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THE CENTRALIZER OF MORSE SHIFTS

Mariusz LEMANCZYK

Abstract We examine the centralizer of Morse shifts.
1/ Let x=1’x1b% i be a regular Morse sequence and |2l <rs Then
& C(M={T'cd : ie, j=0,1] where T is the shift and 6
is the mirror map.
b/ There are no roots of T,
2/ There are Morse shifts with uncountable centralizer.
Let V'™ be the class of all ergodic automorphisms v with
exp(27i/n,) in the point spectrum of « ; We introduce some
number d ™' (v) for 1e TV and prove that if '™ (v <

then @ 1is coalescent.

Introduction Let (X,?)vﬂ) be a Lebesgue space and T an
invertible transformation of (X,ibvﬂ) : By C(T) we mean the
centralizer of T i;e; the group of all automorphisms S of (qu}
with TS=ST.; The centralizer is an important invariant in ergodiec
theory: It can state some ergodic properties of T. In particular
knowing C(T) we can usually answer whether T has roots or T
is embeddable in measurable flows. Moreover, if:P is a finite
generator.of T then SP, Se€C(T) are the only generators with
the same finite distributions as P.
 In the present paper we inveatigate centralizers of Morse
shifts. These shifts play an important role in ergodic theory

in providing concrete examples of dynamical systems with

required properties /[7], [12], [15] /s
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There are some direct reasons to compute the centralizers
of Morse shifts: As we shall see in Section 5 the property
to have an uncountable céz{tralizei' is a typical one in the class
of all automorphisms acting 'in a fixed Lebesgue space: On the
other hand examples of automorphisms with the trivial centralizer
ises C(T) -{T:‘ , L€ Zj , are well-known / mixing rank one,
minimal self-joining automorphisms(s]fd/:; Our main theorem
/ Theorew 1 / provides a large class of automorphisms with
countable but not trivial centraliger.

Consider Morse dynamical aystems as examples in topological
dynamioc / (6] /; We see that their topological properties are
usually common for all Morse sequences / [3] [4] /i In partioular
the gioup of all homeomorphisms of (3’ commuting with the shift
%P (x) is equal to {T O‘J ie 7, j=0,17: It is interesting to
l_;now whether C™F(%)=C(x) or not; Surprisingly it turns out that

in our olass the answer can be negative .as well as positive.

2: Notations Now, we introduce a bit of terminology. Bach
element B=(byyiss,by.,) e{o,ﬂ" will be called a block, k is
called the length of B and we denote it by |IBl ; Denote
Bli,j] ==(b.bﬂ,...,b ), B[i, 1]-3[11. The blook B=(b,,:::,b, ) is
defined by setting Y (=0 if b;=1 and b. ;=1 if b;=0; Let
C= (0, 444448, ) be another block; Then the product BxC is defined
by BxC=BB°*,,,B"*where B°=B, B*=B: Let |B| =|C|=k: Then
d(B,C)=4oard{i:0<i<k-1 B[i]4C[il1}: If |Bl <[C|then
fr(B,C)=card{i: 0<i'<IC|=|Bl C[i,i+IB|-1]=B}: We will say B
appears in C at i within d if d(B,C[1,i+|BI-11)<§: If
d(B.Cli.i+|Bl=1] ) =0 we say simply $ppears in C at i,
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‘Now, let b°,b?,b%,:ss be finite blocks of lengths at least
two beginning with zero and put
71/  x=bxb r¥s |

We set 4;=Ib] , r,-min {ifr(o ¥), & fr(4, ), 1=0,1,4:

The sequence x defined in /’1/ is said to be a Morse sequence if
/i/ infinitely many of the b'‘s are different from 0.:.0,
/ii/ infinitely many of the b e are different from 01:::010 and
/iii/ Zr - o0
Obvioualso/ i/ follows from /iii/ i

If x is a Morse sequence - then one oan find an almost periodie
point w eX-{O,i} guch that wlkl=x[k], k=0:/ [12]/5

Put Oy ={T'w: 12}  where T is the shift on X

It is known (O,,T) is strictly ergodic /[4/: The uniqﬁe
T—invariant meaéuré / ergodic / we shall denote by/x and the
system @(x)-(O; .Tvax), will said to be a Morse dynamiocal
system / Morse shift /.

‘Denote by ¢ the mirror map on q,iaea 6(y) =y, ylil -;B/] , 1€%Z;
Then To=GT and by strictly ergodicity of @,; G preserves fix

Kwiatkowaki in [5] has found out the struoture of {J / the set
X(x) desoribed there is oontained in Ox and the set\O; \ X (x) -
is oountable /; Namely, let

D) =]yeC: yl-itkmy =1+ (k+1)n,~1 J=0f ,k=0,t1, % 2,55 §

i=0,:si,n =10,t>0, j=0,1, o, =b’ b*;;i¥1" and put D} =D (0)uD}'(1)
Then D *-(Do ,,....,DZ:_i is a partition of J, into open and

closed subsets; Moreover, for every ye X(x) and evéry\ te N

there is only ome i,0<ign,~1 suoh that y [~i+kn, ,=i+{k+ln, ~]l=q o
Denote n’ = A eee A, 200 -t 'b.."b t,m =0, o =0,y Do =Dy, o

x£=b « B x... , "C/u*' $ 0 oOr o€ will be called t-symbols:

" In what follows we will say about properties of x inatead of T
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on 6;( and for example if no confusion becomes we shall
write C(x) inatead of C(T).

3; Coalescence Let ( X,fb,/«) be a Lebesgue space; We say

an automorphism 7 :Xgis coalesoent if every endomorphism of (th)
commuting with 7 1is necessarily invertible; Consider the class
of all ergodic automorphisms v of (X,3,.) for which Splv)>G{n, :t»0]
where Sp(t) is the group of 8ll eigenvalues of unitary operator
U, defined in}the following way U, (fkf-r ; Here n = 0-iiid, ,t3 0
and 7 t}Zg G{nt: t>0] denotes the group generated by {exp 21i/n,j
Let us notice that exp(27i/n,)e Sp(x) iff there is a n -stack
for ¥ i:es; a partition (A, ¥A, sss, ¥%h)of X /[21/: Moreover
it is not diffioult to verify that ergodicity of v implies that
there is only one / reordering if necessary elements of
another n -stack / n,-stack for v , so we denote it by
D*=(Dy,:::,D,)s In addition if n|n,, then I < D™
If 7« i then we get a sequence of T—infariant partitions
D™ < D™<iis & Lot D=(D;)izbe the limit partition: We assert
oard D;, is a oconstant number for all ieI / I;e: either card D;=w
iel or card D;=m for some natural m / ae; s~ ; Indeed D is
tr=-invariant and measurable partition, so our oclaim easily
follows from [1] .

Put d'7(x) =card D, , i¢]l . Let us observe that g™ (x) is an

invariant of isomorphy.

Propositionl If d{%‘S(T) is finite then T is coalescent:
. .Proof Let <: (X,’&,/L)Q and T bé any veinvariant and‘maa}surable
partition of X and let f£:X—>X/7 be canonical map: It is sufficient
to show /té)/ that if (v,X,%,x) and (*/4 ,X/% 34 /) are
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isomorphic then ¢ is equal to the partition into points:

So, let us suppose it: Thus there is the sequence {]‘)“3/]—)
of n,-7/;-stacks and 4"l g=d ‘3(‘6/§ Lot ﬁ be any "typical"
atom from Di Therefore D= (]D}* so £*(D,)=/1#*(D7)= /1D%<D; €D

tyo 't 1220) gy dt 4
because the preimage carries n,-stacks into n .~Stacks; Hence f

t
cannot stick together points as soon as they belong to the same
atom DOL /because of ocard D =card D /

Finally, f (B/g) contains o’-algebra generatedj’bj ~T-stacks
t70, so 7 D: Therefore < must be equal to the partition

into points;

Remark]l /#Y For every Morse sequence x, di"*g(x)az;

Remark 2 If d{"‘s(‘"c)= oo then T need not be coalescent; For
instance if ~* is a Morse shift and ' any Bermoulli

automorphism then <~«*' oannot be coalescent /[s],I181 /;

4.’ Centralizer and simple spectrum In this section we

formulate and prove some characterization of automorphism having

simple spectra that we need in the following.

Propogition 2 let «: (X,/w}Q be an automorphism of a Lebesgue

spaces; Then U, has a simple gpectrum iff the unitary centralizer
of © , C*™(v) ={T:12 X, )7 , V is unitary, VU,=U.V] is abelian;
Proof If U has a simple spectrum then every unitary operator
Vv, V0,.=U,V is a function of © i.e: there exists a bounded functim
f such that V=f (%)= deE where B is the spectral measure of Uy
Lot T'c C*(¢) them Tof' (<) + Homoe TV { £dE °uJ £aE= uf £PAB=TY /L5
Now, suppose T does not have simple spectrum. Then there are

£, ,£,6L° (X,)  such that L’“(X,/u) =B, @B, ® C , where B; is the
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oyclic space generated by f;,iie: B;=span ( Uif;, jez) , i=1,2,

C is Uy~invariant and there exists U :B,— B which is unitary

and U1°q51 - q]eio U, /T5)/; We define two umitary
operators V,V' on L' (X%L) setting

7(b,) =T, (b,) V' (1,) =U(b)  beB,,

V(b,) =U,'(b,) 7'(b,) =b, b, ¢ B,

V(0 =o T (o) =c veCs

Tt is easy to see that V,T'eC“ ™ (x) but TVATY: Indeed, if VV-i'¥

U), and U, are identity and a contradiotion to ergodieity of s
¢S 2 S

It is known / @3]/ that every Morse sequence x has a simple
spectrum; Combining this with Proposition 2 we have obtained

Corollaryl For every Morse sequence x, € (x)is abelian;

5 A class of Morse sequences with uncountable centralizer

In this seotion we give a class of Morse sequences with 1
uncountable centralizer; We also provide some arguments that the
property to haﬁe an uncountable centralizer is a typical onme:

Let (X,'B,/~) be a Lebesgue space and * be an ergodic
automorphism of (X,/u) : Let us consider the group $ ofanl
automorphisms S: (X,/L)Q with the weak topology W /e /
defined in the following way

S, S iff 48, EaSE§~>0 for every Be® .,
Now, we recall some known results on the weak topology.
/2/(5,%,°) is'a topological group /[6l/,
/3/(5,'»(} is completely metrizable /(¢1/,
/4f S>S iff U =T fies ITg U ][ —— 0 /17,
/5/ G(t) is a close set in W , o
( by~ Le-

/6/ If *t—> 8, i ©then SeC(x) ,r' ‘—»id and Cx) is a
perfect set, so from the Bairs property C (x) is uncountable oz
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Wo lot 8§ denote the class of all Seﬁi\with s 5id for
some sequence i § -~ %, Then % contains a dense Gg set of
automorphisms of (Xy«) : Indeec.i, if S admits a eyclic approxime=
tion with speed o(1/n] then U’=»id for some sequence {i,]
and moreover the class of all automorphisms admitting 2 coycliec
approximation with a fixed speed contains a dense Gs set /f10] /:
So, we have prboved the property to have an uncountable
centralizer is a typibal onse in /L/a .Let us observe that the
class 31 is closed under taking factors, so if Sc¢ 51 "then S
does not have mixing factors, in particular h(S)=0; But a
gstronger fact is trues; If S¢ Si then S is disjoint from all
mixing transformations /[n]/;

Now, we are able to show there are Morse shiftswith
uncountable centralizer;

. 0.4
Given & Morse sequence x=b*b > ;;; we denote

Do 1 (00)+ (1), = 2f0) * p4l10)

Proposition 3 Let x=b"x b ;i be a Morse sequence;

Iftl_i}m;pﬁ-O then C(x) is uncountable.
Proof We will prove that x admits a cyclic approximation
with speed o(41/n):
We have ’gt-{D'Ef(j): i=0, i5,n,-1, jao,ﬂ,t =0 / see Section? /
From it follows that St 2 £
We define a cyclic approximation S, putting

0/ S, D t(;;) D s (1) i=0,ss4,0,-2, j=0,1

Mg = Me -
8,07 (3) =D;"(1-3)

. . 4
Now, we wish to estimate At-.:z
4

We then get A =24 (TD7* (0] A

=2 fr (oo!bt*d) + fr(jj'btﬁ}l <2 1
q m = Ptfi m
t+1 t t

(TD () & §,D7 (i)
D¢’ (0 ) <X{er (00, b )+fr(11 5.

=Q
m -
t ¢ ~t4:1




8o A =0(1/2n)

Therefore x admits desired cyclic approximation;

64 The measure-theoretic centralizer of regular
Morse sequences This section is devoted to prove the main

result of the paper

Theoreml Let x=b’xb™s ;5. be a regular Morse sequence
satisfying /11/ and let SeC(x) s Then S=T'6¢ for some ieZ, j=0,1:

We start with presenting our main techniques / Proposition 4,5/
needed in proving of Theoreml ;
Let x=b°xb™ .: be a Morse sequence;
A measurable function CP:X-{OJSQ is said to be a code
of length k if
/if 41=1¢,
/ii/ @y [0] depends only on y[=k,k], i:e: if y[~k,k]=y'[-k,k]
then ¢y [0]= @y )[0],
/iii/ k is the smallest natural number satisfying /ii/ and
we denote it by 19|
The following Proposition establishes a list of properties

of finite codes that we will need.

Proposition 4 /a/ Let @ be finite code: Then for a:e;
1,5'e O, " if y[=191+t,t+ 19| ]=y'[=1¢] +u,u+¢] then @y [t]= @(y)[&] .
/b/ Let SeC(x)and &>0; There is a finite code (f such that
/8/ d(Sy, ¢3) < d /d(z,z‘)ﬂgr‘g d( 2z [»m,m ,z‘[-m,mj)/
/9 d(¢Py,¢7)> 1-2§  for a.e; yc'(?x'

Proof The proof is straightforward and we use only

ergodic theorem.



~ 51 -
FPollowing [13] we say x is a regular Morse sequence if .
there is Q= 0 such that
/10/ ¢<p < 1 =g and €<q < 1l=¢ 4 t=>0:
In addition we assume
/11/ sup D= A <0
The following characterization of regular Morse sequences
satisfying /11/ can be found in [%] ;

Proposition 5 Let x=b° b% ;.. be a regular Morse sequence
and let /11/ holds; Then
(3 4>0) (3L>0)(V'rz -block) Y teN) [ if m =0, B, | B|=L appears

in x at 1 within 4 then ntl i and 7 appears in x at i]

In the sequel we will need some facts of combinatorial mnature.
Let x=b%b®r ii; be & regular Morse sequence satisfying /11/
and let SeC (x)+ Let d> 0, L=0 be determired by Proposition 5;
Lot us take ¢ =0 and assume P:X% is a code of lenght k so thet
712/ d(¢y,8y) <€ for ae: ye@'
Fix yeO, for which /42/ holds;
Next, we find te N so large that,
/13/ k/n_ < &/2
/14/ d(e, ,8,)>1=3¢ where e, / 8, / is the code of c, / G /
via ¢ i.es |e|=n-2k, o[jl- @(ot['k+j,zk+j-1]), j=0, 444, w2hk-1
/15/ (\/m;n,c} d (9y[ -m,n],Sy [-m,m;] <€
Assume in addition
/16/ yeDt
Now we shall define some map H:{o,ﬁ? in the. following way
a(] [o »3. 150"y » 3, Jrmin{d (o7 I3, 3, ,0, [3, 53,7
a0 i + 1a1,8, (30 »3,7) ]
where ejc’=et if r=0 or 'é‘E otherwise and i -i,| =|jo-j1|?%|et|
/ see Picture 1/



_52-

o‘f
y - e e —3-
Py N
f*
. TR
I —3E *— Jql——i“' — I
ct" 0 Picturel

Let us cbserve that
/1 af oY [1y,4,],0%" [3,,3,])<20¢ , 1=0,1
Indeed, otherwise we would have d( e} [i,,i,] ,ci [jo,ji])zzog , 8=0,1
Coose a sector of y, say yi{-m,m], m>n, such that
y[-m,m] consists of p t-symbols and this sector contains
/18/ at least (:=¢)p of c{ , I=0,1 calculated only in the
places of the form =u+vn,, v=0,%1,%¥2,:.,

To see /18/ it is sufficient to use ergodic theorem and the fact
that /At(r) =% for every r=0,1 , t=0,1,::: ; Hence
¢>d(¢y [-n,n],5y0-n,un]) = (b¢)p 20¢ 2|6/ (m+1) =
=>(4c)pl0e¢ Ie‘{l/pnt=-5e(’l-2 ¢)(1=2k/n,)=5¢(1-2¢) (1-€) = ¢
a contradiction.

Now, we show H: {0,139 is one-to-one: Indeed let us suppose
H(0)=H(1); Then
dfe, [1,,1,3,8, [,,1])<d(e,fi,,1,],0
But from /14/
d(e, [1,,8,,8, [1,,8,]) > (1=3} o] |/1e]] = #=2¢ , a contradiction:

At present, we estimate d( "’[' il ,c““"’)[jo ,j]) ; We have

( (16,1415 e [1“14]) d(e [lo:i]OOH(“[J ol;l*d H(Mrjo v 1@ 41[1 :1])
Hence
719/ a(e] [ig,i,1,0 '3, »3,] 2#-22¢

Let us consider again the sector y[-m,m] satisfying /18/
with ¢ ':M/ Picture 2/;

o, . A . o
. (3, »J;J)+d(qe i, ,141,02"'[30 ,3,1)<40¢

and we match by arrow e:
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Py el ey P ol e . et . ofF
d } ! — Y - '
H ] ] ' !
5 p & ' : ¢ : ! & | X ¢ : ! L
dF— l e * “1 Hov,) . #(v) Y * H(1 ”:I
: — e " - o ~
C:-“‘) Ce ) Cé“ ) Ce < ° ¢ © C 1

Picture 2

We wish to estimate the number R of e’: , r=0,1without arrow,

Jde have d(@y [~m,m] ,S3 [=m,m]) =R (#-22¢) } |67| /pn,, therefore
/20/ R<8gp

Proof of Theorem] From the invertibility of H we have

/21/ cg(") acf“’“" for r=0,]

Take now T°7%”  where Ty [~uein, ,~u+(i+1)n =1]is always

t=aymbol; Then d(T’y"©[-m+a,m=-s],Syf-m+s,m-g]< —%— <8¢
Find the greatest t, such that y[-m,m] contains L t‘,-'sjinbolsz
Using the condition of boundness of {2 .} we get t,—>eo whenever
P —>o0 s+ So choosing € as small as we need and applying
Propbsi’cion 5 we obtain Tsym[v,wl.nto—i]-Sy[v,v+Lne° =1 ]
for some ve % Letting p—»wwe get at once T°6"“y=Sy
Let us set Ah-{yeq: Sy=1°6"y J , h=0,1 ; So either ﬂX(AOPO
or 4 @,)>0; But &, is T-invariant and ergodicity of T forces
A, / with positive measure / to have full measure. Pinally S=T°s";

Corollary 2 For every regular Morse sequence with /11/

there are mo roots of the shift induced by xi:

Corollary 3 For every recular Morse sequence with A1/
C(D)A{T: ie2])
Proof In the case of the equality C(T) is uncountble:

Final remarks Let us now consider the class of all

nonperiodic substitutions on’two symbols of constant lenght

/ for definition and properties see [4] /



VY 0&-—-—>B=(bo,a.'a,bl_1)
1r—>0C=(cy4:i450,,)

There are two kinds of them:

/i/ discrete substitutions: if @ defined in /22/ has the
property b =c; for some i, O0<i <=1
/ii/continuous substitutions: otherwise.

Their topological centraliter was calculated in [3]; It is
equal to {Tk: keZl for /i/ and {Tko’d' :ke 2, j=0,1j for /ii/
/here 6 is again the mirror map/.

Now, we are able to show measure-theoretic centralizer
for such a © ; Let © be discrete substitution: Then © may be
considered from the measure-theoretic point of view as a
discrete, ergodic dynamical system with Sp(0)=G{ o :t=0% .
Prom [ it follows that C(6)=End(G{4 :t=0}); It is easy to see
that the last group is equal to the 7A-adic integers.

Let B be a continuous substitution; Then the dynamical
‘system arising from © is equal to (Q('-,T,/ax) where xX=BxB¥;,,
is a Morse sequence./ if B does not start with zero we replace
B ’oy”BXB/, /Lid/i So from Theoreml  G'*P(6) =C (6)={T”’6&' ,ie 7, j=0,1

Consider the class of Morse sequences over a fixed finite
Abelian group G / see[®],['*] /i Let x=b% b’x ;i; be such a one;
Let us call it regular if sup s =s<eo where
s£=§gg {IB] :B=064(0) ;& s .0/ 0640/ 440 0) aaaq,,g(O) and B appears in xéi’
t>0, |gf denotes the order of g and (i) =i+g , i,geGs If {4}
is bounded then Proposition 5 holds for these regular Morse
sequences over G, The concept of finite code CP:GQand
Proposition 4 go as in Section 6; Let us assume Se C (X and
in addition S6§=6‘33 for every g < G. Repeating considerations

of Section 6 we see that the only formula which is not quite

clear is the following H(g)=H(O|+g, g¢ G; To prove it we take
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p as in /18/: There must exist an i,¢Z such that
o’a(y) [~uti;n, ,~u+(igd)n-1]= 5c,) with an arrow for every ge G

/ it is a simple consequence of /18/,/20/ and 863?-_-%8 /+ This

proves that if Se C(x) , Sé}:éss, ge G then S=-.'1'éo"g for some
ieZ, geG:s To got SG;I=638 it is sufficient to know that
(@;’Ty“x) has a simple spectrum; In gemeral it is still unknown
whether they have simple spectra or mnot; Rfacently Kwiatkowski
have communicated me that he knows examples ;6f Mprse sequences

Jover any cyclic group/of the form x=BxBx;::; having simple spectrum
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