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ON SOME REPRESENTATIONS OF HYPERGROUPS

THOMAS VOUGIOUKLIS
DEMOCRITUS UNIVERSITY OF THRACE

671 00 XANTHI, GREECE

Abstract

A class of hypermatrices to represent hypergroups is introduced.

Application on class of P-hypergroups is given.

1. INTRODUCTION

The problem of representations of hypergroups by hvpermarrices
can be tackled in two ways : First, by using hypermatrices and with

the usual multiplication. Second, by using usual matrices with a

hypernnultiplication of matrices. The former case requires a special
hyperring and the Ia?ter a permanent hyperoperarion. Bcth above

problems are almost open. In this paper we mainly deal with the first

problem.
The in the sense of Marty is the largest class of

mulrivalued d1a1 satisfies the group-like axioms: H,.&#x3E; is a

hypergroup if .: HxH 2013~ is an asscxiative hyperoperation which

saasfies the reproduction axiom hH = Hh = H, for every h of H.

D-hypergroups, cogroups, polygroups, canonical hypergroups,
complete hypergroups, join spaces, etc. are special classes of the

hypergroup of iviarty (Il,[?~,(4~,(61, but also there are some related

hypergroups introduced and studied as in [12].
The hvperring in the general sense [10] is the largest class of

multivalued systems that saasfies the ring-like axioms : R,+,.&#x3E; is a

hyperring in the general sense if R,+&#x3E; is a hypergroup of Marty, (.)

is associative hyperoperation and the distributive law x(y+z) c xy+xz,

(x+y)z c xz+yz is satisfied for every x,y,z of R . Additive hyperring
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is the one of which only (+) is a hyperoperation,
multiplicative hyperring is the one which only (.) is a

hyper operation. If the equality in the distributive law is valid then

the hyperring is called strong or good. The most known class of

hyperrings is the additive hyperring in the sense of Krasner.
In the following we shall use the generalization of the hyperring

by dropping the reproduction axiom: R,+,.&#x3E; will be called

semihyperring if (+),(.) are associative hyperoperations where (.) is

distributive with respect to (+). The rest definitions are analogous.
We remark that the definitions presending in the following as well the

results on hyperrings are also true for semihyperrings. Note that in

the definition of semihyperring we do not require the commutativity
even for the hyperoperation (+).
Remark: It is not known yet a general definition of a hyperfield that

contains all the known classes of hyperfields.
Hypermatrices are called the matrices with entries, elements of a

semihyperring. The product of two hypermatrices (a..) , (bi.) is t h e
IJ IJ

hyperoperation given in the usual manner

Our problem is the following one: For given hypergroup H, find a

semihyperring R such that to have a representation of H by

hypermatrices with entries from R. Recall that if R},
ij IJ

then a map T:H 2013&#x3E; MR:h -&#x3E; T(h) is called a representation if

for every of H.

more interested in the case when the good condition

is valid for every of H, in which case we can obtain an induced

representation T for the hypergroup algebra of H, see [11].

2. THE FUNDAMENTAL EQUIVALENCE RELATIONS

Let H,.&#x3E; be a hypergroup. The fundamental equivalence relation

b*H is the transidve closure of the relation 9H defined by setting
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An equivalent definition is the following:

and finite sets of indices such that

The basic property of the fundamental relation is that it is the

minimum equivalence relation such that group, the

fundamental group (see [2],[3],[9]). So, denoting by F H (x) the

fundamental class of the element x , we have the fundamental properry:

Fy(a).F(b) = FH(ab) = F H (x) * for every x e ab. The kernel of the

canonical map cp:H 2013~ HlSH is called core and it is denoted by ~,
if then H is called n-hypergroup.
Remark The fundamental equivalence relations on hypergroupoids,
semihypergroups, hypergroups etc. can lead us to stricter algebraic
domains from given ones, see [3].

Now let R,+,.&#x3E; be a hyperring in the general sense and a

natural number. The n-fundamental relation, denoted by n , ’ is defined

as follows [10]:
(i) a n a for every a of R

The n-fundamental relation is an equivalence relation and let us

denote by F the set and. by F t’x) the n-fundamental class

of x. The 1-fundamental relation coincides with the fundamental
*

relation g defined only on the multiplication.
THEOREM I

The F n,0153,ø&#x3E; is an additive hyperring where

Proof

The above hyperoperations are associative, the fundamental property

for the multiplication is satisfied F n (y)= { F n (z) } , vz e xy.

The distributivity is not suong. For a complete proof see [10].
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THEOREM 2

A necessary condition in order to have a representation T of the

hypergroup H by nxn hypermatrices over the hyperring R is the

following:
For any fundamental class F (x), x e H, we must have elements a.. of

n g
R, i, j=1,...,n such that

Proof See [10]. 
01 01 01

3. A CLASS OF HYPERMATRICES

Let (G,.) be a group with disjoint

family of sets indexed of the set G. We set X = U X 
9 

and we

geG S
consider one more element, the zero element 0, and set Xv f 0). On

x 0 we define the (hyper)multiplicanon as follows
0.x=x,0x0 for all x e X 0

x.x=X for allx eX andx e X .
This hyperoperation is associative. The X 0 becomes a semihyperring,
strong distributive, with 0 the additively absolute scalar identity
and where the (hyper)addidon on the rest elements can be defined in

some ways as the following ones (c.f. [10])

3

.AU the above semihvperrings have

Fl= {{0} }v{ Xg : ge G } I and {{0},X, n&#x3E;1.
Proof

The 0 is not contained in any sum of products with any other element

so F n (0)=(0) for every n . 
*

One observes that the 1-fundamental relation coincides with the t3

relation on the multiplication (.). Therefore the 1-fundamental

classes are { 0 ~ 1 and the family 
Now let n&#x3E; 1. We observe that the smallest hyperoperation is the case

(a) so it has the smallest equivalence classes. Therefore it is

enough to prove the theorem only in this case.
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If e be the unit element of G we have for all r,s e G and

That means that

Remark If G is imbedable in the multiplicative group of a field then

also the addition can be defined by setting xr+x s = then X

becomes a hyperring. In this case F n(xd= X , and n r r r r n

Let f: -. g -&#x3E; M 
g 

be the regular representation of the group G by
g 

1

nxn permutation matrices. For every permutation matrix M =(g..) we
g 1J

consider the set of associated hypermatrices 
g lJ

We observe that t

THEOREM 4

The set M = U M~ is a hypergroup with respect to the usual
geG 11

multiplication of hypennatrices.
Proof

because every non zero product of the form aik bkj is equal to X ,
and the permutation matrix corresponding to the product A. B is M .

rs

Therefore if A B E C e Nit we have

Similarly (AB)C = , so (.) is associative.
-rst

Moreover for all A c M we have

and M.A = Therefore M. &#x3E; is a hypergroup.
Remark *

It is obvious that 9 1 = n . More precisely for all A of M we
have !B’I. Moreover since for every A of M and B of

M we obtain that .’vi,.&#x3E; is a complete hypergroup [2].

We also notice that if v = constant then we have )Mj= n v+1
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4. A REPRESENTATION
*

Let H,.&#x3E; be a hypergroup with be the fundamental group

which we suppose that is of finite order n . Let Fu(x) be the

fundamental class of the element x and let h I I...,hn be selected

elements of each class. We consider the semihyperring 
* 

,

introduced above where G = 
&#x3E; FH(hi), i=l,...,n, so

x O=H 0= Hu (0 1 . Therefore we actualy have G s .1 { I.
The hyperoperation a is given by the relations 0ax=xa0*0, for xe H 0
and xoy = = FS(xy) = where ze xy and x.ye H.

The hyperoperation 0153 is one of the above (a),(b) or (c).
For the group G and the above semihyperring we consider the hypergroup
M of the associated hypermatrices.

| n i
We have, if H be finite, )M,!= n 

1 I 
and )M)= Vn 1. .1 

" 1=1
We consider any map T: H 2013~ M such that if F(;)= F H (hi) we have

c M.. Then T is a representation of H by hypermatrices.
1

Since M is complete it is possible to represent hypergroups with order

greater than [ Hl . We give such a construction in the following:
Let us consider the maximal k.’s such that

1

We consider the union K of the cartesian products (
I-

In K we det1ne a hyperoperafon * as follows :
,.

It is immediate that any map T: K ---~ ~!1 such that

6

is a representation of K bv hypermatrices.
In the special case for which IFH (hi) I = v for every i then the above

set K is isomorphic to the set

with hyperproduct
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5. APPLICATION ON P-HYPERGROUPS

A large class of hypergroups is the following one [7],[8]:
*

Let (S,.) be a semigroup and P c S, P x 0 . The S,P &#x3E; is called
*

P-semihypergroup if the associative P-hyperoperation P is defined
* *

by setting xP y = xPy for all x,y of S. If S,P &#x3E; is a hypergroup
then it is called P-hypergroup. One defines P-hyperoperations on

semihypergroups instead of semigroups as well. So the following
theorem is also true for this case.

THEOREM 5
201320132013201320132013 - 

*

Let (S,.) be a semigroup, then the P-semihypergroups S,P &#x3E; are

hypergroups iff (S,.) is a group.

Proof
- 

*

If (S,.) is a group then obviously S,P &#x3E; is a hypergroup.
Now let us suppose that (S,.) is not a group, then we have an element

x of S such that xS $S.
We remark that the greater P-hyperoperation is for P=S, i.e. for all

*

S and PcS we have uP v c uSv. Therefore it is enough to prove
*

that S,S &#x3E; is not a hypergroup. Let us take an element y ~ xS and
*

suppose that the reproduction axiom is valid for S,S &#x3E; then
*

y e xS S = xSS c xS which is a contradiction. Q.E.D.
We can obtain a representation (isomorphic) on a class of

P-hyper groups using the construction given in the above sections 3,4

as follows:

Let Xg= G for all ge G and (G,.) be a group, then in the above
’ 

o 
- 

n+1 I 
w id r the carte ian roduct n_. ‘ andconstruction |M|= n . We consider the cartesian product and

we take the set

where e be the identity of G. Then in GU I J. the P-hypergroup is
*

defined where the .P-hyperoperation P is given by

We consider the map

where A e is such that in the permutation matrix M_ we set a..= g.-g 
" g 

, 

1J -1

for all 0. This map ( which is not unique ) is obviously
. 

iJ 
.. n+1 *

an isomorphic representation of the P-hypergroup G ,P &#x3E; by

hypermatrices. It is clear that the good condition is valid.
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6. P-HYPEROPERATTON ON MATRICES

In this section we use ordi n ary matrices but we introduce a new

hyperoperarion on them.
DEFINITION

Let M be the set of mxn matrices with entries from a given ring. 
t*

Let also P = { p.: 1 ie I } c we can define a P-hyperoperation P
on M mxn extending the Ree’s multiplication, . see [5], as follows

where P~= iE I } is the set of transpose matrices of the set P.

This hyperoperation is defined always and is obviously associative.

Therefore  is a semihypergroup , , which we shall call

also P-semihypergroup.
Remark

The set M is not a semigroup for m~n, but this P-hyperoperation is

actually defined on the set of all matrices (for every m and n) where

an associative partial operation (the multiplication of matrices) is

defined. Therefore P-hyperoperations can be defined on subsets of

sets equipped with partial associative operations.
Using the P-hyperoperation on the set Mn of square matrices

we can represent all P-hypergroups as follows:
Let (G,.) be a group with I G I =n and let

be the ordinary representation of G by permutation matrices and we

set M = { M : ge G ). Let P c G and we consider the P-hvpergroup
* g t ,

G,P*&#x3E;. In 1ri we take the set ( M Ee P } = P then the map T is
a representation of the P-hypergroup G,P &#x3E; on the set M n using the

* n

P-hyperoperation P*.
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