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ON SOME REPRESENTATIONS OF HYPERGROUPS

THOMAS VOUGIOUKLIS
DEMOCRITUS UNIVERSITY OF THRACE
671 00 XANTHI, GREECE

Abstract

A class of hypermatrices to represent hypergroups is introduced.
Application on class of P-hypergroups is given.

1. INTRODUCTION

The problem of representadons of hypergroups by hypermarrices
can be tackled in two ways :  First, by using hypermatrices and with
the wusual multiplicadon. Second, by wusing wusual matrices with a
hypermultdplicadon of matrices. The former case requires a special
hyperring and the lamer a permanent hyperoperadon. Bcth above

problems are almost open. In this paper we mainly deal with the first
problem.

The hyverg-aup in the sense of Marty is the largest cluss of
muldvalued <.wems hat  sadsfies the group-like axioms: <H,> is a

hypergroup if .. HxH — p(H) is an associaive hyperoperation which

satisfies the reproduction axiom hH = Hh = H, for every h of H.
D-hypergroups, cogroups, polygroups, canonical hypergroups,

complete hypergroups, join spaces, €tc. are special classes of the

hypergroup of Marty [1],[2],[4],[6], but also there are some related
hypergroups inmoduced and studied as in [12].

The hyperring in the general sense [10] is the largest class of
multivalued systems that satisfies the ring-like axioms : <R,+.> is a
hyperring in the general sense if <R,+> is a hypergroup of Marty, (.)
is associadve hyperoperadon and the distibutive law x(y+z) ¢ xy+xz,
(X+y)z < xz+yz is satisfied for every x,v,z of R . Additive hyperring



Thomas VOUGLIOUKLIS

is the one of which only (+) is a hyperoperation,
multiplicative  hyperring is the one which only () is a
hyperoperation. If the equality in the distributive law is valid then

the hyperring is called swrong or good. The most known class of
hyperrings is the additive hyperring in the sense of Krasner.

In the following we shall use the generalizaton of the hyperring
by dropping the reproduction axiom: <R,+,> will be called
semihyperring if (+),(.) are associative hyperoperations where (.) is
distibutive with respect to (+). The rest definitions are analogous.
We remark that the definitions presending in the following as well the
results on hyperrings are also tue for semihyperrings. Note that in
the definiton of semihyperming we do not require the commutatvity
even for the hyperoperaton (+).

Remark: It is not known yet a general definition of a hyperfield that
contains all the known classes of hyperfields.

Hypermatrices are called the marmices with entries, elements of a
semihyperring.  The product of two hypermatrices (aij) , (bij) is the
hyperoperadon given in the usual manner

n

@by = ([ = gje | agdy)

k=1

Our problem is the following one: For given hypergroup H, find a
semihyperring R sach that to have a representaion of H by
hypermatrices with entmries from R. Recall that if MR={(aij):aije 'R},
then 2 map T:H — MR:h — T(h) 1is called a representation if

T(hlh:) S T(hl)'l‘(hz) for every hl’h?. of H.
We urs more interested in the case when the good condition

T(h)).Thy) = { T(h): h e h1h2 } = T(hyh,)
iIs valid for cv*ery hl,h2 of H, in which case we can obtain an induced
representadon T  for the hypergroup algebra of H, see [11].

2. THE FUNDAMENTAL EQUIVALENCE RELATIONS

Let <H..> be a hypergroup. The fundamental equivalence relation

E 3
8y is the transitive closure of the relation By defined by setting

s

a By b iff 3 L S H: {ab} ¢ 1%

1
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An equivalent definition is the following:

* ) .
a BH b iff 3 XO’xl""'xk’hil’""hike H with Xg = 3, X = b,
and Il""’Ik finite sets of indices such that

{xj-l’xj} c ijcgl-hi. » j=leoke

The basic property of the fundamental reladon is that it is the
minimum equivalence relaton such that H/B;I is a group, the
fundamental group (see [2],[31.[9)). So, denotng by FH(x) the
fundamental class of the element x , we have the fundamen:al properry:
FH(a).FH(b) = FH(ab) = FH(x)* for every x e ab. The kemnel of the
canonical map H — H/BI_I is called core and it is denoted by O
if }oHi=n then H is called n-hypergroup.
Remark The fundamental equivalence relations on  hypergroupoids,

semihypergroups, hypergroups  etc. can lead us to stricter algebraic
domains from given ones, see [3].

Now let <R,+.> be a hyperring in the general sense and n=0 a
natural number.  The n-fundamental relation, denoted by n , is defined
as follows [10]:

(i) ana for every a of R
(i) anb,a=b iff 3 x0=a,x1,...,xk=b e R, and il"“’ike N{0,1}:

i-1 .
n S s
m =
{xs_l,xs} c Z ( lespv) , s=1,...,k and xSWe R.
v=1

The n-fundamental reladon is an equivalence reladon and let us
denote by Fn the n-quotient ser and by Fn(x) the n-fundamental class

of x. The 1-fundamental reladon coincides with the fundamental
*

reladon B defined only on the multiplication.

THEOREM 1

The <Fn,s,e> is an addidve hyperring where

F (e F (y) = (F (2): z ¢ F (X)+F (N} ,

F n(x)o Fn(y) = {Fn(z): Ze Fn(x).Fn(y)} .
Proof
The above hyperoperations are associative, the fundamental property
for the multplicadon 1is satistied i.e.Fn(x)o Fn(y)={F rl(z)), Yz e Xy.
The dismibudvity is not strong. For a complete proof see [10].

23
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THEOREM 2

A necessary condition in order to have a representation T of the
hypergroup H by nxn hypermatrices over the hyperring R is the
following:
For any fundamental class Fn(x), X € H, we must have elements a; of
R, 1,j=1,...,n  such that

T(FH(x)) < { (aij) : aij € Fn(aij)’ ij=1,...,n }.
Proof See [10].

3. A CLASS OF HYPERMATRICES
Let (G,.) be a group with |G|=n, and { X

g}ge
family of sets indexed of the set G. We set X = U X and we
geG g
consider one more element, the zero element 0, and set X°= Xu{0}. On
X° we define the (hyper)multplication as follows
0.x=x.0=0 for all x ¢ X°

XX = er for all X, € Xr and X € XS .

G be a disjoint

This hyperoperation is associative.  The X°  becomes a semihyperring,
szong dismibudve, with 0 the addidvely absolute scalar idendty
and where the (hyper)addition on the rest elements can be defined in
some ways as the following ones (c.f. [10])

(a) X +X = { x_x_}

S rs
(b) X X = XrUXs for all X, € Xr and X € Xs
(¢) X +X = X
THEOREM 3

All the above semihyperrings have
F1= {10} Juf Xg: ge G} and Fn= ({0}.X} , n>1 .
Proof
The O is not contained in any sum of products with any other element
SO Fn(0)={0} for every n .

x*
One observes that the 1-fundamental reladon coincides with the B

reladon on the muluplication (). Therefore  the 1-fundamental
classes are {0} and the family {Xg}geG .
Now let n>l. We observe that the smallest hyperoperadon is the case
(@) so it has the smallest equivalence classes. Therefore it is

enough to prove the theorem only in this case.
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If e be the unit element of G we have for all r,;s € G and X = Xr’xsexs

{ xr’xs} < Xruxs= Xr+Xs= }<r&e+'“+ Xre+ Xse = xrxe+'"+ xrxe+ xsxe
n-1 umes n-1 times
That means that X0 X . So Fn(xr)= Fn(x5)= X . QE.D.

Remark If G is imbedable in the multiplicauve group of a field then

also the additon can be defined by setting XX = Xr +s then X

becomes a hyperring. In this case Fn(xr)= Xr,ere 'Xr, and F n(O)={O}.

Let f: g — Mg be the regular representaton of the group G by
nxn  permutation matrices. For every permutation matrix Mg=(gij) we
consider the set of associated hypermatrices

;_\/_Ig = { A= (aij) : aij=0 if giij and 3 Xg if gij=1 }
1 X,
We observe that |M_| =n 2.
THEOREM 4 )}
The set M = U M, is a hypergroup with respect to the usual
geG °
multplicatdon of hy?)ermatrices.
Proof

Let rs e G and A'—'(aij) € l_\/_[r , B=(b-1j) € Ms we have

AB = { C=<°ij) PG ekzlaikbkj ) =M

b

because every non zero product of the form aikbkj is equal to X
and the permutatdon matrix corresponding to the product A.B is M
Therefore if AEMI_,BGMS,CGMt we have

ABC) = AM) = U AD =M

, st
DeMs,

s

Similarly (AB)C = ﬂrst , so (.) is associative.

Moreover for all A e M_ we have

»

AM= UAM = UM = UM =

geG 5 gG ° geG S T
and M.A = M . Therefore <M.> is a hypergroup.

Remark *
[t 1s obvious that |M/ Byf =1 - More precisely for all A of I\«_{r we

have Fy((A) = M. Moreover since AB = M_ for every A of M_and B of
_N_is we obtain that <M,.> 1is a complete hypergroup [2].

+1

.

. . v
We also notice that if |X_|= v = constant then we have |M|=n
o
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4. A REPRESENTATION

Let <H,> be a hypergroup with H/B;-‘I be the fundamental group
which we suppose that is of finite order n . Let FH(x) be the
fundamental class of the element x and let hl""’h be selected

elements of each class. We consider the semihyperring <x°8,0>
*

introduced above where G = H/BH , Xh.= FH(hi) , i=1,..,n, so

x%=H°= Hu{0} . Therefore we actualy have G = '{ hl"“’h n }.

The hyperoperation o is given by the relations Oox=xo0=0, for xe H°
and xoey = FH(x).FH(y) = FH(xy) . FH(Z), where ze xy and x,ye H.

The hyperoperadon @ is one of the above (a),(b) or (c).

For the group G and the above semihyperring we consider the hypergroup

M of the associated hypermarrices.
| g1
We have, if H be finite, M, I=n IM|=
i
We consider any map T: H — M such that if FH(‘()— Fyy(h)  we have

T(FH(x)) I Mh.' Then T is a representadon of H by hypermatrices.
1

Since M is complete it is possible to represent hypergroups with order
greater than |H|. We give such a construction in the following:
Let us consider the maximal ki’s such that

'FH<hi>'_

ll\/l:’

k IFH(hi)I
IFH(h)I < and let k = min {kl’ ,k }.
We consider the union K of the c:mcsmn products (FH(h )) i.e.
K = { (‘1: .y k) € (FH(h )) . n } .

In K we define a hyperoperadon * as follows :
if (k) € Fggh)® and vy e (FH(hj))k then
(e X prty) = Fgglih)*

It is immediate that any map T: K — M such that
Ty < My,

is a representation of K by hypermatrices.

In the special case for which IFH(hi)l= v for every i then the above
set K is isomorphic to the set

= {(h., XX ) : i=1,...,n  with XX, € F (h) }
with hyperproduct

(hi,x1,...,xv)*(hj,y1,...,yv) = {(hihj,zl,...,zv):zl,...,zveFH(hihj)}=
= ( hihj' FH(hihj)""' FH(hihj)) .

26



On some representations of hypergroups

5. APPLICATION ON P-HYPERGROUPS

A large class of hypergroups is the following one [7],[8]:
Let (S.) be a semigroup and P ¢ S, P = o . The <SP > is called
P-seminypergroup if the associative P-hyperoperation P’ 1s defined
by setting xP*y = xPy for all x,y of S. If <S,P*> is a hyperzgroup

then it is called P-hypergroup. One defines P-hyperoperations on

semihypergroups instead of semigroups as well. So the following
theorem is also tue for this case.
THEOREM 35

Let (S,.) be a semigroup, then the P-semihypergroups <S,P*> are
hypergroups iff (S,.) is a group.

Proof

If (S,.) is a group then obviously <S,P*> is a hypergroup.

Now let us suppose that (S,.) is not a group, then we have an element
x of S such that xS ¢ S.

We remark that the greater P-hyperoperation is for P=S, ie. for all
uve S and P<S we have uP*v < uSv. Therefore it is enough to prove
that <S,S*> is not a hypergroup. Let us take an element y e xS and
suppose that the reproduction axiom is valid for <S,S*> then
Ve xS*S = xSS < xS which is a contradicdon. Q.E.D.

We can obtain a representaton (isomorphic) on a class of
P-hypergroups using the construction given in the above sections 3,4
as follows:

Let X =G forall g¢ G and (G,) be a group, then in the above
constructon a|M|= a1 | We consider the cartesian product G** and
we take the set

P = ((egmng) i &gy G ) = (e]x G
where ¢ be the identity of G. Then in Gm'1 the P-hypergroup is
defined where the P-hyperoperation P* is given by

(8.8]2 )P (g2]g)) = (22} G
We consider the map

T: Gm'1 — M (g,gl,...,gn) — A = (aij)
where A e ;\_Ig is such that in the permutation matrix Mg we set .= g
for all aijz 0. This map ( which is not unique ) is onioust
an  isomorphic  representation of the P-hypergroup <Gn+1,P > by
hypermatrices. It is clear that the good condition is valid.
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6. P-HYPEROPERATION ON MATRICES

In this section we use ordinary matrices but we introduce a new
hyperoperation on them.
DEFINITION

Let men be the set of mxn matrices with entries from a given ring.

Let also P = { Pi: el } c men we can define a P-hyperoperation p*
on M e extending the Ree’s multiplication, see (5], as follows

s _ t
AP B—APB,VA,BEmen

where P'= {P; : ie I} is the set of transpose matrices of the set P.
This hyperoperation is defined always and is obviously associatve.
Therefore < men,P[*> is a semihypergroup , which we shall call
also P-semihypergroup.
Remark
The set me n is not a semigroup for m=n, but this P-hyperoperation is
actually defined on the set of all matrices (for every m and n) where
an associatve partial operaton (the multiplicaion of matrices) s
defined. Therefore P-hyperoperations can be defined on subsets of
sets equipped with partial associative operations.

Using the P-hyperoperation on the set Mn of square matrices
we can represent all P-hypergroups as follows:

Let (G,.) be a group with |G|=n and let

T:G——>Mn:g—>T(g)=Mg
be the ordinary representation of G by permutation martrices and we
set M= {(M:geG). Let PcG and we consider the P-hypergroup
<G,P*>. In x\ji’n we take the set { M; : pe P} =P then the map T is
a representation o£ the P-hypergroup <G,P > on the set Mn using the
P-hyperoperation P .
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