
multiple zero of ϕ(x).
Proof: If ϕ(x) is of the form Cebx, then L[ϕ](x) = 0 for all x ∈ IR.
Otherwise, consider

(2.2) ϕ(x) := Ce−ax2+bxxm

∞∏
k=1

(1− x/xk)e
x/xk ,

where a ≥ 0, xk ∈ IR \ {0}, b ∈ IR and
∑∞

k=1 1/|xk|2 < ∞ (cf. Definition
1.2). Then the negative of the derivative of the logarithmic derivative of ϕ(x)
is given by

− d

dx

(
ϕ′(x)

ϕ(x)

)
=

L[ϕ](x)

(ϕ(x))2
=

m

x2
+ 2a +

∞∑
k=1

1

(x− xk)2
> 0.
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Thus, it follows that if ϕ(x) is not of the form Cebx, then the Laguerre
expression L[ϕ](x) is zero at a point x if and only if x is a multiple zero of
ϕ(x).

We remark that since the class L-P is closed under differentiation, it
follows from Theorem 2.1 that the Laguerre expression, L[ϕ(k)](x), is non-
negative for all real x. A generalization of the above inequality for real entire
functions (and in particular for the class S(A), cf. Definition 1.1), yields the
following necessary and sufficient conditions.
Theorem 2.2: (Laguerre inequality: Real version II, [4, Theorem 2.9])

Let f ∈ S(A). For n = 0, 1, 2 . . ., set

(2.3) Ln[f ](x) :=
2n∑

k=0

(−1)n+k

(2n)!

(
2n
k

)
f (k)(x)f (2n−k)(x) (x ∈ IR).

Then f ∈ L-P if and only if Ln[f ](x) ≥ 0 for all x ∈ IR and n = 0, 1, 2 . . ..
By way of illustration, we observe that L0[f ](x) = (f(x))2, L1[f ](x) =

L[f ](x), a notational convention we will adopt henceforth, and L2[f ](x) =
(3 f ′′(x)2 − 4 f ′(x) f (3)(x) + f(x) f (4)(x))/12. Simple examples show that
L1[f ](x) can be negative for some x ∈ IR, while L2[f ](x) ≥ 0 for all x ∈ IR.
If f(x) = ex(x2 + 1), then L1[f ](x) = 2e2x(x2 − 1), while L2[f ](x) = e2x and
Ln[f ] = 0 for all n ≥ 3. On the other hand, if f(x) = e−x2

(x2 + 1), then
L1[f ](x) = 2e−2x2

x2(x2 +3) ≥ 0, for all x, while L2[f ](x) = e−2x2
(−1+8x2 +

2x4) is negative for |x| sufficiently small. The verification of the inequalities
Ln[f ](x) ≥ 0 for all x ∈ IR and for all n ≥ 1 is non-trivial, except in some
very special cases.

We next turn to the complex versions of the Laguerre inequality. These
are significant not only because they provide necessary and sufficient condi-
tions for membership in the Laguerre-Pólya class, but also on account of the
their geometric content.
Theorem 2.3: (Laguerre inequality: Complex version I, [4, Theorem 2.12])

Let f ∈ S(A). Then f(z) ∈ L-P if and only if

(2.4)
1

y
={−f ′(z)f(z)} ≥ 0 ∀z = x + iy ∈ lC, y 6= 0.

Theorem 2.4: (Laguerre inequality: Complex version II, [4, Theorem 2.10],
[7]) Let f ∈ S(A). Then f ∈ L-P if and only if

(2.5) |f ′(z)|2 ≥ <{f(z)f ′′(z)}, z ∈ lC.
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Laguerre inequality and distribution of zeros

The proof of Theorem 2.4 is based on the geometric interpretation of
inequality (2.5), which is just that |f(x + iy)|2 is a convex function of y.

3 Infinite order differential operators and the
simplicity of zeros

The purpose of this section is to extend the Laguerre inequality, (cf. Theorem
2.1), to a family of entire functions, with the aid of certain infinite-order
differential operators. Also, here we lay the groundwork for the analysis of
the question, when and under what additional hypotheses is the converse of
Theorem 2.1 valid.

Throughout this paper D := d
dx

will denote differentiation with respect
to x. If

ϕ(x) =
∞∑

k=0

αkx
k (αk ∈ IR)

is a real entire function, we define the operator ϕ(D) by

(3.1) ϕ(D)f(x) =
∞∑

k=0

αkf
(k)(x),

whenever the right-hand side of (3.1) represents an entire function. Here, and
below, we will confine our attention to the case when f is an entire function.
The operator ϕ(D) has been studied by several authors (see, for example,
[1, §11], [5], [3], [2], [8], [9, Chapter IX] and [13]). We hasten note that, in
general, some restrictions on the growth of ϕ or f need to be stipulated, in
order that the right-hand side of (3.1) represent an entire function (see, for
example, [3, Lemma 3.1] and the references cited therein).

In connection with his study of the distribution of zeros of the Riemann
ξ-function, Pólya has shown (cf. [12, p. 296, Hilfsatz III], or [11, p. 21,
Hilfsatz III]) that if f(x) is a polynomial possessing only real zeros and if
ϕ(x) is a transcendental function in L-P , where ϕ(x) is not of the form
p(x)eαx, where p(x) is a polynomial, then the polynomial ϕ(D)f(x) has only
simple real zeros. It seems natural to ask if this result can be extended to the
situation when f(x) is a transcendental entire function in the Laguerre-Pólya
class.

In [3, Theorems 4.6 and 4.7] the authors were able to prove this whenever
the canonical product in the representation of ϕ has genus zero or there is a

335



G. Csordas & A. Escassut

bound on the multiplicities of the zeros of f(x). (A separate analysis shows
that if f ∈ L-P has order less than 2, then for each fixed t > 0, the entire
function e−tD2

f(x) has only simple real zeros.) The question whether or
not the aforementioned restrictions on f(x) are necessary, has been recently
answered by D. A. Cardon and S. A. de Gaston [2]. They proved the following
beautiful and useful result.

Theorem 3.1: (D. A. Cardon and S. A. de Gaston[2]) Let ϕ, f ∈ L-P,
where ϕ(x) := e−αx2

ϕ1(x), f(x) := e−βx2
f1(x), ϕ1 and f1 have genus 0 or 1,

and α, β ≥ 0. If αβ < 1/4 and if ϕ has an infinite number of zeros, then
ϕ(D)f(x) has only simple real zeros.

In view of the proof of Theorem 2.1 and as a consequence of Theorem
3.1, here we obtain a family of functions, depending on a real parameter, µ,
in the Laguerre-Pólya class such that each member of the family satisfies the
strict Laguerre inequality.

Theorem 3.2: Let ϕ, f ∈ L-P, where ϕ and f have order less than 2 and
ϕ has an infinite number of zeros. For each µ ∈ IR, µ 6= 0, let fµ,ϕ(x) :=
ϕ(µD)f(x). If fµ,ϕ(x) is not of the form Cebx, for some real constants C and
b, then the following strict Laguerre inequality holds for each fixed µ ∈ IR,
µ 6= 0,

(3.2) L[fµ,ϕ](x) = (f ′µ,ϕ(x))2 − fµ,ϕ(x)f ′′µ,ϕ(x) > 0 ∀ x ∈ IR.

We alert the reader that the notation fµ,ϕ employed here has a different
meaning from a similar notation used in [6]. The fact that fµ,ϕ(x) ∈ L-P is
well known (cf. [3] and the references contained therein).

Our investigations and those in [6] have led us to the following open
problem.

Open problem 3.3. For each µ ∈ IR, µ 6= 0, let fµ,ϕ(x) := ϕ(µD)f(x),
where ϕ ∈ L-P has order less than 2 and f ∈ S(A). Characterize the
functions ϕ ∈ L-P such that if L[fµ,ϕ](x) > 0 for all x, µ ∈ IR, µ 6= 0, then
f ∈ L-P .

If ϕ ∈ L-P has order 2 and f ∈ S(A), then ϕ(µD)f(x) need not be an
entire function (see, for example, [3, Lemma 3.1], or [2, Lemma 2] ). Thus,
some additional stipulations are required in order to formulate an analog of
this open problem. To illustrate this point, consider ϕ(x) := e−x2 . Then
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for any f ∈ S(A) of order less than 2, fµ,ϕ(x) := ϕ(µD)f(x) is an entire
function, provided that we assume µ > 0. With these assumptions at hand,
we conjecture that if

(3.3) L[fµ,ϕ](x) > 0 for all µ > 0 and for all x ∈ IR,

then f ∈ L-P . The following concrete example may be instructive.

Example 3.4. Let ϕ(x) := e−x2 and let f(x) = a + sin x, where a is a real
number. Then, for µ > 0, fµ,ϕ(x) = ϕ(µD)f(x) = a + cosh(

√
µ) sin x and

L[fµ,ϕ](x) =
1

2
(1 + cosh(2

√
µ) + 2a cosh(

√
µ) sin x).

Thus, elementary considerations show that (3.3) holds if and only if |a| ≤ 1.
The question left unanswered in [6] pertains to the special case of Open

Problem 3.3, when ϕ(x) = cos x (see Conjecture 3.5 below). In the sequel,
we will confine our investigation when ϕ(x) = cos x. In this case, inequality
(3.2) also follows from inequality (2.4) of Theorem 2.3 (cf. [6, Theorem
I)]. In order to expedite our presentation, it will be convenient to adopt the
following nomenclature. If f ∈ S(A), then for µ ∈ IR, we define the function
fµ by the equation

(3.4) fµ(x) := 2 cos(µD)f(x) (D =
d

dx
).

We note that since f ∈ S(A) and cos x has order 1, fµ(x) is an entire function
[3, Lemma 3.1]. In some situations it is convenient to express fµ(x) in the
following equivalent form. Since 2 cos x = eix+e−ix and eiµDf(x) = f(x+iµ),
we deduce, from the Taylor series expansions of f(x + iµ) and f(x− iµ), in
powers of x, that fµ(x) = f(x + iµ) + f(x− iµ). In particular, this relation
makes also clear that fµ is a real entire function whenever f is. Thus, with
the above notation, we record here a special case of Open Problem 3.3 as
follows.

Conjecture 3.5. Let f ∈ S(A) and set fµ(x) := 2 cos(µD)f(x). If L[fµ](x) >
0 for all x, µ ∈ IR, µ 6= 0, then f ∈ L-P .

Now, it is known ([5]) that if f ∈ S(A), for some A ≥ 0, then fµ ∈ L-P
for all real µ such that |µ| ≥ A. It should be pointed out, however, that fµ

may be a constant function, even if f is not. For example, if f(x) = ex, then
fµ(x) = ex cos µ and so fπ/2 = 0. Furthermore, it follows from an extension
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of the classical Hermite–Poulain theorem (cf. [10, p.4] and [12, p.129]) that if
f ∈ L-P , then fµ ∈ L-P for all µ ∈ IR. Hence, if f ∈ L-P , then L[fµ](x) ≥ 0
for all x ∈ IR and all µ ∈ IR.

Remark 3.6. It was shown in [6, Corollary I ] that if f ∈ L-P∗ (cf. Definition
1.2) and if fµ is not of the form Cebx, then f ∈ L-P if and only if L[fµ](x) > 0
for all µ 6= 0 and for all x ∈ IR. Moreover, it was observed that the strict
inequality L[fµ](x) > 0 in the above statement is necessary. Indeed, consider
the polynomial f(x) = x(x2 + 1). Then f belongs to L-P∗, but not to
L-P , since f has non-real zeros. A computation shows that L[fµ](x) =
4(3x4 + (3µ2 − 1)2) ≥ 0 for all x, µ ∈ IR. We also remark that Conjecture
3.5 is also valid in the case when f ∈ S(A) and f has an infinite number real
zeros and the zeros satisfy certain density conditions ([6, Theorem III]). But
are these density conditions necessary (or are they merely a ploy to render
the problem tractable) in order for f to belong to L-P?

4 The Hermite-Biehler theorem, scholia and
examples

The proofs of the results in [6], involve the study of the level sets of f ; that is,
the sets {z ∈ lC | <(eiθf(z)) = 0}, where θ ∈ IR. The connections between
the Laguerre expression of fµ, the level set <(f) = 0 and the zero set of fµ

play a fundamental role throughout [6]. One key observation in [6] is that
for a real entire function f , fµ(x) = 0 if and only if <(f(x + iµ)) = 0. In
contrast, our approach here will make use of the Hermite–Biehler theory [9,
Chapter VII]. We begin with the statement of the classical Hermite-Biehler
theorem for polynomials.

Theorem 4.1: (The Hermite-Biehler Theorem for polynomials, [10, p. 13])
Let

f(z) = p(z) + iq(z) = a0

n∏
k=1

(z − αk), (0 6= a0 ∈ IR),

where p(z) and q(z) are real polynomials of degree ≥ 2.
(1) If f(z) has all its zeros in H+ = {z ∈ C | =(z) > 0}, then p and q

have simple, real zeros which interlace (that is, separate one another) and

(4.1) q′(x)p(x)− q(x)p′(x) > 0 ∀ x ∈ IR.
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(2) (A partial converse.) Suppose that the zeros of p and q are real, simple
and interlacing. If for some real x0, q′(x0)p(x0)− q(x0)p

′(x0) > 0, then f(z)
has all its zeros in H+.

In order to state an extension of Theorem 4.1 to transcendental entire
functions, it will be convenient to recall here the following definition due to
M. G. Krein (cf. [9, p. 307]).

Definition 4.2: An entire function ω(z) is said to be a function in class
HB, if (i) ω(z) has no zeros in the closed lower-half plane (i.e., ω(z) 6= 0
if z ∈ H− = {z ∈ lC | =(z) ≤ 0}) and (ii) |ω(z)/ω(z)| < 1 for z ∈ H+,
where ω(z) denotes the entire function obtained from ω(z) by replacing the
Maclaurin series coefficients of ω(z) by their conjugates.

We remark that in case ω(z) is a polynomial, then condition (ii), in the
above definition, is superfluous. Indeed, (ii) follows from the fact that all the
zeros of the polynomial lie in the open upper-half plane H+.

In the sequel, we will appeal to the following characterization of functions
in the class HB.

Theorem 4.3: (The Hermite-Biehler Theorem, [9, p. 315] ) Let

(4.2) ω(z) := P (z) + iQ(z),

where P (z) and Q(z) are non-constant real entire functions. Then ω(z) is a
function of class HB if and only if for any real constants α and β, the entire
function αP (z) + βQ(z) has only real zeros and

(4.3) Q′(x)P (x)−Q(x)P ′(x) > 0 ∀ x ∈ IR.

Remark 4.4: If the entire function ω(z) (cf. (4.2)) is a function in class HB
of the form ω(z) = e−az2

f(z), where a ≥ 0 and f(z) is a real entire function
of genus 0 or 1, then it follows from Theorem 4.3 that the entire functions
P (z) and Q(z) belong to the Laguerre–Pólya class. Moreover, by (4.3), the
zeros of P (z) and Q(z) are all simple.

Preliminaries aside, we are now in position to provide a new proof of the
following known result (cf. [6, Theorem 2.1]).

Theorem 4.5: Let f ∈ S(A). If f is not of the form Cebx, then

(4.4) L[fµ](x) > 0 for all µ > A and for all x ∈ IR.
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Proof: Fix µ > A and recall that fµ ∈ L-P for all real µ such that |µ| ≥ A
(see the discussion preceding Remark 3.6). Since fµ ∈ L-P (|µ| ≥ A) and
fµ is not of the form Cebx, by Theorem 2.1, it suffices to show that fµ has
only simple zeros. To this end, set ω(z) := f(z− iµ) and observe that all the
zeros of ω lie in the open upper-half plane. Thus, it follows from a well-known
theorem of M. G. Krein ([9, p. 318, Theorem 6]) that ω(z) belongs to the
class HB. Set ω(z) := P (z) + iQ(z), where P (z) and Q(z) are non-constant
real entire functions. Then by Theorem 4.3 and Remark 4.4, P, Q ∈ L-P
and both P and Q have only simple real zeros and whence

fµ(x) = f(x + iµ) + f(x− iµ) = ω(x) + ω(x) = 2P (x)

has only simple real zeros.

We conclude this section with several examples to illustrate, in partic-
ular, that L[fµ](x) need not be strictly positive for various types of entire
functions. While the details of the computations and algebra have been duly
suppressed, we caution the reader that some of these are quite involved and
lengthy. Thus, for purposes of verification, the use of an appropriate symbolic
computer software is advisable.

Example 4.6: (a) In the first place, we have confined our investigation to
the class S(A), because, in general, for entire functions, f , outside this class,
L[fµ](x) need not be non-negative, even if f has only real zeros! Indeed, set
f(x) := ex2

cos x and note that it does not belong to S(A) for any A ≥ 0.
Then an elementary, albeit tedious, calculation shows that

fµ(x) = 2 ex2−µ2

(cos x cos(2 x µ) cosh µ + sin x sin(2 x µ) sinh µ) , and

L[fµ](x) = −e2x2−2µ2

(2(1− 4µ2) cos(2x) + (−8µ2 + cos(2x− 4xµ)

+ cos(2x + 4xµ)) cosh(2µ) + (8µ + cos(2x− 4xµ)− cos(2x + 4xµ)) sinh(2µ))

so that with µ = 1/2, we have

L[f
1/2

](x) = −
(
e−( 3

2)+2 x2 (
−3 + 2 e2 + cos(4 x)

))
< 0 ∀ x ∈ IR.

(b) L[fµ](x) can be non-constant (as a function of µ), non-positive and can be
independent of x. To see this, set f(x) := cosh x. Then L[fµ](x) = −4 cos2 µ.
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(c) For an entire function, f , outside the class S(A), with infinitely many
non-real zeros, the Laguerre inequality L[fµ](x) ≥ 0 may hold for all x, µ ∈
IR. Set f(x) := sinh x. Then L[fµ](x) = 4 cos2 µ ≥ 0.

5 A characterization of functions in the
Laguerre–Pólya class

In the previous sections we have seen a number of results and a plethora
of examples which provide supporting evidence that Conjecture 3.5 is true.
Here we establish, under some additional hypotheses, conditions which imply
that a function in S(A) is in fact in L-P .

If a function f ∈ S(A) has a positive local minimum or a negative local
maximum, then elementary considerations show that f must possess some
non-real zeros. Such local extrema provide one of the simplest (geometric)
manifestations of the existence of non-real zeros. Heuristically speaking, if
we interpret the Laguerre inequality L[f ](x) > 0 for all x ∈ IR in terms of
the convexity (concavity) properties of log f(x) (cf (1.2)), then we see that
f cannot have such local extrema. It is this intuitive geometric idea that is
the motivation behind the following theorem.

Theorem 5.1: Let f ∈ S(A) and suppose that L[fµ](x) > 0 for all µ 6= 0
and for all x ∈ IR. Then f cannot possess a positive local minimum or a
negative local maximum.

Proof: (Reductio ad absurdum) Suppose that L[fµ](x) > 0 for all µ 6= 0
and for all x ∈ IR, but that f has a positive local minimum at point x0 ∈ IR.
Thus, we know from the calculus that f(x0) > 0, f ′(x0) = 0 and f ′′(x0) ≥ 0.
First, consider the case when f ′′(x0) > 0. Then

(5.1) L[f ](x0) = (f ′(x0))
2 − f(x0)f

′′(x0) = −f(x0)f
′′(x0) < 0.

Now, using continuity and (5.1), we have

lim
µ→0

L[fµ](x0) = 4 lim
µ→0

[
(<f ′(x0 + i µ))2 −<f(x0 + i µ)<f ′′(x0 + i µ)

]
(5.2) = −4f(x0)f

′′(x0).

Therefore, it follows from (5.2) and a continuity argument, that there is a
µ 6= 0, |µ| sufficiently small, such that L[fµ](x0) < 0. This is a contradiction.
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Next, suppose that f(x0) > 0 and

f ′(x0) = f ′′(x0) = · · · = f (m)(x0) = 0 but f (m+1)(x0) 6= 0.

Then the Taylor series expansion of f about x = x0 may be expressed in the
form

(5.3) f(x)−f(x0) = f (m+1)(x0)
(x− x0)

m+1

(m + 1)!
+O

(
(x− x0)

m+2
)

as x → x0.

Since f has a positive local minimum at x0, m + 1 must be an even integer.
Moreover, since f(x) − f(x0) ≥ 0 near x0, f (m+1)(x0) > 0. Then, as in the
first part of the proof, we find that

(5.4) f(x) = f(x0)+f (m+1)(x0)
(x− x0)

m+1

(m + 1)!
+O

(
(x− x0)

m+1
)
, (x → x0)

(5.5) f ′(x) = f (m+1)(x0)
(x− x0)

m

m!
+ O

(
(x− x0)

m+1
)
, (x → x0)

(5.6) f ′′(x) = f (m+1)(x0)
(x− x0)

m−1

(m− 1)!
+ O ((x− x0)

m) , (x → x0)

Hence, with the aid of (5.4), (5.5) and (5.6), we find that

(5.7) L[f ](x) = −f(x0)f
(m+1)(x0)

(x− x0)
m−1

(m− 1)!
+ O ((x− x0)

m) (x → x0).

Since limµ→0 L[fµ](x0) = 4L[f ](x0), it follows from (5.7) that there is a µ 6= 0,
|µ| sufficiently small, such that L[fµ](x0) < 0. This is again the desired
contradiction. Since the proof when x0 is a negative local maximum is,
mutatis mutandis, the same as above, the proof of the theorem is complete.

We remark that, since the above analysis was based upon the local behav-
ior of f , the assumption that f ∈ S(A) in Theorem 5.1 could be considerably
weakened. While we prefer the elementary character of the foregoing proof,
we could have also appealed in the above argument to the open mapping
property of analytic functions.
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In order to relate L[fµ] to the theorems in Section 2, we state the follow-
ing elementary, albeit fundamental, lemma. We omit here the proof of the
lemma, since it involves merely some explicit calculations and representations
of L[fµ].

Lemma 5.2: Let f ∈ S(A). For x, µ ∈ IR, set

(5.8) R(x, µ) := <
[
(f ′(x + iµ))2 − f(x + iµ)f ′′(x + iµ)

]
(5.9) I(x, µ) := (= [f ′(x + iµ)])2 −= [f(x + iµ)]= [f ′′(x + iµ)] and

(5.10) C(x, µ) := |f ′(x + iµ)|2 −<[f(x + iµ)f ′′(x + iµ)].

Then, for all x, µ ∈ IR,

(5.11)
1

2
L[fµ](x) = R(x, µ) + C(x, µ),

(5.12)
1

4
L[fµ](x) = C(x, µ)− I(x, µ) and hence

(5.13)
1

4
L[fµ](x) = R(x, µ) + I(x, µ).

It is instructive to examine the nature of the functions R(x, µ) and I(x, µ)
in the above representations of L[fµ](x). First, we note that for a fixed x,
R(x, µ) can change sign (as function of µ) even if f ∈ L-P . By way of a
concrete illustration, set f(x) := e−x2 . Then R(x, µ) = 2e2(t2−x2) cos(4tx).
Another, simpler, calculation shows that if f(x) = x2 + a, (a ∈ IR), then
R(x, µ) = 2(−a− t2 +x2). In contrast, the function I(x, µ) is better behaved
as the next lemma shows.

Lemma 5.3: If f ∈ L-P, then I(x, µ) ≥ 0 for all x, µ ∈ IR.

Proof: An extension of the Hermite–Poulain theorem (cf. [10, p. 4 ] and
[12, p. 129]) implies that if f ∈ L-P , then ĝµ(x) := 2 sin(µ D)f(x) ∈ L-P
for all µ ∈ IR, where the notation ĝµ is used to indicate the action of the
operator 2 sin(µ D) on f ∈ L-P . Hence, by Theorem 2.1, we conclude that
L[ĝµ](x) = I(x, µ) ≥ 0 for all x ∈ IR and all µ ∈ IR.
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We remark that I(x, µ) can be non-negative, for all x, µ ∈ IR, even if f
has some non-real zeros. Indeed, let f(x) = a+sin x, where a is an arbitrary
real number. Then, I(x, µ) = 1

2
(cosh 2µ− 1) ≥ 0 for all µ ∈ IR.

As an immediate consequence of Lemma 5.2, Lemma 5.3 and Theorem
2.4 we obtain the following proposition which generalizes Theorem 3.6 in [6].

Proposition 5.4: Let f ∈ S(A). Then f ∈ L-P if and only if L[fµ](x) ≥ 0
and I(x, µ) ≥ 0 for all x, µ ∈ IR, µ 6= 0.
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