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SOME REMARKS CONCERNING A CLASS OF NONLINEAR

EVOLUTION EQUATIONS IN HILBERT SPACES

Mircea Sofonea

Department of Mat hematics , INCREST , Bucharest , Romania

1. Introduction

Let H be a real Hilbert space and let X , Y be two orthogonal subspaces of

H such that H = X (D Y . Let A be a real nonned space and let T &#x3E; 0 . . In thi s paper

we consider evolution problems of the form

in which the unknowns are the functions x : ~--~X and y : [0, T 1 ----~· Y ,

F : A xX xy xH -- H is a nonlinear operator and X : ----~ J1 is a parameter
function (in (1.1) and everywhere in this paper the dot above represents the deri-

vative with respect to the time variable t ). Such type of problems arise in the

study of quasistatic processes for semilinear rate-type materials (see for example

L1’] " C3]) . In this case the unknowns x and y are the small deformation tensor

and the stress tensor and F is an operator involving the constitutive law of the

material ; the paramater a may be interpreted as the absolute temperature or an

internal state variable.

For particular forme of F existence and uniqueness of the solution and error

estimates of a numerical method for problems of the form (1.1 ) , ( 1.2) were already

given in L33 . [ 4 ~ ..

In this paper we prove the existence and uniqueness of the solution for

problem ( 1.1 ) , ( 1. 2 ) using a technique based on the equivalence between ( 1.1 ) , ( 1. 2 )

and a Cauchy problem for an ordinary differential equation in the product Hilbert

space X x Y (section 2) . We also study the dependence of the solution with respect
to the parameter a and the initial data (section 3). In some applications (see
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for example C 5^)) the function X in ~1.1) is needed to be considered as an

unknown function whose evolution is given by

where G : A x X x Y A is a nonlinear operator. For this reason we also

consider problem (1.1)-(1.4) for which we prove the existence and uniqueness of

the solution (section 4). Let us finally notice that the results presented here

complete and generalize some results of E 2 3 and may be applied in the study of some

evolution problems for rate-type materials (see [11 " C5 Z ) .

2. An existence and uniqueness result

Everywhere in this paper if V is a real normed space we utilise the fol-

lowing the norm of v ; Ov - the zero element of V ;

C~ (D, T, L&#x3E; &#x3E; - the space of continuous functions on ~~0,1’~ with values in V;

C~ ( 0, T , U~ - the space of derivable functions with continuous derivative on 
with values in the norm on the space Le.11 I z I I0,T,VO, T, V 

- the norm on the space

moreover V is a real Hilbert space we denote by  , &#x3E;v the inner product of

h . Finally, if V 1 and U2 are real Hilbert spaces we denote by V, x V 2 the
1 2 .1 -

product space endowed with the cannonical inner product and by v = the

elements of U2 . *

Let us consider the following assumptions :

there exists M&#x3E;O s uch that
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is an continuous operator , for all

The main result of this section is the following :

Let (2. I )-(2.5 ) hoZd. Then problem (I.1 ), (1.2 ) a unique

y ~ C~ (o,T, ~’ ) .

In order to prove theorem 2.1 let us denote by Z the product Hilbert space
Z = X x Y (which in fact is isomorph with H ) . We have :

Lemma 2.1. Let a E O, and t7ion t7vre exists a unique element

z = such that, v = 

Proo . The uniqueness part is a consequence of (2.1) ; ; indeed, if the

elements z = ( u , v ) , Z-= are such that v= U F (l, x , y ,u) ,

using (2.1 ) we have hence by the orthoqonllity in H of
H H

v-v and deduce u = u which 

For the existence part let us denote by Pj : H -+ X the projector map on

X. Using (2.1) and (2.2) we get that the operator P~F ( a , x, y, ~ ) : X ---~ X is a

strongly monotone and Lipschitz continuous operator hence bv Browder’s surjectivity
theorem we get that there exists u ~ X such that =OX. Tt results

that the element F("A,x,y,u) belongs to Y and we finish the proof taking z= ( u, v)

where 

Lemma 2 .1 allows us to consider the operator B : A x Z - Z defined by

moreover, we have : . 

Lemma 2. 2. B is a continuo us operator and t here exists L &#x3E; 0 suc h that
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Let
~ Z

Using (2.6) we get :

which implies

From ( 2 .1 ) and ( 2 . 9 f we get

which implies

Using now f 2 . 8 ) and ( 2 . 2 ) we get

hence by (2.10) it results

Using again ( 2 . 2 ) we get

hence by (2.3) we obtain ~, 1 ~À2

in A , in X in 7 Using now (2.10) and (2.11)

we get the continuity of B and taking A- A~ from (2.10)-(2.12) &#x3E; we get (2.7) .
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Proof of theorem 2..?. Let /t.’ [9,T] x Z - Z and 30 be defined by

Using ( 2. 6) we get Cl(O,T,XJ and is a solution of

( 1.1 ) , ( 1. 2) iff 
° 

z = is a solution of the problem

In order to study ( 2 .15 ) , ( 2 .16 ) let us remark that by lenre 2 . 2 and (2.4)

we get that A is a continuous operator and

Moreover, by (2.5),(2.14) we get Theorem 2.1 follows now from the classical

Cauchy-Lipschitz theorem applied to ( 2 .15 ) , (2.16).

3. The continuous dependence of the solution with respect to the data

Let us now replace (2.2) ,(2.3) by a stronger assumption namely

We have the following result :

TJzeore111 3, l. Let (2. ~ J, (~~.1 ~ hot(l and let x . E. C~ (D,T, X ~ , ~ . E C~ (o,T, Y~
2 &#x26;

be the solution of (1.1), (1. 2 ) for the data $ xoi, YO. satisfying (2.4) ,(2.5) ,
i &#x26; L

i = 1,2 . Then there exists C &#x3E; 0 such that
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Remurk ~. Z. In (;5.2) and everywhere in this section C are strictely positive

generic con.qtants 11’hich depend only on F and T .

Proof n f theorem 3.1. Let z . .=(xiy*) and 20 .=(xo . y0i), i = 1, Z . As it
i 2 2 Oi Oi Oi

results from the proof of theorem 2.1 we have

where the operators A. are defined by (2.13) replacing X by (3.1)
i i

implies that B : A x Z - Z is a Lipschitz continuous operator ( see the proof of

lemma 2.2), from ( 2 .13 ) we get that there exists L &#x3E; 0 such that

Using now ( 3 . 3 ) and ( 3 . 5 ) we get

for all t e hence by (3.4) and a Gronwall-type lenma we deduce

which implies

Using again ( 3 . 3 ) and ( 3 . 5 ) we have

and by (3.6) it results

From (3.6) and (3.7) we get

which implies ( 3 . 2 j .

Remark 3. 2. From (3. 2~ r~e deduce in particular the contin uous dependence of the



19

solution respect the initial data i.e. the finite-time stability of every
solution of (1.1 ~ , (I. 2 ~ (for de finit ions in the field see for instance [6] chap.5).

4. A second existence and uniqueness___result

In this section we suppose that A is a real Hilbert space. We consider the

operator G : A x X x Y - A and the element a0 such that

We have the following existence and uniqueness result :

Theorem 4.1. Let (2. ~~ , (2.5~ , (3.1~ , (4. l~ , (4.2J hold. Then problem (1.1)-(1.4)

has a unique solution 

Let us consider the product Hilbert spaces 
Y = Y x A and let F : X x Y x H ---~ H be the operator defined by

Let us also denote

From (2.1), (3.1) and (4.1) we deduce

and from (4.4),(2.5),(4.2) we obtain
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Since ( 4 . 5) - ( 4 . 7) are fulf illed we may apply theorem 2 .1 and we obtain the

existence and the uniqueness of x = G X ) , y = (y,À) E 
such that

Theorem 4 .1 f ol lows now from ( 4 . 3 ) and ( 4 . 4 ) .

Remark 4. l. As in the case o f the problems (1.1 ~, (1. 2 ~ , applying theorem 3.1

to (4. 8 ~, (4. 9 ~ we deduce the finite-time stability o f every solution o f (1.1)-(1.4).
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