ANNALES SCIENTIFIQUES
 DE L'Université de Clermont-Ferrand 2
 Série Probabilités et applications

R. ZAHAROPOL
A zero-two theorem for a certain class of positive contractions in finite dimensional L^{P}-spaces $(1 \leqslant p<+\infty)$
Annales scientifiques de l'Université de Clermont-Ferrand 2, tome 78, série Probabilités et applications, $\mathrm{n}^{\circ} 2$ (1984), p. 9-13
http://www.numdam.org/item?id=ASCFPA_1984__78_2_9_0

L'accès aux archives de la revue «Annales scientifiques de l'Université de ClermontFerrand $2 »$ implique l'accord avec les conditions générales d'utilisation (http://www. numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

A Zero-Two Theorem for a certain class of positive

Contractions in Finite Dimensional L^{p}-spaces $(1 \leqslant \mathrm{p}<+\infty)$

R. ZAHAROPOL

Summary

Our goal here is to extend Theorem 1.1 from [2] (which is sometimes called the zero-two law for positive contractions in L^{1}-spaces) to a class of positive contractions in finite dimensional L^{p}-spaces $(1 \leq p<+\infty)$.

1. A General Lemma

Let (X, Σ, m) be a measure space and $L^{p}(X, \Sigma, m) \quad(1 \leq p<+\infty)$ the usual Banach spaces. By a positive contraction $T: L^{P}(X, \Sigma, m) \rightarrow L^{p}(X, \Sigma, m)$ we mean that T is a linear bounded operator which transforms non-negative functions into nonnegative functions and its norm is not more than one.

Lemma 1. Let $1 \leq p<+\infty$ and let $T: L^{P}(X, \Sigma, m) \rightarrow L^{P}(X, \Sigma, m)$ be a positive contraction. Suppose that there exist $\varepsilon>0$ and $n_{0} \in N U\{0\}$ such that $\left\|T^{n_{0}+1}-T^{n_{0}}\right\|_{p}^{p}<2(1-\varepsilon)$. Let $f \in L^{p}(X, \Sigma, m)$ be such that for every $n \in N \cup\{0\} \quad T^{n} f \cdot T^{n+1} f=0$. Then $\underset{n \rightarrow+\infty}{\lim }\left\|T^{n} f\right\|_{p}=0$.

Procf. Clearly it is enough to prove the lema for $\|f\|_{p}=1$.
I. This paper is part of the author's Ph.D. Thesis at the Hebrew University of Jerusalem. I wish to express my deepest gratitude to Professor Harry Furstenberg, my supervisor, for his veluable support and guidance.

If f is as above then

$$
\left\|T^{n_{o}+1} f-T^{n_{0}}\right\|_{p}^{p}=\left\|T^{n_{o}+1}\right\|_{p}^{p}+\left\|T^{n_{o f}}\right\|_{p}^{p}<2(1-\varepsilon) .
$$

Using the fact that $\left(\left\|T^{n} f\right\|_{p}^{p}\right)_{n}$ is a decreasing sequence we obtain that

$$
\left\|\mathrm{T}^{\mathrm{n}_{\mathrm{O}}+1} \mathrm{f}\right\|_{\mathrm{p}}<(1-\varepsilon)^{1 / \mathrm{p}}
$$

It follows that if we note $\rho=(1-\varepsilon)^{1 / p}$ then $\left\|\left(T^{n_{0}+1}-T^{n_{0}}\right) T^{n_{0}+1} f\right\|_{p}^{p}=\left\|T^{n_{0}+1} T^{n_{0}+1} f\right\|_{p}^{p}+\left\|T^{n} O_{T}^{n_{0}+1} f\right\|_{p}^{p}<2(1-\varepsilon) \rho^{p}$ and we obtain that

$$
\left\|T^{2\left(n_{0}+1\right)} f\right\|_{p}<\rho^{2}
$$

By induction it follows that for every $h \in N \quad\left\|T^{h\left(n_{0}+1\right)} f\right\|_{p}<\rho^{h}$ and using the fact that $\left(\left\|T^{n} f\right\|_{p}\right)_{n}$ is a decreasing sequence it follows that $\lim _{n}\left\|T^{n} f\right\|_{p}=0$.

Remark. In Lemma 1 we may drop the assumption of T being positive. However we will need this assumption later on.
2. The Finite Dimensional L^{p}-spaces and the Theorem

We will now consider the following case:

Let $k \in N, k \geq 2$ be and we note $x=\{1,2, \ldots, k\}, \Sigma=P(x)$. Let m_{1}, \ldots, m_{k} be k non-zero positive real numbers. We will denote by m the measure generated by m_{1}, \ldots, m_{k} (that is $\left.m(\{i\})=m_{i}, i=1, \ldots, k\right)$. We will call the space $L^{p}(X, \Sigma, m)$ a finite dimensional L^{P}-space and we will note
$P_{p}(k, m)=L^{P}(X, \Sigma, m)$. A positive contraction $T: \mathbb{P}_{p}(k, m) \rightarrow P_{p}(k, m)$ is generated by a matrix $\left(a_{i j}\right)_{i, j=1,2, \ldots, k}$ and the resulting positive contraction $T^{n}(n \in N)$ is generated by $\left(a_{i j}^{(n)}\right)_{i, j=1, \ldots, k}$.

$$
\text { If } x \in P_{p}(k, m), \quad x=\left(x_{1}, \ldots, x_{k}\right) \text { then } T x=\left(\sum_{i=1}^{k} x_{i} a_{i j}\right)_{j=1, \ldots, k} \text { and }
$$

$$
T^{n} x=\left(\sum_{i=1}^{k} x_{i} a_{i j}^{(n)}\right)_{j=1, \ldots, k}
$$

If T is a positive contraction on $\boldsymbol{I}_{1}(k, m)$ we will note $\Omega=\left\{i \in X \mid\right.$ for every $n \in N \cup\{0\}$ and $p=1, \ldots, k \quad \sum_{j=1}^{k} a_{i j}^{(n)} m_{j}=m_{i}$

$$
\text { and } \left.a_{i P}^{(n)} \cdot a_{i P}^{(n+1)}=0\right\}
$$

Lemma 2. Let $T: L_{1}(k, m) \rightarrow L_{1}(k, m)$ be a positive contraction. Then the following are equivalent:
a) for every $n \in N \cup\{0\},\left\|T^{n+1}-T^{n}\right\|_{1}=2$
b) $\Omega \neq \phi$.

Proof. $a) \Rightarrow b)$ Suppose $\Omega=\phi$. It follows that for every $i \in\{1,2, \ldots, k\}$ there exists $n_{i} \in N$ such that $\sum_{j=1}^{k} a_{i j}\left(n_{i}\right) m_{j}<m_{i}$ or there exists j_{0} such that $\begin{aligned} & \left(n_{i}\right) \\ & a_{i j} \\ & \left(n_{i}+1\right)\end{aligned} a_{i j_{0}} \neq 0$. In other words for every $i \in\{1,2, \ldots, k\}$ there exists n_{i} such that $\left\|\left(T^{n_{i}^{+1}}-T^{n_{i}}\right) 1_{\{i\}}\right\|_{1}<2 m_{i}=2\left\|1_{\{1\}}\right\|_{1}$.

If we note $n_{0} \dot{=} \max \left\{n_{1}, \ldots, n_{k}\right\}$ it follows that for every $n^{n} \geq n_{0}$ and for every $i \in\{1,2, \ldots, k\} \quad\left\|\left(T^{n+1}-T^{n}\right) I_{\{i\}}\right\|_{1}<2 m_{i}$ (as for every $i \in\{1,2, \ldots, k\}$
the sequence $\left(\left\|\left(T^{n+1}-T^{n}\right) 1_{\{i}\right\|_{1}\right)_{n} \quad$ is a decreasing one).

It follows that for $n \geq n_{0}\left\|T^{n+1}-T^{n}\right\|_{1}<2$.
b) \Rightarrow a) If $\Omega \neq \phi$ then for every $n \in N U\{0\}$ and $i \in \Omega\left\|T^{n+1} 1_{\{i\}}-T^{n} 1_{\{i\}}\right\|_{1}=$ $=2\left\|I_{\{i\}}\right\|_{1}$ and as T is a positive contraction it follows that for every $n \in N U\{0\} \quad\left\|T^{n+1}-T^{n}\right\|_{1}=2$.

Now we are able to prove the desired result:

Theorem 3. Let p be such that $1 \leq p<+\infty$ and let T be simultaneously a positive contraction of $P_{1}(k, m)$ and $\mathbb{L}_{p}(k, m)$. If there exists $n_{0} \in N \cup\{0\}$ such that $\left\|T^{n_{0}+1}-T^{n_{0}}\right\|_{p}<2^{1 / p}$ then $\underset{n}{\lim \left\|T^{n+1}-T^{n}\right\|_{p}=0 . ~}$

Proof. If $\underset{n}{\lim }\left\|T^{n+1}-T^{n}\right\|_{p} \neq 0$ then $\underset{n}{\lim \| T^{n+1}}-T^{n} \|_{1} \neq 0$ (as every two norms in $R^{\mathrm{k}^{2}}$ are equivalent) . Using the zero-two law for positive contractions in L^{1}-spaces (Theorem 1.1 from [2]) it follows that for every $n \in N \cup\{0\}$ $\left\|\mathrm{T}^{\mathrm{n}+1}-\mathrm{T}^{\mathrm{n}}\right\|_{1}=2$ and by Lemma 2 it follows that $\Omega \neq \phi$. If $i \in \Omega$ then the characteristic function $1_{\{i\}}$ satisfies the conditions of Lemma 1 and it follows that $\lim _{\mathrm{n}}\left\|\mathrm{T}^{\mathrm{n}+1} 1_{\{i\}}-\mathrm{T}^{\mathrm{n}} 1_{\{i\}}\right\|_{\mathrm{p}}=0$. We obtain that $\lim _{\mathrm{n}}\left\|\mathrm{T}^{\mathrm{n}+1_{1}} \mathbf{1 i \}}-\mathrm{T}^{\mathrm{n}} \mathbf{1}_{\{i\}}\right\|_{1}=0$ which contradicts the fact that $i \in \Omega$.

References

1. Neveu, J.: "Mathematical foundations of the calculus of probability", San Francisco, London, Amsterdam: Holden Day 1965.
2. Orenstein, D. and Sucheston, L.: "An operator Theorem on L_{1} convergence to zero with applications to Markov kernels". Ann. Math. Statist. 1970 vol. 41, no. 5, 1631-1639.
R. ZAHAROPOL

Département de Mathématiques
Université Hébraïque
GIVAT-RAM
Jérusalem
Israë1

