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A Zero-Two Theorem for a certain class of positive

Contractions in Finite Dimensional Lp-spaces (1 ~ P  + ~)

R. ZAHAROPOL

Summary

Our goal here is to extend Theorem 1.1 from [2] (which is sometimes called the

zero-two law for positive contractions in L-spaces) to a class of positive

contractions in finite dimensional LP-spaces (1  p  + oe) .

1. A General Lemma 

Let (X,Z,mY be a measure space and LP(X,E,m) (1  p  +~) the usual

Banach spaces. By a positive contraction we mean that

T is a linear bounded operator which transforms non-negative functions into non-

negative functions and its norm is not more than one.

Lemma 1. Let 1  p  + m and let -~- be a positive

contraction. Suppose that there exist c &#x3E; 0 and nO E N U fOl such that

I IT no+j _ 2(l e) . Let f E be such that for every
p

Clearly it is enough to prove the lemma f or IIfll p 
- 1 .
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If f is as above then

Using the fact that 
n 

is a decreasing sequence we obtain that
p n

It follows that if we note p = (1 - e) 1/p then

and we obtain that

By induction it follows that for every hEN p~ and using

the fact that a decreasing sequence it follows that lim 
p n n 

p

Remark. In Lemma 1 we may drop the assumption of T being positive. However

we will need this assumption later on. 
~ 

2. The Finite Dimensional Lp-spaces and the Theorem

We will now consider the following case:

Let k ~ N , k &#x3E; 2 be and we note X = {l,2,...,k} , E = P(X) . Let

m1 ...,mk be k non-zero positive real numbers. We will denote by m the

measure generated by mk (that is m~{il) - m,, i - l,...,k). We will

call the space a finite dimensional Lp-space and we will note
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t P (k,m) = L’(X,E,m) . A positive contraction tp(k,m) is generated

by a matrix (a ) and the resulting positive contraction T n (n E N)

is generated by 
i,j=l,..,.Ik 

°

If T is a positive contraction on we will note

o - I for every n E N 

Lemma 2. Let T: 91(k,m) be a positive contraction. Then the

following are equivalent:

a) for every n E N U {0}

Proof. a)~b) Suppose Q=o. It follows that for every i E {l,2,...,k}

k (ni)
there exists ; E N such that E aij m  mi or there exists J. such that~ 

J J i 

(ni+1) 0 0 . In other words for every i E {1,2,,...,,kl there existsa.. 
. 

aij = o. In other words for every i ~ {1,2,...,k} there exists

0 0 
--

ni such that

If we note it follows that for and for

every i E {l,2,...,k} 11 (T n+l - 2m, (as for every i E 
. 

{l,2,...,k}
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the sequence decreasing one). °

It follows that  2 .

b) ~a) If then for every n E N U {O} and i E 0 

= 2))l- JL and as T is a positive contraction it follows that for every

nENU{0}lln+

Now we are able to prove the desired result:

Theorem 3. Let p be such that 1  p  + - and let T be simultaneously a

positive contraction of and tp(k,m) . If there exists n 0 E N U {01JL p U

Proof . If then 0 (as every two norms in

k2 
n "P n ll1

R 
2 

are equivalent) . Using the zero-two law for positive contractions in

I.1-spaces (Theorem 1.1 from [2]) it follows that for every n E N U {0}

‘I Tn+1 _ Tn,, 2 and by Lemma 2 it follows that 9 If i E S2 then the

characteristic function 1{i} satisfies the conditions of Lemma 1 and it follows

that lim We obtain that lim 
n n

which contradicts the fact that i 
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