PEDRO JIMENEZ GARIJO

A note on Jordan rings of quotients

Annales scientifiques de l’Université de Clermont-Ferrand 2, tome 97, série Mathématiques, n° 27 (1991), p. 139-142

<http://www.numdam.org/item?id=ASCFM_1991__97_27_139_0>
A NOTE ON JORDAN RINGS OF QUOTIENTS

Pedro JIMENEZ GARIJO

INTRODUCTION

Once Jacobson [7] introduces in a natural way the concepts of zero divisor and that of inverse in Jordan rings with unit, there arises also in a natural way the question of rings of quotients for Jordan rings: given a Jordan ring A with unit and without zero divisors, is it possible to embed A in a Jordan division ring? Or more generally, given a Jordan ring A with unit is it possible to embed A in a Jordan ring $Q(A)$ such that every element which is not a zero divisor in A is invertible in $Q(A)$?

In his book [7] Jacobson states the so called "common multiple property" (a Jordan ring A is said to satisfy the common multiple property if for all a,s in A, with $a \neq 0$ and s nonzero divisor, there are a', s' in A, with s' nonzero divisor, such that $U_a(s') = U_s(a') \neq 0$) and he conjectures that such a condition could play for Jordan rings a similar role to the Ore’s condition for the associative case. However at the present time it is unknown if the common multiple condition is either sufficient or necessary for a Jordan ring with unit to have a ring of quotients. It can be asserted then that up to date there is not still a well-structured general theory for rings of quotients of Jordan rings. Nevertheless there have been recently several important contributions on this topic (see [8,10,12]).

Following the abstract construction of Berberian [3] for the *-regular ring associated to a finite AW*-algebra, we show in [9] that every finite JBW-algebra A is contained in a von Neumann regular Jordan algebra \hat{A} such
that \(\hat{A} \) has no new idempotents. For the general theory of \(AW^* \)-algebras the reader is referred to [2], and for the theory of JB-algebras and JBW-algebras see [5].

In the associative case (\(AW^* \)-algebras or more generally Rickart \(C^* \)-algebras) the more suggestive characterizations of the constructed superring are obtained when this latter ring is related to ring of quotients of the former one (see [1,4,6,11]). This same direction is followed in [9] for the case of a finite JBW-algebra. The total ring of quotients of a Jordan ring with unit is defined there in the following way. Let \(A \) be a Jordan ring with unit. If \(\hat{A} \) is a Jordan ring containing \(A \) and with the same unit as \(A \), then \(\hat{A} \) is said to be the total ring of quotients of \(A \) if:

i) Every nonzero divisor \(s \) in \(A \) is invertible in \(\hat{A} \).

ii) Every morphism \(f \) from \(A \) into a Jordan ring \(B \), having the property that \(f(s) \) is invertible in \(B \) whenever \(s \) is not a zero divisor in \(A \), extends in a unique way to a morphism from \(\hat{A} \) into \(B \). It is proved the following result:

Theorem. Let \(A \) be a finite JBW-algebra. Let \(\hat{A} \) denote the Jordan regular ring associated to \(A \). Then:

i) For every element \(X \) in \(\hat{A} \) there are elements \(a, s \) in \(A \) such that \(X = U_s^{-1}(a) \), \(s \) is not a zero divisor and the subalgebra of \(A \) generated by \(a \) and \(s \) is strongly associative.

ii) \(A \) has the common multiple property.

iii) \(\hat{A} \) is the (unique) total Jordan ring of quotients of \(A \).

In order to obtain a more general (completely algebraic) result, an affirmative answer to the following question would be crucial:

Problem. If \(x \) and \(y \) are elements in a Jordan algebra \(J \) with unit \(1 \), such that

\[
1 + [U_x(y^2)]^2 \quad \text{and} \quad 1 + [U_y(x^2)]^2
\]

are invertible in \(J \), then
It is easily proved that the problem has an affirmative answer when \(J \) is a special Jordan algebra. If it is so in general then we can prove the following:

Conjecture. Let \(A \) be a Jordan algebra with unit \(1 \). Assume that there exists a Jordan algebra \(\hat{A} \) containing \(A \), with the same unit as \(A \), and satisfying the following properties:

1°) If \(X \in A \), then:
 i) \(1 + X^2 \) is invertible in \(\hat{A} \).
 ii) \((1 + X^2)^{-1} \) lies in \(A \).
 iii) \(X(1 + X^2)^{-1} \) lies in \(A \).

2°) If \(s \in A \) is not a zero divisor, then \(s \) is invertible in \(\hat{A} \).

3°) If \(a^2 = 0 \) implies \(a = 0 \), for \(a \) in \(A \).

Then,

I) For every element \(X \) in \(\hat{A} \) there are elements \(a, s \) in \(A \) such that \(X = s^{-1}(a) \), \(s \) is not a zero divisor in \(A \) and the subalgebra of \(A \) generated by \(a \) and \(s \) is strongly associative.

II) \(\hat{A} \) has the common multiple property.

III) \(\hat{A} \) is the (unique) total Jordan ring of quotients of \(A \).

Remark. The above conjecture is a theorem if \(\hat{A} \) is a special Jordan Algebra.

REFERENCES

Departamento de Analisis Matematico
Universidad de Granada
ESPAÑA